Protein Hydrolysis by Subcritical Water: A New Perspective on Obtaining Bioactive Peptides
Abstract
:1. Introduction
2. Subcritical Water Hydrolysis
2.1. Sources
2.1.1. Vegetable Proteins
2.1.2. Animal Proteins
2.1.3. Other Sources
2.2. Parameters and Operation Conditions
3. Hydrolysis Mechanism
4. Design of Experiments
4.1. Subcritical Water Factors
4.1.1. Temperature
4.1.2. Pressure
4.1.3. Hydrolysis Time
4.1.4. Gas Atmosphere of Reactor
4.1.5. Modifiers
4.1.6. Material to Be Hydrolyzed
4.1.7. Other Variables
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Görgüç, A.; Gençdağ, E.; Yılmaz, F.M. Bioactive peptides derived from plant origin by-products: Biological activities and techno-functional utilizations in food developments—A review. Food Res. Int. 2020, 136, 109504. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Guha, S.; Majumder, K. Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients 2018, 10, 1738. [Google Scholar] [CrossRef] [Green Version]
- de Castro, R.J.; Ohara, A.; dos Santos Aguilar, J.G.; Domingues, M.A. Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends Food Sci. Technol. 2018, 76, 82–89. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Karaś, M.; Złotek, U.; Szymanowska, U. Identification of potential inhibitory peptides of enzymes involved in the metabolic syndrome obtained by simulated gastrointestinal digestion of fermented bean (Phaseolus vulgaris L.) seeds. Food Res. Int. 2017, 100, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Nongonierma, A.B.; FitzGerald, R.J. Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: A review. Innov. Food Sci. Emerg. Technol. 2017, 43, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Chalamaiah, M.; Keskin Ulug, S.; Hong, H.; Wu, J. Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. J. Funct. Foods 2019, 58, 123–129. [Google Scholar] [CrossRef]
- Chauhan, V.; Kanwar, S.S. Bioactive Peptides: Synthesis, Functions and Biotechnological Applications; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780444643230. [Google Scholar]
- Tinoco, A.D.; Saghatelian, A. Investigating Endogenous Peptides and Peptidases Using Peptidomics. Biochemistry 2011, 50, 7447–7461. [Google Scholar] [CrossRef] [Green Version]
- González Garza, N.G.; Chuc Koyoc, J.A.; Torres Castillo, J.A.; García Zambrano, E.A.; Betancur Ancona, D.; Chel Guerrero, L.; Sinagawa García, S.R. Biofunctional properties of bioactive peptide fractions from protein isolates of moringa seed (Moringa oleifera). J. Food Sci. Technol. 2017, 54, 4268–4276. [Google Scholar] [CrossRef]
- Tadesse, S.A.; Emire, S.A. Production and processing of antioxidant bioactive peptides: A driving force for the functional food market. Heliyon 2020, 6, e04765. [Google Scholar] [CrossRef]
- Abadía-García, L.; Castaño-Tostado, E.; Ozimek, L.; Romero-Gómez, S.; Ozuna, C.; Amaya-Llano, S.L. Impact of ultrasound pretreatment on whey protein hydrolysis by vegetable proteases. Innov. Food Sci. Emerg. Technol. 2016, 37, 84–90. [Google Scholar] [CrossRef]
