Profiling the Concentration of Reduced and Oxidized Glutathione in Rat Brain Using HPLC/DAD Chromatographic System
Abstract
:1. Introduction
2. Results
2.1. Chromatographic Conditions
2.2. Linearity and LLOQ
2.3. Selectivity
2.4. Accuracy
2.5. Precision
2.6. Stability
2.7. Robustness
3. Discussion
- specificity: using photometry we can be sure about the thiol molecule content of the sample, not GSH in a specific way. Furthermore, photometry does not easily allow a double blank: native color of the sample + native color of the reagents. This problem can be achieved by column separation;
- detectability: lower limits of GSH can be detected by the use of the HPLC method;
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Preparation of Solutions
4.3. Sample Preparation
4.4. Determination of the Degree of Reduction of Oxidized Glutathione
- 1.
- Condition 1: Biological samples spiked with GSSG heated at 80 °C for 60 min;
- 2.
- Condition 2: Biological samples spiked with GSH heated at 80 °C for 60 min;
- 3.
- Condition 3 (control condition): Biological samples spiked with GSH stored at room temperature for 10 min;
4.5. Instrumentation
4.6. Study Application
4.7. Ethical Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lushchak, V.I. Glutathione homeostasis and functions: Potential targets for medical interventions. J. Amino. Acids. 2012, 2012, 736837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, A.J.; Pinto, J.T.; Callery, P.S. Reversible and irreversible protein glutathionylation: Biological and clinical aspects. Expert Opin. Drug Metab. Toxicol. 2011, 7, 891–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Čapek, J.; Roušar, T. Detection of Oxidative Stress Induced by Nanomaterials in Cells-The Roles of Reactive Oxygen Species and Glutathione. Molecules 2021, 26, 4710. [Google Scholar] [CrossRef]
- Pompella, A.; Visvikis, A.; Paolicchi, A.; De Tata, V.; Casini, A.F. The changing faces of glutathione, a cellular protagonist. Biochem. Pharmacol. 2003, 66, 1499–1503. [Google Scholar] [CrossRef]
- Zitka, O.; Skalickova, S.; Gumulec, J.; Masarik, M.; Adam, V.; Hubalek, J.; Trnkova, L.; Kruseova, J.; Eckschlager, T.; Kizek, R. Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol. Lett. 2012, 4, 1247–1253. [Google Scholar] [CrossRef] [Green Version]
- Kalinina, E.; Novichkova, M. Glutathione in Protein Redox Modulation through S-Glutathionylation and S-Nitrosylation. Molecules 2021, 26, 435. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, K.; Nakaki, T. Impaired glutathione synthesis in neurodegeneration. Int. J. Mol. Sci. 2013, 14, 21021–21044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, L.; Sandhu, J.K.; Harper, M.E.; Cuperlovic-Culf, M. Role of Glutathione in Cancer: From Mechanisms to Therapies. Biomolecules 2020, 10, 1429. [Google Scholar] [CrossRef]
- Hajdinák, P.; Szabó, M.; Kiss, E.; Veress, L.; Wunderlich, L.; Szarka, A. Genetic Polymorphism of GSTP-1 Affects Cyclophosphamide Treatment of Autoimmune Diseases. Molecules 2020, 25, 1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekhar, R.V.; McKay, S.V.; Patel, S.G.; Guthikonda, A.P.; Reddy, V.T.; Balasubramanyam, A.; Jahoor, F. Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care 2011, 34, 162–167. [Google Scholar] [CrossRef] [Green Version]
- Mandal, P.K.; Tripathi, M.; Sugunan, S. Brain oxidative stress: Detection and mapping of anti-oxidant marker ′Glutathione′ in different brain regions of healthy male/female, MCI and Alzheimer patients using non-invasive magnetic resonance spectroscopy. Biochem. Biophys. Res. Commun. 2012, 417, 43–48. [Google Scholar] [CrossRef]
