Protective Role of Flavonoids against Intestinal Pro-Inflammatory Effects of Silver Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Methods
2.2.1. Synthesis and Characterization of Silver Nanoparticles
Synthesis of Silver Nanoparticles
Structural Characterization
Surface Chemistry Characterization
Morphological characterization
Optical Characterization
2.2.2. Human Intestinal Cells
Cell Culture and Treatments
Cell Viability Assays
- MTT Assay
- Annexin V Versus Propidium Iodide
Measurement of Reactive Prooxidant Species
- Oxidation of DHR
- Griess reaction
2.2.3. Human Neutrophils
Isolation of Human Neutrophils
Cell Viability Assay
2.2.4. Measurement of Neutrophil Oxidative Burst
2.2.5. Statistical Analysis
3. Results
3.1. Characterization of Silver Nanoparticles
3.2. Intestinal Cells
3.2.1. Evaluation of Cytotoxicity Induced by AgNP
3.2.2. Protective Role of Flavonoids against AgNP-Induced Cytotoxic Effects on Intestinal Cells
3.2.3. Measurement of Reactive Oxygen Species
3.3. Human Neutrophils
3.3.1. Cytotoxicity of AgNP
3.3.2. Measurement of Reactive Prooxidant Species
3.3.3. Protective Role of Flavonoids against AgNP-Induced Neutrophil Oxidative Burst
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Vance, M.E.; Kuiken, T.; Vejerano, E.P.; McGinnis, S.P.; Hochella, M.F., Jr.; Rejeski, D.; Hull, M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 2015, 6, 1769–1780. [Google Scholar] [CrossRef] [Green Version]
- Bouwmeester, H.; Dekkers, S.; Noordam, M.Y.; Hagens, W.I.; Bulder, A.S.; de Heer, C.; ten Voorde, S.E.; Wijnhoven, S.W.; Marvin, H.J.; Sips, A.J. Review of health safety aspects of nanotechnologies in food production. Regul. Toxicol. Pharmacol. 2009, 53, 52–62. [Google Scholar] [CrossRef]
- Chalew, T.E.A.; Schwab, K.J. Toxicity of commercially available engineered nanoparticles to Caco-2 and SW480 human intestinal epithelial cells. Cell Biol. Toxicol. 2013, 29, 101–116. [Google Scholar] [CrossRef]
- Böhmert, L.; Niemann, B.; Thünemann, A.F.; Lampen, A. Cytotoxicity of peptide-coated silver nanoparticles on the human intestinal cell line Caco-2. Arch. Toxicol. 2012, 86, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Bohmert, L.; Niemann, B.; Lichtenstein, D.; Juling, S.; Lampen, A. Molecular mechanism of silver nanoparticles in human intestinal cells. Nanotoxicology 2015, 9, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Van der Zande, M.; Undas, A.K.; Kramer, E.; Monopoli, M.P.; Peters, R.J.; Garry, D.; Antunes Fernandes, E.C.; Hendriksen, P.J.; Marvin, H.J.; Peijnenburg, A.A.; et al. Different responses of Caco-2 and MCF-7 cells to silver nanoparticles are based on highly similar mechanisms of action. Nanotoxicology 2016, 10, 1431–1441. [Google Scholar] [CrossRef] [PubMed]
- Kittler, S.; Greulich, C.; Diendorf, J.; Köller, M.; Epple, M. Toxicity of Silver Nanoparticles Increases during Storage Because of Slow Dissolution under Release of Silver Ions. Chem. Mater. 2010, 22, 4548–4554. [Google Scholar] [CrossRef]
- Bouwmeester, H.; Poortman, J.; Peters, R.J.; Wijma, E.; Kramer, E.; Makama, S.; Puspitaninganindita, K.; Marvin, H.J.; Peijnenburg, A.A.; Hendriksen, P.J. Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS Nano 2011, 5, 4091–4103. [Google Scholar] [CrossRef]