- Daliri, E.B.M.; Oh, D.H.; Lee, B.H. Bioactive peptides. Foods 2018, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Marcet, I.; Álvarez, C.; Paredes, B.; Díaz, M. The use of sub-critical water hydrolysis for the recovery of peptides and free amino acids from food processing wastes. Review of sources and main parameters. Waste Manag. 2016, 49, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Villaluenga, C.; Peñas, E.; Frias, J. Bioactive Peptides in Fermented Foods: Production and Evidence for Health Effects; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780128023099. [Google Scholar]
- Najafian, L.; Babji, A.S. Fractionation and identification of novel antioxidant peptides from fermented fish (pekasam). J. Food Meas. Charact. 2018, 12, 2174–2183. [Google Scholar] [CrossRef]
- Fang, B.; Sun, J.; Dong, P.; Xue, C.; Mao, X. Conversion of turbot skin wastes into valuable functional substances with an eco-friendly fermentation technology. J. Clean. Prod. 2017, 156, 367–377. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Technol. 2020, 95, 183–195. [Google Scholar] [CrossRef]
- Powell, T.; Bowra, S.; Cooper, H.J. Subcritical Water Processing of Proteins: An Alternative to Enzymatic Digestion? Anal. Chem. 2016, 88, 6425–6432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Möller, M.; Nilges, P.; Harnisch, F.; Schröder, U. Subcritical water as reaction environment: Fundamentals of hydrothermal biomass transformation. ChemSusChem 2011, 4, 566–579. [Google Scholar] [CrossRef]
- Brunner, G. (Ed.) Hydrothermal and Supercritical Water Processes; Elsevier: Amsterdam, The Netherlands, 2014; Volume 5, ISBN 9780444594136. [Google Scholar]
- Simsek Kus, N. Organic reactions in subcritical and supercritical water. Tetrahedron 2012, 68, 949–958. [Google Scholar] [CrossRef]
- Ko, M.J.; Kwon, H.L.; Chung, M.S. Pilot-scale subcritical water extraction of flavonoids from satsuma mandarin (Citrus unshiu Markovich) peel. Innov. Food Sci. Emerg. Technol. 2016, 38, 175–181. [Google Scholar] [CrossRef]
- Cheigh, C.I.; Yoo, S.Y.; Ko, M.J.; Chang, P.S.; Chung, M.S. Extraction characteristics of subcritical water depending on the number of hydroxyl group in flavonols. Food Chem. 2015, 168, 21–26. [Google Scholar] [CrossRef]
- del Pilar Garcia-Mendoza, M.; Espinosa-Pardo, F.A.; Baseggio, A.M.; Barbero, G.F.; Junior, M.R.; Rostagno, M.A.; Martínez, J. Extraction of phenolic compounds and anthocyanins from juçara (Euterpe edulis Mart.) residues using pressurized liquids and supercritical fluids. J. Supercrit. Fluids 2017, 119, 9–16. [Google Scholar] [CrossRef]
- Chen, H.M.; Fu, X.; Luo, Z.G. Properties and extraction of pectin-enriched materials from sugar beet pulp by ultrasonic-assisted treatment combined with subcritical water. Food Chem. 2015, 168, 302–310. [Google Scholar] [CrossRef]
- Erşan, S.; Güçlü Üstündağ, Ö.; Carle, R.; Schweiggert, R.M. Subcritical water extraction of phenolic and antioxidant constituents from pistachio (Pistacia vera L.) hulls. Food Chem. 2018, 253, 46–54. [Google Scholar] [CrossRef]
- Heng, M.Y.; Katayama, S.; Mitani, T.; Ong, E.S.; Nakamura, S. Solventless extraction methods for immature fruits: Evaluation of their antioxidant and cytoprotective activities. Food Chem. 2017, 221, 1388–1393. [Google Scholar] [CrossRef] [PubMed]
- Shalmashi, A.; Golmohammad, F.; Eikani, M.H. Subcritical water extraction of caffeine from black tea leaf of Iran. J. Food Process Eng. 2008, 31, 330–338. [Google Scholar] [CrossRef]
