Pyrrolizine/Indolizine-NSAID Hybrids: Design, Synthesis, Biological Evaluation, and Molecular Docking Studies
Abstract
:1. Introduction
Rational Design
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluation
2.2.1. Antiproliferative Activity
Screening Assay
Cytotoxicity Assay
2.2.2. Cell Cycle Analysis
2.2.3. Annexin V-FITC/PI Apoptosis Assay
2.3. Computational Studies
2.3.1. Molecular Docking Studies
2.3.2. Drug-Likeness and ADME Studies
3. Conclusions
4. Experimental Protocol
4.1. Chemistry
4.1.1. General Procedure (A) for Preparation of Compounds (8a–i)
Preparation of Compounds 7a,b
Preparation of Compounds 8a–j
4.2. Biological Evaluation
4.2.1. Antiproliferative Activity
Cell Culture
Screening Assay
MTT Assay
4.2.2. Cell Cycle Analysis
4.2.3. Annexin V-FITC/PI Apoptosis Assay
4.3. Computational Studies
4.3.1. Molecular Docking Studies
4.3.2. Drug-Likeness and ADME Studies
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sun, J.; Wei, Q.; Zhou, Y.; Wang, J.; Liu, Q.H.; Xu, H. A systematic analysis of FDA-approved anticancer drugs. BMC Syst. Biol. 2017, 11, 87. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Bayat Mokhtari, R.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget 2017, 8, 38022–38043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, A.; Sadeghi, S.; Tabatabaeian, H. Battling Chemoresistance in Cancer: Root Causes and Strategies to Uproot Them. Int. J. Mol. Sci. 2021, 22, 9451. [Google Scholar] [CrossRef]
- Damiana, T.S.T.; Dalm, S.U. Combination Therapy, a Promising Approach to Enhance the Efficacy of Radionuclide and Targeted Radionuclide Therapy of Prostate and Breast Cancer. Pharmaceutics 2021, 13, 674. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.S.; Folz, B.A.; Adams, E.G.; Bhuyan, B.K. Synergistic and additive combinations of several antitumor drugs and other agents with the potent alkylating agent adozelesin. Cancer Chemother. Pharmacol. 1995, 35, 471–482. [Google Scholar] [CrossRef]
- Palmer, A.C.; Sorger, P.K. Combination Cancer Therapy Can Confer Benefit via Patient-to-Patient Variability without Drug Additivity or Synergy. Cell 2017, 171, 1678–1691.e13. [Google Scholar] [CrossRef] [Green Version]
- Carrick, S.; Parker, S.; Thornton, C.E.; Ghersi, D.; Simes, J.; Wilcken, N. Single agent versus combination chemotherapy for metastatic breast cancer. Cochrane Database Syst. Rev. 2009, 2009, CD003372. [Google Scholar] [CrossRef]
- Boshuizen, J.; Peeper, D.S. Rational Cancer Treatment Combinations: An Urgent Clinical Need. Mol. Cell 2020, 78, 1002–1018. [Google Scholar] [CrossRef]
- Delbaldo, C.; Michiels, S.; Syz, N.; Soria, J.-C.; le Chevalier, T.; Pignon, J.-P. Benefits of adding a drug to a single-agent or a 2-agent chemotherapy regimen in advanced non-small-cell lung cancer: A meta-analysis. JAMA 2004, 292, 470–484. [Google Scholar] [CrossRef]