- Carr, K.E.; Smyth, S.H.; McCullough, M.T.; Morris, J.F.; Moyes, S.M. Morphological aspects of interactions between microparticles and mammalian cells: Intestinal uptake and onward movement. Prog. Histochem. Cytochem. 2012, 46, 185–252. [Google Scholar] [CrossRef]
- Rizzetto, L.; Fava, F.; Tuohy, K.M.; Selmi, C. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. J. Autoimmun. 2018, 92, 12–34. [Google Scholar] [CrossRef] [PubMed]
- Mumy, K.L.; McCormick, B.A. The role of neutrophils in the event of intestinal inflammation. Curr. Opin. Pharmacol. 2009, 9, 697–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferdous, Z.; Nemmar, A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int. J. Mol. Sci. 2020, 21, 2375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, M.; Lucas, M.; Sousa, A.; Soares, T.; Ribeiro, D.; Carvalho, F.; Fernandes, E. Small-size silver nanoparticles stimulate neutrophil oxidative burst through an increase of intracellular calcium levels. World Acad. Sci. J. 2020, 2, 5. [Google Scholar] [CrossRef]
- Poirier, M.; Simard, J.C.; Antoine, F.; Girard, D. Interaction between silver nanoparticles of 20 nm (AgNP20) and human neutrophils: Induction of apoptosis and inhibition of de novo protein synthesis by AgNP20 aggregates. J. Appl. Toxicol. 2014, 34, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Poirier, M.; Simard, J.C.; Girard, D. Silver nanoparticles of 70 nm and 20 nm affect differently the biology of human neutrophils. J. Immunotoxicol. 2016, 13, 375–385. [Google Scholar] [CrossRef] [Green Version]
- Soares, T.; Ribeiro, D.; Proenca, C.; Chiste, R.C.; Fernandes, E.; Freitas, M. Size-dependent cytotoxicity of silver nanoparticles in human neutrophils assessed by multiple analytical approaches. Life Sci. 2016, 145, 247–254. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martirosyan, A.; Bazes, A.; Schneider, Y.J. In vitro toxicity assessment of silver nanoparticles in the presence of phenolic compounds--preventive agents against the harmful effect? Nanotoxicology 2014, 8, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Martirosyan, A.; Grintzalis, K.; Polet, M.; Laloux, L.; Schneider, Y.-J. Tuning the inflammatory response to silver nanoparticles via quercetin in Caco-2 (co-)cultures as model of the human intestinal mucosa. Toxicol. Lett. 2016, 253, 36–45. [Google Scholar] [CrossRef]
- Freitas, M.; Ribeiro, D.; Tome, S.M.; Silva, A.M.; Fernandes, E. Synthesis of chlorinated flavonoids with anti-inflammatory and pro-apoptotic activities in human neutrophils. Eur. J. Med. Chem. 2014, 86, 153–164. [Google Scholar] [CrossRef]
- Proença, C.; Ribeiro, D.; Soares, T.; Tomé, S.M.; Silva, A.M.S.; Lima, J.; Fernandes, E.; Freitas, M. Chlorinated Flavonoids Modulate the Inflammatory Process in Human Blood. Inflammation 2017, 40, 1155–1165. [Google Scholar] [CrossRef]
- Ribeiro, D.; Freitas, M.; Tome, S.M.; Silva, A.M.; Laufer, S.; Lima, J.L.; Fernandes, E. Flavonoids inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood. Inflammation 2015, 38, 858–870. [Google Scholar] [CrossRef]
- Ribeiro, D.; Freitas, M.; Tome, S.M.; Silva, A.M.; Porto, G.; Cabrita, E.J.; Marques, M.M.; Fernandes, E. Inhibition of LOX by flavonoids: A structure-activity relationship study. Eur. J. Med. Chem. 2014, 72, 137–145. [Google Scholar] [CrossRef]
- Ribeiro, D.; Freitas, M.; Tome, S.M.; Silva, A.M.; Porto, G.; Fernandes, E. Modulation of human neutrophils oxidative burst by flavonoids. Eur. J. Med. Chem. 2013, 67, 280–292. [Google Scholar] [CrossRef]