- Eikani, M.H.; Golmohammad, F.; Rowshanzamir, S. Subcritical water extraction of essential oils from coriander seeds (Coriandrum sativum L.). J. Food Eng. 2007, 80, 735–740. [Google Scholar] [CrossRef]
- Ndlela, S.C.; De Moura, J.M.L.N.; Olson, N.K.; Johnson, L.A. Aqueous extraction of oil and protein from soybeans with subcritical water. JAOCS J. Am. Oil Chem. Soc. 2012, 89, 1145–1153. [Google Scholar] [CrossRef]
- Khuwijitjaru, P.; Pokpong, A.; Klinchongkon, K.; Adachi, S. Production of oligosaccharides from coconut meal by subcritical water treatment. Int. J. Food Sci. Technol. 2014, 49, 1946–1952. [Google Scholar] [CrossRef]
- Oliveira, T.C.G.; Hanlon, K.E.; Interlandi, M.A.; Torres-Mayanga, P.C.; Silvello, M.A.C.; Lachos-Perez, D.; Timko, M.T.; Rostagno, M.A.; Goldbeck, R.; Forster-Carneiro, T. Subcritical water hydrolysis pretreatment of sugarcane bagasse to produce second generation ethanol. J. Supercrit. Fluids 2020, 164, 104916. [Google Scholar] [CrossRef]
- Sereewatthanawut, I.; Prapintip, S.; Watchiraruji, K.; Goto, M.; Sasaki, M.; Shotipruk, A. Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis. Bioresour. Technol. 2008, 99, 555–561. [Google Scholar] [CrossRef]
- Pińkowska, H.; Wolak, P.; Oliveros, E. Application of Doehlert matrix for determination of the optimal conditions of hydrothermolysis of rapeseed meal in subcritical water. Fuel 2013, 106, 258–264. [Google Scholar] [CrossRef]
- Watchararuji, K.; Goto, M.; Sasaki, M.; Shotipruk, A. Value-added subcritical water hydrolysate from rice bran and soybean meal. Bioresour. Technol. 2008, 99, 6207–6213. [Google Scholar] [CrossRef]
- Salak, F.; Daneshvar, S.; Abedi, J.; Furukawa, K. Adding value to onion (Allium cepa L.) waste by subcritical water treatment. Fuel Process. Technol. 2013, 112, 86–92. [Google Scholar] [CrossRef]
- Zhu, G.; Zhu, X.; Fan, Q.; Wan, X. Kinetics of amino acid production from bean dregs by hydrolysis in sub-critical water. Amino Acids 2011, 40, 1107–1113. [Google Scholar] [CrossRef]
- Tavakoli, O.; Yoshida, H. Conversion of scallop viscera wastes to valuable compounds using sub-critical water. Green Chem. 2006, 8, 100–106. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Zhu, X.; Wan, X.L.; Fan, Q.; Ma, Y.H.; Qian, J.; Liu, X.L.; Shen, Y.J.; Jiang, J.H. Hydrolysis technology and kinetics of poultry waste to produce amino acids in subcritical water. J. Anal. Appl. Pyrolysis 2010, 88, 187–191. [Google Scholar] [CrossRef]
- Ahmed, R.; Chun, B.S. Subcritical water hydrolysis for the production of bioactive peptides from tuna skin collagen. J. Supercrit. Fluids 2018, 141, 88–96. [Google Scholar] [CrossRef]
- Hao, G.; Cao, W.; Li, T.; Chen, J.; Zhang, J.; Weng, W.; Osako, K.; Ren, H. Effect of temperature on chemical properties and antioxidant activities of abalone viscera subcritical water extract. J. Supercrit. Fluids 2019, 147, 17–23. [Google Scholar] [CrossRef]
- Álvarez, C.; Tiwari, B.K.; Rendueles, M.; Díaz, M. Use of response surface methodology to describe the effect of time and temperature on the production of decoloured, antioxidant and functional peptides from porcine haemoglobin by sub-critical water hydrolysis. LWT—Food Sci. Technol. 2016, 73, 280–289. [Google Scholar] [CrossRef]