- Riechelmann, R.P.; Tannock, I.F.; Wang, L.; Saad, E.D.; Taback, N.A.; Krzyzanowska, M.K. Potential drug interactions and duplicate prescriptions among cancer patients. J. Natl. Cancer Inst. 2007, 99, 592–600. [Google Scholar] [CrossRef]
- Szumilak, M.; Wiktorowska-Owczarek, A.; Stanczak, A. Hybrid Drugs—A Strategy for Overcoming Anticancer Drug Resistance? Molecules 2021, 26, 2601. [Google Scholar] [CrossRef]
- Hasan, M.; Leak, R.K.; Stratford, R.E.; Zlotos, D.P.; Witt-Enderby, P.A. Drug conjugates—An emerging approach to treat breast cancer. Pharmacol. Res. Perspect. 2018, 6, e00417. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wallace, S. Polymer-drug conjugates: Recent development in clinical oncology. Adv. Drug Deliv. Rev. 2008, 60, 886–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, D.J.; Harried, S.S.; Murphy, J.L.; Hall, C.A.; Shekhani, M.S.; Pain, C.; Lyons, C.A.; Chillemi, A.; Malavasi, F.; Pearce, H.L.; et al. Extracellular Antibody Drug Conjugates Exploiting the Proximity of Two Proteins. Mol. Ther. 2016, 24, 1760–1770. [Google Scholar] [CrossRef] [Green Version]
- Donaghy, H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs 2016, 8, 659–671. [Google Scholar] [CrossRef]
- Mercadante, S. The use of anti-inflammatory drugs in cancer pain. Cancer Treat. Rev. 2001, 27, 51–61. [Google Scholar] [CrossRef]
- Vardy, J.; Agar, M. Nonopioid drugs in the treatment of cancer pain. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014, 32, 1677–1690. [Google Scholar] [CrossRef] [Green Version]
- Hamoya, T.; Fujii, G.; Miyamoto, S.; Takahashi, M.; Totsuka, Y.; Wakabayashi, K.; Toshima, J.; Mutoh, M. Effects of NSAIDs on the risk factors of colorectal cancer: A mini review. Genes Environ. Off. J. Jpn. Environ. Mutagen Soc. 2016, 38, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moris, D.; Kontos, M.; Spartalis, E.; Fentiman, I.S. The Role of NSAIDs in Breast Cancer Prevention and Relapse: Current Evidence and Future Perspectives. Breast Care 2016, 11, 339–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plano, D.; Karelia, D.N.; Pandey, M.K.; Spallholz, J.E.; Amin, S.; Sharma, A.K. Design, Synthesis, and Biological Evaluation of Novel Selenium (Se-NSAID) Molecules as Anticancer Agents. J. Med. Chem. 2016, 59, 1946–1959. [Google Scholar] [CrossRef] [PubMed]
- Weninger, A.; Baecker, D.; Obermoser, V.; Egger, D.; Wurst, K.; Gust, R. Synthesis and Biological Evaluation of Zeise’s Salt Derivatives with Acetylsalicylic Acid Substructure. Int. J. Mol. Sci. 2018, 19, 1612. [Google Scholar] [CrossRef] [Green Version]
- Baecker, D.; Obermoser, V.; Kirchner, E.A.; Hupfauf, A.; Kircher, B.; Gust, R. Fluorination as tool to improve bioanalytical sensitivity and COX-2-selective antitumor activity of cobalt alkyne complexes. Dalton Trans. 2019, 48, 15856–15868. [Google Scholar] [CrossRef]