- Sharonova, A.; Surmeneva, M.; Surmenev, R.; Loza, K.; Prymak, O.; Epple, M. Synthesis of positively and negatively charged silver nanoparticles and their deposition on the surface of titanium. IOP Conf. Ser. Mater. Sci. Eng. 2016, 116, 8. [Google Scholar] [CrossRef]
- Freitas, M.; Porto, G.; Lima, J.L.; Fernandes, E. Isolation and activation of human neutrophils in vitro. The importance of the anticoagulant used during blood collection. Clin. Biochem. 2008, 41, 570–575. [Google Scholar] [CrossRef]
- Lanje, A.; Sharma, S.; Pode, R. Synthesis of silver nanoparticles: A safer alternative to conventional antimicrobial and antibacterial agents. J. Chem. Pharm. Res. 2010, 2, 478–483. [Google Scholar]
- Trinh, T.T.; Mott, D.; Thanh, N.T.K.; Maenosono, S. One-pot synthesis and characterization of well defined core–shell structure of FePt@CdSe nanoparticles. RSC Adv. 2011, 1, 100–108. [Google Scholar] [CrossRef]
- Ghiamkazemi, S.; Amanzadeh, A.; Dinarvand, R.; Rafiee-Tehrani, M.; Amini, M. Synthesis, and Characterization, and Evaluation of Cellular Effects of the FOL-PEG-g-PEI-GAL Nanoparticles as a Potential Non-Viral Vector for Gene Delivery. J. Nanomater. 2010, 2010, 863136. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.; Habert, A.; Ferraz, H. Polyetherimide/polyvinylpyrrolidone hollow-fiber membranes for use in hemodialysis. Braz. J. Chem. Eng. 2019, 36, 1645–1652. [Google Scholar] [CrossRef] [Green Version]
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014, 4, 3974–3983. [Google Scholar] [CrossRef] [Green Version]
- Renan Campos, C.; Marisa, F.; Adriana Zerlotti, M.; Eduarda, F. Superoxide Anion Radical: Generation and Detection in Cellular and Non-Cellular Systems. Curr. Med. Chem. 2015, 22, 4234–4256. [Google Scholar] [CrossRef]
- Bergin, I.L.; Witzmann, F.A. Nanoparticle toxicity by the gastrointestinal route: Evidence and knowledge gaps. Int. J. Biomed. Nanosci. Nanotechnol. 2013, 3, 163–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gliga, A.R.; Skoglund, S.; Wallinder, I.O.; Fadeel, B.; Karlsson, H.L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 2014, 11, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Guan, R.; Lyu, F.; Kang, T.; Wu, Y.; Chen, X. In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells. Mutat. Res. Fundam. Mol. Mech. Mutagenesis 2014, 769, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Nguyen, T.H.; Lin, M.; Mustapha, A. Engineered Nanoparticles as Potential Food Contaminants and Their Toxicity to Caco-2 Cells. J. Food Sci. 2016, 81, T2107–T2113. [Google Scholar] [CrossRef]
- Ribeiro, D.; Proenca, C.; Rocha, S.; Lima, J.; Carvalho, F.; Fernandes, E.; Freitas, M. Immunomodulatory Effects of Flavonoids in the Prophylaxis and Treatment of Inflammatory Bowel Diseases: A Comprehensive Review. Curr. Med. Chem. 2018, 25, 3374–3412. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Song, Z.M.; Tang, H.; Xi, W.S.; Cao, A.; Liu, Y.; Wang, H. Toxicological Effects of Caco-2 Cells Following Short-Term and Long-Term Exposure to Ag Nanoparticles. Int. J. Mol. Sci. 2016, 17, 974. [Google Scholar] [CrossRef]
- Nguyen, G.T.; Green, E.R.; Mecsas, J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front. Cell. Infect. Microbiol. 2017, 7, 373. [Google Scholar] [CrossRef]