- Enteshari, M.; Martínez-Monteagudo, S.I. Subcritical hydrolysis of ice-cream wastewater: Modeling and functional properties of hydrolysate. Food Bioprod. Process. 2018, 111, 104–113. [Google Scholar] [CrossRef]
- Cho, Y.J.; Haq, M.; Park, J.S.; Lee, H.J.; Chun, B.S. Physicochemical and biofunctional properties of shrimp (Penaeus japonicus) hydrolysates obtained from hot-compressed water treatment. J. Supercrit. Fluids 2019, 147, 322–328. [Google Scholar] [CrossRef]
- Cho, Y.J.; Getachew, A.T.; Park, J.S.; Lim, C.T.; Lee, H.J.; Chun, B.S. Influence of temperature on decomposition reaction of compressed hot water to valorize Achatina fulica as a functional material. Food Bioprod. Process. 2020, 122, 89–97. [Google Scholar] [CrossRef]
- Park, J.S.; Jeong, Y.R.; Chun, B.S. Physiological activities and bioactive compound from laver (Pyropia yezoensis) hydrolysates by using subcritical water hydrolysis. J. Supercrit. Fluids 2019, 148, 130–136. [Google Scholar] [CrossRef]
- Fan, X.; Hu, S.; Wang, K.; Yang, R.; Zhang, X. Coupling of ultrasound and subcritical water for peptides production from Spirulina platensis. Food Bioprod. Process. 2020, 121, 105–112. [Google Scholar] [CrossRef]
- Hu, S.; Fan, X.; Qi, P.; Zhang, X. Identification of anti-diabetes peptides from Spirulina platensis. J. Funct. Foods 2019, 56, 333–341. [Google Scholar] [CrossRef]
- Di Domenico Ziero, H.; Buller, L.S.; Mudhoo, A.; Ampese, L.C.; Mussatto, S.I.; Carneiro, T.F. An overview of subcritical and supercritical water treatment of different biomasses for protein and amino acids production and recovery. J. Environ. Chem. Eng. 2020, 8, 104406. [Google Scholar] [CrossRef]
- Asaduzzaman, A.K.M.; Getachew, A.T.; Cho, Y.J.; Park, J.S.; Haq, M.; Chun, B.S. Characterization of pepsin-solubilised collagen recovered from mackerel (Scomber japonicus) bone and skin using subcritical water hydrolysis. Int. J. Biol. Macromol. 2020, 148, 1290–1297. [Google Scholar] [CrossRef]
- Melgosa, R.; Trigueros, E.; Sanz, M.T.; Cardeira, M.; Rodrigues, L.; Fernández, N.; Matias, A.A.; Bronze, M.R.; Marques, M.; Paiva, A.; et al. Supercritical CO2 and subcritical water technologies for the production of bioactive extracts from sardine (Sardina pilchardus) waste. J. Supercrit. Fluids 2020, 164, 104943. [Google Scholar] [CrossRef]
- Haq, M.; Ho, T.C.; Ahmed, R.; Getachew, A.T.; Cho, Y.J.; Park, J.S.; Chun, B.S. Biofunctional properties of bacterial collagenolytic protease-extracted collagen hydrolysates obtained using catalysts-assisted subcritical water hydrolysis. J. Ind. Eng. Chem. 2020, 81, 332–339. [Google Scholar] [CrossRef]
- Asaduzzaman, A.K.M.; Chun, B.S. Recovery of functional materials with thermally stable antioxidative properties in squid muscle hydrolyzates by subcritical water. J. Food Sci. Technol. 2013, 52, 793–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Saravana, P.S.; Cho, Y.N.; Haq, M.; Chun, B.S. Extraction of bioactive compounds from oyster (Crassostrea gigas) by pressurized hot water extraction. J. Supercrit. Fluids 2018, 141, 120–127. [Google Scholar] [CrossRef]
- Jeong, Y.R.; Park, J.S.; Nkurunziza, D.; Cho, Y.J.; Chun, B.S. Valorization of blue mussel for the recovery of free amino acids rich products by subcritical water hydrolysis. J. Supercrit. Fluids 2021, 169, 105135. [Google Scholar] [CrossRef]