- Banekovich, C.; Ott, I.; Koch, T.; Matuszczak, B.; Gust, R. Synthesis and biological activities of novel dexibuprofen tetraacetylriboflavin conjugates. Bioorg. Med. Chem. Lett. 2007, 17, 683–687. [Google Scholar] [CrossRef]
- Curci, A.; Denora, N.; Iacobazzi, R.M.; Ditaranto, N.; Hoeschele, J.D.; Margiotta, N.; Natile, G. Synthesis, characterization, and in vitro cytotoxicity of a Kiteplatin-Ibuprofen Pt(IV) prodrug. Inorg. Chim. Acta 2018, 472, 221–228. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, L.; Zheng, C.; Wang, Y.; Nie, X.; Shi, D.; Chen, Y.; Wei, G.; Wang, J. Synthesis and biological evaluation of novel podophyllotoxin-NSAIDs conjugates as multifunctional anti-MDR agents against resistant human hepatocellular carcinoma Bel-7402/5-FU cells. Eur. J. Med. Chem. 2017, 131, 81–91. [Google Scholar] [CrossRef]
- Garrido, M.; González-Arenas, A.; Camacho-Arroyo, I.; Cabeza, M.; Alcaraz, B.; Bratoeff, E. Effect of new hybrids based on 5,16-pregnadiene scaffold linked to an anti-inflammatory drug on the growth of a human astrocytoma cell line (U373). Eur. J. Med. Chem. 2015, 93, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Gouda, A.M.; Ali, H.I.; Almalki, W.H.; Azim, M.A.; Abourehab, M.A.S.; Abdelazeem, A.H. Design, synthesis, and biological evaluation of some novel pyrrolizine derivatives as COX inhibitors with anti-inflammatory/analgesic activities and low ulcerogenic liability. Molecules 2016, 21, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attalah, K.M.; Abdalla, A.N.; Aslam, A.; Ahmed, M.; Abourehab, M.A.S.; ElSawy, N.A.; Gouda, A.M. Ethyl benzoate bearing pyrrolizine/indolizine moieties: Design, synthesis and biological evaluation of anti-inflammatory and cytotoxic activities. Bioorg. Chem. 2020, 94, 103371. [Google Scholar] [CrossRef] [PubMed]
- Gouda, A.M.; Beshr, E.A.; Almalki, F.A.; Halawah, H.H.; Taj, B.F.; Alnafaei, A.F.; Alharazi, R.S.; Kazi, W.M.; AlMatrafi, M.M. Arylpropionic acid-derived NSAIDs: New insights on derivatization, anticancer activity and potential mechanism of action. Bioorg. Chem. 2019, 92, 103224. [Google Scholar] [CrossRef] [PubMed]
- Dhakane, V.D.; Chavan, H.V.; Thakare, V.N.; Adsul, L.K.; Shringare, S.N.; Bandgar, B.P. Novel ibuprofen prodrugs with improved pharmacokinetics and non-ulcerogenic potential. Med. Chem. Res. 2014, 23, 503–517. [Google Scholar] [CrossRef]
- Shanbhag, V.R.; Crider, A.M.; Gokhale, R.; Harpalani, A.; Dick, R.M. Ester and amide prodrugs of ibuprofen and naproxen: Synthesis, anti-inflammatory activity, and gastrointestinal toxicity. J. Pharm. Sci. 1992, 81, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Marjanović, M.; Zorc, B.; Pejnović, L.; Zovko, M.; Kralj, M. Fenoprofen and Ketoprofen Amides as Potential Antitumor Agents. Chem. Biol. Drug Des. 2007, 69, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Almalki, F.A.; Abdalla, A.N.; Shawky, A.M.; el Hassab, M.A.; Gouda, A.M. In Silico Approach Using Free Software to Optimize the Antiproliferative Activity and Predict the Potential Mechanism of Action of Pyrrolizine-Based Schiff Bases. Molecules 2021, 26, 4002. [Google Scholar] [CrossRef]