- Cosentino-Gomes, D.; Rocco-Machado, N.; Meyer-Fernandes, J.R. Cell signaling through protein kinase C oxidation and activation. Int. J. Mol. Sci. 2012, 13, 10697–10721. [Google Scholar] [CrossRef] [Green Version]
- Augsburger, F.; Filippova, A.; Rasti, D.; Seredenina, T.; Lam, M.; Maghzal, G.; Mahiout, Z.; Jansen-Dürr, P.; Knaus, U.G.; Doroshow, J.; et al. Pharmacological characterization of the seven human NOX isoforms and their inhibitors. Redox Biol. 2019, 26, 101272. [Google Scholar] [CrossRef] [PubMed]
- De Vrie, J.H.M.; Janssen, P.L.T.M.K.; Hollman, P.C.H.; van Staveren, W.A.; Katan, M.B. Consumption of quercetin and kaempferol in free-living subjects eating a variety of diets. Cancer Lett. 1997, 114, 141–144. [Google Scholar] [CrossRef]
- Beecher, G.R. Overview of dietary flavonoids: Nomenclature, occurrence and intake. J. Nutr. 2003, 133, 3248s–3254s. [Google Scholar] [CrossRef]
- Karlsson, A.; Nixon, J.B.; McPhail, L.C. Phorbol myristate acetate induces neutrophil NADPH-oxidase activity by two separate signal transduction pathways: Dependent or independent of phosphatidylinositol 3-kinase. J. Leukoc. Biol. 2000, 67, 396–404. [Google Scholar] [CrossRef] [PubMed]
Compound | Selected Maximum Concentration (μM) |
---|---|
Diosmetin | 12.5 |
Luteolin | 12.5 |
Quercetin | 25.0 |
Myricetin | 50.0 |
Morin | 50.0 |
Quercetagetin | 50.0 |
Gossypetin | 50.0 |
Compound | Structure | R2′ | R3′ | R4′ | R5′ | R3 | R6 | R8 | IC50 μM (Mean ± SEM) | |
---|---|---|---|---|---|---|---|---|---|---|
AgNP 4 nm | AgNP 19 nm | |||||||||
Diosmetin | H | OH | OMe | H | H | H | H | 37 ± 3 * | 37 ± 7 * | |
Luteolin | H | OH | OH | H | H | H | H | 1.3 ± 0.2 | 1.3 ± 0.2 | |
Quercetin | H | OH | OH | H | OH | H | H | 0.94 ± 0.09 | 3.1 ± 0.6 | |
Myricetin | H | OH | OH | OH | OH | H | H | 2.3 ± 0.1 | 3.1 ± 0.2 | |
Morin | OH | H | OH | H | OH | H | H | 1.4 ± 0.4 | 1.5 ± 0.4 | |
Quercetagetin | H | OH | OH | H | OH | OH | H | 0.53 ± 0.06 | 3.0 ± 0.2 | |
Gossypetin | H | OH | OH | H | OH | H | OH | 2.1 ± 0.3 | 4.5 ± 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rufino, A.T.; Ramalho, A.; Sousa, A.; Ferreira de Oliveira, J.M.P.; Freitas, P.; Gómez, M.A.G.; Piñeiro-Redondo, Y.; Rivas, J.; Carvalho, F.; Fernandes, E.; et al. Protective Role of Flavonoids against Intestinal Pro-Inflammatory Effects of Silver Nanoparticles. Molecules 2021, 26, 6610. https://doi.org/10.3390/molecules26216610
Rufino AT, Ramalho A, Sousa A, Ferreira de Oliveira JMP, Freitas P, Gómez MAG, Piñeiro-Redondo Y, Rivas J, Carvalho F, Fernandes E, et al. Protective Role of Flavonoids against Intestinal Pro-Inflammatory Effects of Silver Nanoparticles. Molecules. 2021; 26(21):6610. https://doi.org/10.3390/molecules26216610
Chicago/Turabian StyleRufino, Ana T., Ana Ramalho, Adelaide Sousa, José Miguel P. Ferreira de Oliveira, Paulo Freitas, Manuel A. Gonzalez Gómez, Yolanda Piñeiro-Redondo, José Rivas, Félix Carvalho, Eduarda Fernandes, and et al. 2021. "Protective Role of Flavonoids against Intestinal Pro-Inflammatory Effects of Silver Nanoparticles" Molecules 26, no. 21: 6610. https://doi.org/10.3390/molecules26216610
APA StyleRufino, A. T., Ramalho, A., Sousa, A., Ferreira de Oliveira, J. M. P., Freitas, P., Gómez, M. A. G., Piñeiro-Redondo, Y., Rivas, J., Carvalho, F., Fernandes, E., & Freitas, M. (2021). Protective Role of Flavonoids against Intestinal Pro-Inflammatory Effects of Silver Nanoparticles. Molecules, 26(21), 6610. https://doi.org/10.3390/molecules26216610