- Abdelmoez, W.; Yoshida, H. Production of amino and organic acids from protein using sub-critical water technology. Int. J. Chem. React. Eng. 2013, 11, 369–384. [Google Scholar] [CrossRef]
- Rodiles-Lopez, J.O.; Arroyo-Maya, I.J.; Jaramillo-Flores, M.E.; Gutierrez-Lopez, G.F.; Hernandez-Arana, A.; Barbosa-Canovas, G.V.; Niranjan, K.; Hernandez-Sanchez, H. Effects of high hydrostatic pressure on the structure of bovine α-lactalbumin. J. Dairy Sci. 2010, 93, 1420–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogalinski, T.; Herrmann, S.; Brunner, G. Production of amino acids from bovine serum albumin by continuous sub-critical water hydrolysis. J. Supercrit. Fluids 2005, 36, 49–58. [Google Scholar] [CrossRef]
- Rogalinski, T.; Liu, K.; Albrecht, T.; Brunner, G. Hydrolysis kinetics of biopolymers in subcritical water. J. Supercrit. Fluids, 2008; 46, 335–341. [Google Scholar] [CrossRef]
- Tabilo-Munizaga, G.; Gordon, T.A.; Villalobos-Carvajal, R.; Moreno-Osorio, L.; Salazar, F.N.; Pérez-Won, M.; Acuña, S. Effects of high hydrostatic pressure (HHP) on the protein structure and thermal stability of Sauvignon blanc wine. Food Chem. 2014, 155, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Brunner, G. Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. J. Supercrit. Fluids 2009, 47, 373–381. [Google Scholar] [CrossRef]
- Koh, B.B.; Lee, E.J.; Ramachandraiah, K.; Hong, G.P. Characterization of bovine serum albumin hydrolysates prepared by subcritical water processing. Food Chem. 2019, 278, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, A.D.; Morawicki, R.O.; Hager, T. Hydrolysis of whey protein isolate using subcritical water. J. Food Sci. 2012, 77, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Powell, T.; Bowra, S.; Cooper, H.J. Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications. J. Am. Soc. Mass Spectrom. 2017, 28, 1775–1786. [Google Scholar] [CrossRef] [Green Version]
- Lawson, J. Design and Analysis of Experiments with R, 1st ed.; Taylor & Francis Inc.: Provo, UT, USA, 2015. [Google Scholar]
- Sharif, K.M.; Rahman, M.M.; Azmir, J.; Mohamed, A.; Jahurul, M.H.A.; Sahena, F.; Zaidul, I.S.M. Experimental design of supercritical fluid extraction—A review. J. Food Eng. 2014, 124, 105–116. [Google Scholar] [CrossRef]
- Atkinson, A.C.; Donev, A.N.; Tobias, R.D. Optimum Experimental Designs, with SAS, 1st ed.; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Hibbert, D.B. Experimental design in chromatography: A tutorial review. J. Chromatogr. B 2012, 910, 2–13. [Google Scholar] [CrossRef]
- Wu, C.F.J.; Hamada, M. Experiments: Planning, Analysis, and Optimization, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 978-0-471-69946-0. [Google Scholar]
- Espinoza, A.D.; Morawicki, R.O. Effect of additives on subcritical water hydrolysis of whey protein isolate. J. Agric. Food Chem. 2012, 60, 5250–5256. [Google Scholar] [CrossRef] [PubMed]