- Shawky, A.M.; Abdalla, A.N.; Ibrahim, N.A.; Abourehab, M.A.S.; Gouda, A.M. Discovery of new pyrimidopyrrolizine/indolizine-based derivatives as P-glycoprotein inhibitors: Design, synthesis, cytotoxicity, and MDR reversal activities. Eur. J. Med. Chem. 2021, 218, 113403. [Google Scholar] [CrossRef]
- Shawky, A.M.; Ibrahim, N.A.; Abdalla, A.N.; Abourehab, M.A.S.; Gouda, A.M. Novel pyrrolizines bearing 3,4,5-trimethoxyphenyl moiety: Design, synthesis, molecular docking, and biological evaluation as potential multi-target cytotoxic agents. J. Enzym. Inhib. Med. Chem. 2021, 36, 1313–1333. [Google Scholar] [CrossRef] [PubMed]
- Shawky, A.M.; Abourehab, M.A.S.; Abdalla, A.N.; Gouda, A.M. Optimization of pyrrolizine-based Schiff bases with 4-thiazolidinone motif: Design, synthesis and investigation of cytotoxicity and anti-inflammatory potency. Eur. J. Med. Chem. 2020, 185, 111780. [Google Scholar] [CrossRef] [PubMed]
- Shawky, A.M.; Ibrahim, N.A.; Abourehab, M.A.S.; Abdalla, A.N.; Gouda, A.M. Pharmacophore-based virtual screening, synthesis, biological evaluation, and molecular docking study of novel pyrrolizines bearing urea/thiourea moieties with potential cytotoxicity and CDK inhibitory activities. J. Enzym. Inhib. Med. Chem. 2021, 36, 15–33. [Google Scholar] [CrossRef]
- Amujuri, D.; Siva, B.; Poornima, B.; Sirisha, K.; Sarma, A.V.S.; Lakshma Nayak, V.; Tiwari, A.K.; Purushotham, U.; Suresh Babu, K. Synthesis and biological evaluation of Schizandrin derivatives as potential anti-cancer agents. Eur. J. Med. Chem. 2018, 149, 182–192. [Google Scholar] [CrossRef]
- Mazaleuskaya, L.L.; Theken, K.N.; Gong, L.; Thorn, C.F.; FitzGerald, G.A.; Altman, R.B.; Klein, T.E. PharmGKB summary: Ibuprofen pathways. Pharmacogenet. Genom. 2015, 25, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Alkatheeri, N.A.; Wasfi, I.A.; Lambert, M. Pharmacokinetics and metabolism of ketoprofen after intravenous and intramuscular administration in camels. J. Vet. Pharmacol. Ther. 1999, 22, 127–135. [Google Scholar] [CrossRef]
- Qandil, A.M. Prodrugs of nonsteroidal anti-inflammatory drugs (NSAIDs), more than meets the eye: A critical review. Int. J. Mol. Sci. 2012, 13, 17244–17274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selinsky, B.S.; Gupta, K.; Sharkey, C.T.; Loll, P.J. Structural analysis of NSAID binding by prostaglandin H2 synthase: Time-dependent and time-independent inhibitors elicit identical enzyme conformations. Biochemistry 2001, 40, 5172–5180. [Google Scholar] [CrossRef]