- Liu, H.; Harrell, L.E.; Shenvi, S.; Hagen, T.; Liu, R.M. Gender differences in glutathione metabolism in Alzheimer′s disease. J. Neurosci. Res. 2005, 79, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Mischley, L.K.; Standish, L.J.; Weiss, N.S.; Padowski, J.M.; Kavanagh, T.J.; White, C.C.; Rosenfeld, M.E. Glutathione as a Biomarker in Parkinson′s Disease: Associations with Aging and Disease Severity. Oxid. Med. Cell. Longev. 2016, 2016, 9409363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jîtcă, G.; Ősz, B.E.; Tero-Vescan, A.; Vari, C.E. Psychoactive Drugs-From Chemical Structure to Oxidative Stress Related to Dopaminergic Neurotransmission. A Review. Antioxidants 2021, 10, 381. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Duan, C.; Shen, J. Determination of reduced glutathione bye spectrophotometry coupled with anti-interference compensation. Anal. Methods 2015, 7, 5006–5011. [Google Scholar] [CrossRef]
- Squellerio, I.; Caruso, D.; Porro, B.; Veglia, F.; Tremoli, E.; Cavalca, V. Direct glutathione quantification in human blood by LC-MS/MS: Comparison with HPLC with electrochemical detection. J. Pharm. Biomed. Anal. 2012, 71, 111–118. [Google Scholar] [CrossRef]
- Bollenbach, A.; Tsikas, D. Measurement of the tripeptides glutathione and ophthalmic acid by gas chromatography-mass spectrometry. Anal. Biochem. 2020, 113841. [Google Scholar] [CrossRef] [PubMed]
- Jîtcă, G.; Fogarasi, E.; Ősz, B.E.; Vari, C.E.; Tero-Vescan, A.; Miklos, A.; Bătrînu, M.G.; Rusz, C.M.; Croitoru, M.D.; Dogaru, M.T. A Simple HPLC/DAD Method Validation for the Quantification of Malondialdehyde in Rodent′s Brain. Molecules 2021, 26, 5066. [Google Scholar] [CrossRef] [PubMed]
- Begaye, A.; Sackett, D.L. Measurement of ligand binding to tubulin by sulfhydryl reactivity. Methods Cell Biol. 2010, 95, 391–403. [Google Scholar] [CrossRef] [PubMed]
- FDA. Guidance for Industry: Bioanalytical Method Validation. 2018. Available online: https://doi.org/https://www.fda.gov/downloads/drugs/guidances/ucm070107.Pdf (accessed on 5 September 2021).
- Fogarasi, E.; Croitoru, M.; Fülöp, I.; Muntean, D. Is the Oxidative Stress Really a Disease? Acta Marisiensis-Ser. Medica. 2016, 62, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Appala, R.N.; Chigurupati, S.; Appala, R.V.; Krishnan Selvarajan, K.; Islam Mohammad, J. A Simple HPLC-UV Method for the Determination of Glutathione in PC-12 Cells. Scientifica 2016, 2016, 6897890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adedeji, H.A.; Ishola, I.O.; Adeyemi, O.O. Novel action of metformin in the prevention of haloperidol-induced catalepsy in mice: Potential in the treatment of Parkinson′s disease? Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 48, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Owen, J.B.; Butterfield, D.A. Measurement of oxidized/reduced glutathione ratio. Methods Mol. Biol. 2010, 648, 269–277. [Google Scholar] [CrossRef] [PubMed]
Time (min) | Phosphate Buffer, 20 mM, pH = 2.5 (%) | Acetonitrile (%) | Flow (mL/min) |
---|---|---|---|
0 | 98 | 2 | 1 |
19 | 50 | 50 | 1 |
19.1 | 98 | 2 | 1 |
21 | 98 | 2 | 1 |
Analytical Factor | GSH | GSSG |
---|---|---|
LLOQ (µg/g brain) | 0.50 | |
rLLOQ (%) | 97.11 | 98.86 |
LLOQrec (µg/g brain) | 0.50 | 0.50 |
rLLOQrec (%) | 85.47 | 108.78 |
Slope | 1562 | 2124.4 |
Y-intercept | −350.11 | −1493.4 |