- Marcet, I.; Álvarez, C.; Paredes, B.; Díaz, M. Inert and oxidative subcritical water hydrolysis of insoluble egg yolk granular protein, functional properties, and comparison to enzymatic hydrolysis. J. Agric. Food Chem. 2014, 62, 8179–8186. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, C.; Chen, M.; Gu, J.; Zhou, J.; Duan, Y.; Zhang, H.; Ma, H. Antioxidant activities of Sagittaria sagittifolia L. polysaccharides with subcritical water extraction. Int. J. Biol. Macromol. 2019, 134, 172–179. [Google Scholar] [CrossRef]
- Lamp, A.; Kaltschmitt, M.; Lüdtke, O. Protein recovery from bioethanol stillage by liquid hot water treatment. J. Supercrit. Fluids 2020, 155, 104624. [Google Scholar] [CrossRef]
- Kang, K.; Chun, B. Behavior of Hydrothermal Decomposition of Silk Fibroin to Amino Acids in Near-Critical Water. Korean J. Chem. Eng. 2004, 21, 654–659. [Google Scholar] [CrossRef]
- Asaduzzaman, A.K.M.; Haq, M.; Chun, B.S. Reduction of histamine and heavy metals in mackerel hydrolyzates produced by catalysts associated-subcritical water hydrolysis. J. Ind. Eng. Chem. 2018, 68, 301–310. [Google Scholar] [CrossRef]
- Zhong, Q.; Jin, M. Enhanced functionalities of whey proteins treated with supercritical carbon dioxide. J. Dairy Sci. 2008, 91, 490–499. [Google Scholar] [CrossRef]
- Wiboonsirikul, J.; Adachi, S. Extraction of functional substances from agricultural products or by-products by subcritical water treatment. Food Sci. Technol. Res. 2008, 14, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Gertz, C.; Aladedunye, F.; Matthäus, B. Oxidation and structural decomposition of fats and oils at elevated temperatures. Eur. J. Lipid Sci. Technol. 2014, 116, 1457–1466. [Google Scholar] [CrossRef]
- Chakraborty, S.; Shaik, L.; Gokhale, J.S. Subcritical Water: An Innovative Processing Technology; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 9780081005965. [Google Scholar]
Scheme | Sample Proportion and Protein Concentration | Bioactivity | Type of Reactor | Optimal Conditions | References |
---|---|---|---|---|---|
Tuna (Thunnus obesus) skin | Skin: 3 g (no data), Collagen extract: 0.75 g (no data), 150 mL of water | Antioxidant and antimicrobial | Closed | 280 °C, 8 MPa, 150 rpm, 5 min | [40] |
Porcine hemoglobin | 20 g (no data), 400 mL of water | Antioxidant | Closed coupled to oxygen injection | 180 °C, 4 MPa, 360 min | [42] |
Mackerel skin and bones | 1 g (86.89–90.05%), 200 mL of water | Antioxidant | Closed | 250 °C, 7 MPa, 150 rpm, 3 min | [50] |
Sardine (Sardina pilchardus) | 60 g (52.2–66.2%), Water (no data) | Antioxidant and antiproliferative | Closed | 250 °C, 10 MPa, 30 min | [51] |
Laver (Pyropia yezoensis) | 35 g (35.21%), 665 mL of water | Antioxidant | Closed | 210 °C, 3 MPa, 200 rpm, 30 min | [46] |
Soybean and rice bran | Rice bran: 1.76 g (15.02%), Soybean meal: 1.76 g (43.55%), 7 mL of water | Antioxidant | Closed | 200 °C, 3.97 MPa, 20 min | [35] |
Tuna collagen | 0.75 g (no data), 150 mL of water | Antioxidant and antimicrobial | Closed | 250 °C, 5 MPa, 0.6 M of modifier, 3 min | [52] |
Giant African snail (Achatina fulica) | 3.2 g (no data), 160 mL of water | ACE inhibitory, acetylcholinesterase (AChE) inhibitory, and antioxidant | Closed | Antioxidant: 200 °C ACE inhibitory: 250 °C AChE inhibitory: 300 °C 2.5 MPa, 10 min | [45] |
Squid muscle | 6 g (73.26%), 150 mL of water | Antioxidant | Closed | 220 °C, 140 rpm, pressure of saturated steam, 3 min | [53] |