- Kurumbail, R.G.; Stevens, A.M.; Gierse, J.K.; McDonald, J.J.; Stegeman, R.A.; Pak, J.Y.; Gildehaus, D.; Miyashiro, J.M.; Penning, T.D.; Seibert, K.; et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 1996, 384, 644–648. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Mohassab, A.M.; Hassan, H.A.; Abdelhamid, D.; Gouda, A.M.; Gomaa, H.A.M.; Youssif, B.G.M.; Radwan, M.O.; Fujita, M.; Otsuka, M.; Abdel-Aziz, M. New quinoline/1,2,4-triazole hybrids as dual inhibitors of COX-2/5-LOX and inflammatory cytokines: Design, synthesis, and docking study. J. Mol. Struct. 2021, 1244, 130948. [Google Scholar] [CrossRef]
- Dassault Systems BIOVIA. Discovery Studio Visualizer, v16.1.0.15350; Dassault Systems: San Diego, CA, USA, 2016. [Google Scholar]
- Reichel, A.; Lienau, P. Pharmacokinetics in Drug Discovery: An Exposure-Centred Approach to Optimising and Predicting Drug Efficacy and Safety. Handb. Exp. Pharmacol. 2016, 232, 235–260. [Google Scholar] [CrossRef] [PubMed]
- Tuntland, T.; Ethell, B.; Kosaka, T.; Blasco, F.; Zang, R.X.; Jain, M.; Gould, T.; Hoffmaster, K. Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at Novartis Institute of Biomedical Research. Front. Pharmacol. 2014, 5, 174. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Abraham, M.H.; Le, J.; Hersey, A.; Luscombe, C.N.; Beck, G.; Sherborne, B.; Cooper, I. Rate-Limited Steps of Human Oral Absorption and QSAR Studies. Pharm. Res. 2002, 19, 1446–1457. [Google Scholar] [CrossRef] [PubMed]
Comp. No | IC50 (µM) |
---|---|
8a | 7.61 ± 0.44 |
8e | 1.07 ± 0.06 |
8f | 3.16 ± 0.18 |
Doxorubicin | 2.07 ± 0.12 |
Comp. | Cell Cycle Stage (% ± SD) | Effect | |||
---|---|---|---|---|---|
Pre-G1 | G1 | S | G2/M | ||
Control | 1.01 ± 0.10 | 56.11 ± 7.34 | 40.22 ± 6.78 | 3.07 ± 1.07 | --- |
8a | 6.57 ± 1.80 | 48.41 ± 4.31 | 45.61 ± 4.33 | 1.00 ± 0.06 | Increase of cells at preG1 and S |
8e | 10.12 ± 1.90 | 40.22 ± 3.99 | 49.02 ± 3.88 | 1.76 ± 0.32 | Increase of cells at preG1 and S |
8f | 5.81 ± 0.32 | 60.19 ± 8.81 | 35.17 ± 3.51 | 0.64 ± 0.15 | Increase of cells at preG1 and G1 |
Comp. | Living Cells | Apoptosis | Necrosis | |
---|---|---|---|---|
Early | Late | |||
Control | 94.50 ± 3.00 | 0.60 ± 0.20 | 0.80 ± 0.20 | 4.10 ± 1.00 |
8a | 85.00 ± 3.00 | 15.00 ± 3.20 | 0.00 ± 0.00 | 0.00 ± 0.00 |
8e | 69.20 ± 2.30 | 30.30 ± 3.01 | 0.00 ± 0.00 | 0.00 ± 0.00 |
8f | 89.10 ± 2.02 | 11.03 ± 1.11 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Target (pdb) | Comp. No | ΔGb a | Ki b | HBs c | Atoms in H-Bonding | Length d (Å) | |
---|---|---|---|---|---|---|---|
In Ligand | In COX-1 | ||||||
Cox-1 (1EQG) | 5a | −8.07 | 1.21 μM | 4 | OCH3 | Agr120 | 2.11 |
OCH3 | Tyr355 | 2.23 | |||||
NH2 | Tyr385 | 2.08 | |||||
CO | Ser530 | 1.87 | |||||
5c | −8.78 | 366.84 nM | 2 | CN | Arg120 | 1.98 | |
CN | Arg120 | 2.49 | |||||
8a | −10.36 | 25.61 nM | 5* | COs | Agr120 | 1.70, 2.76 | |
COs | Tyr355 | 1.83, 2.88 | |||||
OCH3 | Gly526* | 2.22 | |||||
8e | −10.52 | 19.38 nM | -e | - | - | - | |
8f | −10.55 | 18.44 nM | 2 | CO | Val116* | 2.28 | |
CO | Arg120 | 2.02 | |||||