Determination coefficient (r2) | 0.997 | 0.996 |
Analytical range (µg/g brain) | 0.50–50 | |
Retention time | 6.22 ± 0.06 |
Conc. (µg/g Brain) | Intra-Day | Inter-Day | |||||
---|---|---|---|---|---|---|---|
Mean | RSD % | Accuracy % | Mean | RSD % | Accuracy % | ||
GSH | 0.5 | 0.57 | 1.47 | 113.62 | 0.57 | 1.62 | 113.85 |
15 | 14.27 | 6.73 | 95.15 | 13.28 | 6.56 | 88.54 | |
40 | 45.12 | 7.69 | 112.79 | 45.33 | 7.04 | 113.32 | |
GSSG | 0.5 | 0.45 | 0.15 | 90.88 | 0.49 | 9.74 | 97.45 |
15 | 16.73 | 3.33 | 111.55 | 15.72 | 14.52 | 104.81 | |
40 | 44.03 | 5.79 | 110.08 | 42.48 | 13.38 | 106.20 |
Parameters | Stability for Samples Stored at Room Temperature | ||||||
---|---|---|---|---|---|---|---|
Conc. (µg/g Brain) | |||||||
0.5 | 15 | 40 | |||||
12 h | 24 h | 12 h | 24 h | 12 h | 24 h | ||
GSH | Mean | 0.63 | 0.54 | 16.39 | 16.89 | 39.34 | 43.97 |
Rec *, % | 110.04 | 94.86 | 114.78 | 118.29 | 87.18 | 97.44 | |
RSD% | 4.92 | 10.17 | 5.41 | 0.34 | 12.23 | 2.26 | |
GSSG | Mean | 0.51 | - | 14.71 | - | 87.88 | - |
Rec *, % | 111.45 | - | 87.88 | - | 92.93 | - | |
RSD% | 0.52 | - | 4.27 | - | 8.33 | - |
Conc. (µg/g Brain) | Retention Time (min) ± RSD, % | Peak Purity (%) ± RSD, % | |
---|---|---|---|
Mobile phase pH value | |||
2.3 | 0.5 | 6.95 ± 0.06 | 99.25 ± 1.12 |
15 | 6.95 ± 0.05 | 98.03 ± 2.12 | |
40 | 6.95 ± 0.04 | 98.16 ± 0.99 | |
2.5 | 0.5 | 6.24 ± 0.03 | 96.42 ± 1.22 |
15 | 6.21 ± 0.08 | 99.81 ± 0.78 | |
40 | 6.21 ± 0.06 | 99.68 ± 0.73 | |
2.7 | 0.5 | 6.96 ± 0.04 | 98.16 ± 1.36 |
15 | 6.95 ± 0.03 | 98.98 ± 1.43 | |
40 | 6.95 ± 0.09 | 98.64 ± 2.43 | |
Flow (mL/min) | |||
0.9 | 0.5 | 7.80 ± 0.02 | 98.37 ± 1.27 |
15 | 7.78 ± 0.10 | 99.17 ± 2.54 | |
40 | 7.77 ± 0.09 | 98.98 ± 2.77 | |
1.0 | 0.5 | 6.24 ± 0.05 | 99.36 ± 2.44 |
15 | 6.21 ± 0.05 | 98.13 ± 1.87 | |
40 | 6.21 ± 0.08 | 99.07 ± 2.89 | |
1.1 | 0.5 | 6.72 ± 0.06 | 99.15 ± 1.72 |
15 | 6.68 ± 0.03 | 99.67 ± 1.99 | |
40 | 6.64 ± 0.03 | 98.17 ± 2.48 |
Conc. (μg/g Brain) | Percentage of Reduction (%) | SD (+/− %) |
---|---|---|
0.5 | 108.79 | 7.80 |
1 | 90.19 | 6.33 |
5 | 111.10 | 9.72 |
10 | 113.91 | 10.49 |
15 | 114.60 | 4.64 |
20 | 112.35 | 9.38 |
35 | 113.35 | 11.29 |
40 | 103.40 | 7.74 |
50 | 91.66 | 10.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jîtcă, G.; Fogarasi, E.; Ősz, B.-E.; Vari, C.E.; Fülöp, I.; Croitoru, M.D.; Rusz, C.M.; Dogaru, M.T. Profiling the Concentration of Reduced and Oxidized Glutathione in Rat Brain Using HPLC/DAD Chromatographic System. Molecules 2021, 26, 6590. https://doi.org/10.3390/molecules26216590
Jîtcă G, Fogarasi E, Ősz B-E, Vari CE, Fülöp I, Croitoru MD, Rusz CM, Dogaru MT. Profiling the Concentration of Reduced and Oxidized Glutathione in Rat Brain Using HPLC/DAD Chromatographic System. Molecules. 2021; 26(21):6590. https://doi.org/10.3390/molecules26216590
Chicago/Turabian StyleJîtcă, George, Erzsébet Fogarasi, Bianca-Eugenia Ősz, Camil Eugen Vari, Ibolya Fülöp, Mircea Dumitru Croitoru, Carmen Maria Rusz, and Maria Titica Dogaru. 2021. "Profiling the Concentration of Reduced and Oxidized Glutathione in Rat Brain Using HPLC/DAD Chromatographic System" Molecules 26, no. 21: 6590. https://doi.org/10.3390/molecules26216590
APA StyleJîtcă, G., Fogarasi, E., Ősz, B. -E., Vari, C. E., Fülöp, I., Croitoru, M. D., Rusz, C. M., & Dogaru, M. T. (2021). Profiling the Concentration of Reduced and Oxidized Glutathione in Rat Brain Using HPLC/DAD Chromatographic System. Molecules, 26(21), 6590. https://doi.org/10.3390/molecules26216590