Ice-cream wastewater | (6.81% dry-basis), 350 mL of ice-cream wastewater | Antioxidant and antihypertensive | Closed | 230 °C, 6 MPa, 240 min | [43] |
Algae (Spirulina platensis) | 25 g (75.31%), 500 mL of water | Anti-diabetes | Closed coupled ultrasound | 120 °C, 200 W, 10 MPa, 60 min | [48] |
Abalone viscera | 100 g (57–68.5%), 1500 mL of water | Antioxidant | Closed | 170 °C, 0.8 MPa, 60 min | [41] |
Oyster (Crassostrea gigas) | 5.5 g (37.47%), 165 mL of water | Antioxidant and antihypertensive | Continuous | 225 °C, 10 MPa, 150 rpm, 5 min | [54] |
Blue mussel (Mytilus edulis) | 30 g (52.87–67.30%), 600 mL of water | Antioxidant and antihypertensive | Closed | Antioxidant: 240 °C Antihypertensive: 180 °C, 3 MPa, 30 min | [55] |
Source | Catalyst/Modifiers Used | Optimal Conditions and Best Modifier | Main Effect | References |
---|---|---|---|---|
Whey protein | Acetic acid, lactic acid, sodium bicarbonate, sodium chloride, and sodium hydroxide | 291 °C, saturated vapor pressure, 28 min, 1.24 M of sodium bicarbonate | Four-fold increase in the degree of hydrolysis compared to water alone. Positive conservation of tyrosine, serine, glutamic acid, glycine, isoleucine, methionine/valine, phenylalanine, and tryptophan. | [70] |
Silk fibroin | Formic acid, sodium chloride, oleic acid, and sodium hydroxide | 250 °C, 4 MPa, 32 min, 5 mol% sodium hydroxide | Four-fold increase in yield of amino acids. | [74] |
Bovine serum albumin | Carbon dioxide | 250 °C, 25 MPa, 300 s, 90% CO2 saturation | Increase in amino acid yield. | [58] |
Chicken intestine | Sulfuric acid | 260 °C, saturated vapor pressure, 28 min, 0.02 wt% | Increase in amino acids yield up to 11.49%. | [39] |
De-oiled mackerel muscle | Nitrogen, carbon dioxide, formic acid, acetic acid, sodium chloride, and sodium bicarbonate | 260 °C, 7 MPa, 3 min, 150 rpm, 0.6 M of sodium bicarbonate | Increase in hydrolysis yield. Higher antioxidant and ACE-inhibitory activities. | [75] |
Insoluble Egg Yolk Granular Protein | Oxygen and nitrogen | 180 °C, 4 MPa, 120 min, oxygen stream of 1 L/min | Up to two-fold increase in amino acid yield and reduced time compared to trypsin digestion. | [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivas-Vela, C.I.; Amaya-Llano, S.L.; Castaño-Tostado, E.; Castillo-Herrera, G.A. Protein Hydrolysis by Subcritical Water: A New Perspective on Obtaining Bioactive Peptides. Molecules 2021, 26, 6655. https://doi.org/10.3390/molecules26216655
Rivas-Vela CI, Amaya-Llano SL, Castaño-Tostado E, Castillo-Herrera GA. Protein Hydrolysis by Subcritical Water: A New Perspective on Obtaining Bioactive Peptides. Molecules. 2021; 26(21):6655. https://doi.org/10.3390/molecules26216655
Chicago/Turabian StyleRivas-Vela, Carlos I., Silvia L. Amaya-Llano, Eduardo Castaño-Tostado, and Gustavo A. Castillo-Herrera. 2021. "Protein Hydrolysis by Subcritical Water: A New Perspective on Obtaining Bioactive Peptides" Molecules 26, no. 21: 6655. https://doi.org/10.3390/molecules26216655
APA StyleRivas-Vela, C. I., Amaya-Llano, S. L., Castaño-Tostado, E., & Castillo-Herrera, G. A. (2021). Protein Hydrolysis by Subcritical Water: A New Perspective on Obtaining Bioactive Peptides. Molecules, 26(21), 6655. https://doi.org/10.3390/molecules26216655