Ibu. | −8.43 | 664 nM | 3 | C=O | Arg120 | 1.71 | |
COOH | Arg120 | 1.79 | |||||
COOH | Tyr355 | 1.83 | |||||
COX-2 (1CX2) | 5a | −8.61 | 489.47 nM | 4 | OCH3 | His90 | 1.95 |
OCH3 | Gln192 | 2.66 | |||||
NH2 | Met522 | 2.51 | |||||
NH2 | Val523 | 2.01 | |||||
5c | −8.56 | 530.05 nM | 2 | NH2 | Val523 | 2.24, 2.28 | |
8a | −11.04 | 8.05 nM | 3 | CN | Arg120 | 2.60 | |
CO | Ser353* | 2.73, 3.04 | |||||
8e | −10.70 | 14.42 nM | 6 | CO | His90* | 2.05, 2.26 | |
CONH | Leu352 | 1.98 | |||||
CN, CO | Arg513 | 1.94, 2.73 | |||||
Br | Gly526 | 2.55 | |||||
8f | −12.56 | 618.28 pM | 2 | COCO | Arg513 * Ser530 * | 2.69 2.42 | |
SC-588 | −10.78 | 12.52 nM | 5 | CF3 | Arg120* | 2.32–2.44 | |
CF3, Pyrazole N | Tyr355 | 2.58, 3.06 |
Comp. No | Physicochemical Properties | Lipinski’s Rule | %Abs a | DLS b | |||||
---|---|---|---|---|---|---|---|---|---|
MW | MPSA | MlogP | RBs | HA | HD | ||||
8a | 484.59 | 70.29 | 2.64 | 10 | 4 | 2 | Yes | 84.75 | 1.54 |
8b | 532.59 | 83.76 | 2.14 | 10 | 5 | 2 | Yes c | 80.10 | 1.06 |
8c | 472.55 | 62.75 | 3.34 | 9 | 4 | 2 | Yes | 87.35 | 1.76 |
8d | 520.55 | 76.21 | 2.84 | 9 | 5 | 2 | Yes c | 82.71 | 1.29 |
8e | 533.46 | 62.75 | 3.53 | 9 | 3 | 2 | Yes c | 87.35 | 1.59 |
8f | 581.46 | 76.21 | 3.03 | 9 | 4 | 2 | Yes c | 82.71 | 1.13 |
8g | 503.04 | 62.38 | 3.63 | 9 | 3 | 2 | Yes c | 87.48 | 2.03 |
8h | 551.03 | 75.85 | 3.12 | 9 | 4 | 2 | Yes c | 82.83 | 1.57 |
8i | 547.49 | 62.38 | 3.73 | 9 | 3 | 2 | Yes c | 87.48 | 1.73 |
VI | 602.67 | 82.91 | 3.71 | 10 | 9 | 0 | Yes c | 80.40 | 1.01 |
Ibu | 206.28 | 28.65 | 3.13 | 4 | 2 | 1 | Yes | 99.12 | 0.65 |
Ket | 254.28 | 42.11 | 2.69 | 4 | 3 | 1 | Yes | 94.47 | 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abourehab, M.A.S.; Alqahtani, A.M.; Almalki, F.A.; Zaher, D.M.; Abdalla, A.N.; Gouda, A.M.; Beshr, E.A.M. Pyrrolizine/Indolizine-NSAID Hybrids: Design, Synthesis, Biological Evaluation, and Molecular Docking Studies. Molecules 2021, 26, 6582. https://doi.org/10.3390/molecules26216582
Abourehab MAS, Alqahtani AM, Almalki FA, Zaher DM, Abdalla AN, Gouda AM, Beshr EAM. Pyrrolizine/Indolizine-NSAID Hybrids: Design, Synthesis, Biological Evaluation, and Molecular Docking Studies. Molecules. 2021; 26(21):6582. https://doi.org/10.3390/molecules26216582
Chicago/Turabian StyleAbourehab, Mohammed A. S., Alaa M. Alqahtani, Faisal A. Almalki, Dana M. Zaher, Ashraf N. Abdalla, Ahmed M. Gouda, and Eman A. M. Beshr. 2021. "Pyrrolizine/Indolizine-NSAID Hybrids: Design, Synthesis, Biological Evaluation, and Molecular Docking Studies" Molecules 26, no. 21: 6582. https://doi.org/10.3390/molecules26216582
APA StyleAbourehab, M. A. S., Alqahtani, A. M., Almalki, F. A., Zaher, D. M., Abdalla, A. N., Gouda, A. M., & Beshr, E. A. M. (2021). Pyrrolizine/Indolizine-NSAID Hybrids: Design, Synthesis, Biological Evaluation, and Molecular Docking Studies. Molecules, 26(21), 6582. https://doi.org/10.3390/molecules26216582