Co-N-Si/AC Catalyst for Aerobic Oxidation of Benzyl Alcohols to Esters under Mild Conditions
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Experimental
4.1. General Information
4.2. Catalyst Preparation
4.3. Typical Procedure for the Synthesis of Ester 3aa
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Otera, J. Esterification: Methods, Reactions, and Applications; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Sreekumar, S.; Baer, Z.C.; Pazhamalai, A.; Gunbas, G.; Grippo, A.; Blanch, H.W.; Clark, D.S.; Toste, F.D. Production of an acetone-butanol-ethanol mixture from Clostridium acetobutylicum and its conversion to high-value biofuels. Nat. Protoc. 2015, 10, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.; Junge, H.; Kammer, A.; Beller, M. Towards a Green Process for Bulk-Scale Synthesis of Ethyl Acetate: Efficient Acceptorless Dehydrogenation of Ethanol. Angew. Chem. Int. Ed. 2012, 51, 5711–5713. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, J.; Meng, L.; Deng, Y.; Li, Y.; Lei, A. Palladium-Catalyzed Aerobic Oxidative Direct Esterification of Alcohols. Angew. Chem. Int. Ed. 2011, 50, 5144–5148. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Tang, S.; Lei, A. Oxidant controlled Pd-catalysed selective oxidation of primary alcohols. Chem. Commun. 2013, 49, 1324–1326. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Obora, Y.; Ishii, Y.J. Iridium-catalyzed oxidative methyl esterification of primary alcohols and diols with methanol. J. Org. Chem. 2011, 76, 2937–2941. [Google Scholar] [CrossRef]
- Gowrisankar, S.; Neumann, H.; Beller, M. General and Selective Palladium-Catalyzed Oxidative Esterification of Alcohols. Angew. Chem. Int. Ed. 2011, 50, 5139–5143. [Google Scholar] [CrossRef]
- Miyamura, H.; Yasukawa, T.; Kobayashi, V. Aerobic oxidative esterification of alcohols catalyzed by polymer-incarcerated gold nanoclusters under ambient conditions. Green Chem. 2010, 12, 776–778. [Google Scholar] [CrossRef]
- Bai, X.F.; Ye, F.; Zheng, L.S.; Lai, G.Q.; Xia, C.G.; Xu, L.W. Hydrosilane and bismuth-accelerated palladium catalyzed aerobic oxidative esterification of benzylic alcohols with air. Chem. Commun. 2012, 48, 8592–8594. [Google Scholar] [CrossRef]
- Su, F.Z.; Ni, J.; Sun, H.; Cao, Y.; He, H.Y.; Fan, K.N. Gold Supported on Nanocrystalline β-Ga2O3 as a Versatile Bifunctional Catalyst for Facile Oxidative Transformation of Alcohols, Aldehydes, and Acetals into Esters. Chem. Eur. J. 2008, 14, 7131–7135. [Google Scholar] [CrossRef]
- Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Facile Conversion of Alcohols into Esters and Dihydrogen Catalyzed by New Ruthenium Complexes. J. Am. Chem. Soc. 2005, 127, 10840–10841. [Google Scholar] [CrossRef]
- David, S.M.; Ahmed, M.S.; Root, T.W.; Stahl, S.S. Discovery of Multicomponent Heterogeneous Catalysts via Admixture Screening: PdBiTe Catalysts for Aerobic Oxidative Esterification of Primary Alcohols. J. Am. Chem. Soc. 2017, 139, 1690–1698. [Google Scholar]
- Huang, K.T.; Fu, H.Q.; Shi, W.; Wang, H.J.; Cao, Y.H.; Yang, G.X.; Peng, F.; Wang, Q.; Liu, Z.G.; Zhang, B.S. Competitive adsorption on single-atom catalysts: Mechanistic insights into the aerobic oxidation of alcohols over Co-N-C. J. Catal. 2019, 377, 283–292. [Google Scholar] [CrossRef]
- Shen, H.; Gele, A. Inorg. Chem. Commun. Facile synthesis of N-doped lignin-based carbon nanofibers decorated with iron oxides for flexible supercapacitor electrodes. Inorg. Chem. Commun. 2021, 128, 108607. [Google Scholar] [CrossRef]
- Hu, Y.K.; Xia, J.W.; Li, J.; Li, Y.X.; Li, S.Z.; Duanmu, C.S.; Li, B.D.; Wang, X. Direct oxidative esterification of alcohols catalyzed by a nitrogen-doped carbon black-supported PdBi bimetallic catalyst under ambient conditions. J. Mater. Sci. 2021, 56, 7308–7320. [Google Scholar] [CrossRef]
- Sable, V.; Shah, J.; Sharma, A.; Kapdi, A.R. Pd-Colloids-Catalyzed/Ag2O-Oxidized General and Selective Esterification of Benzylic Alcohols. Chem. Asian J. 2019, 14, 2639–2647. [Google Scholar] [CrossRef]
- Jagadeesh, R.V.; Junge, H.; Pohl, M.M.; Radnik, J.; Bruckner, A.; Beller, M. Selective Oxidation of Alcohols to Esters Using Heterogeneous Co3O4–N@C Catalysts under Mild Conditions. J. Am. Chem. Soc. 2013, 135, 10776–10782. [Google Scholar] [CrossRef]
- Verma, S.; Bai, R.B.N.; Han, C.; Nadagouda, M.N.; Varma, R.S. Oxidative esterification via photocatalytic C-H activation. Green Chem. 2016, 18, 251–254. [Google Scholar] [CrossRef]
- Marsden, C.; Taarning, E.; Hansen, D.; Johansen, L.; Klitgaard, S.K.; Egeblad, K.; Christensen, C.H. Aerobic oxidation of aldehydes under ambient conditions using supported gold nanoparticle catalysts. Green Chem. 2008, 10, 168–170. [Google Scholar] [CrossRef]
- Oliveira, R.L.; Kiyohara, P.K.; Rossi, L.M. Clean preparation of methyl esters in one-step oxidative esterification of primary alcohols catalyzed by supported gold nanoparticles. Green Chem. 2009, 11, 1366–1370. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Chen, Y.Z.; Cao, L.N.; Lu, J.L.; Jiang, H.L. Conversion of Metal-Organic Framework to N-doped Porous Carbon Incorporating Co and CoO Nanoparticles: Direct Oxidation of Alcohols to Esters. Chem. Commun. 2015, 51, 8292–8295. [Google Scholar] [CrossRef]
- Wang, J.J.; Jiang, F.; Tao, C.F.; Yu, H.; Ruhlmann, L.; Wei, Y.G. Oxidative esterification of alcohols by a single-side organically decorated Anderson-type chrome-based catalyst. Green Chem. 2021, 23, 2652–2657. [Google Scholar] [CrossRef]
- Xiong, B.; Jiang, J.; Zhang, S.; Jiang, H.; Ke, Z.; Zhang, M. Ruthenium-Catalyzed Direct Synthesis of Semi-Saturated Bicyclic Pyrimidines via Selective Transfer Hydrogenation. Org. Lett. 2017, 19, 2730–2733. [Google Scholar] [CrossRef]
- Zhang, S.; Tan, Z.; Xiong, B.; Jiang, H.F.; Zhang, M. Transition-metal-catalyst-free synthesis of anthranilic acid derivatives by transfer hydrogenative coupling of 2-nitroaryl methanols with alcohols/amines. Org. Biomol. Chem. 2018, 16, 531–535. [Google Scholar] [CrossRef]
- Lv, W.; Xiong, B.; Jiang, H.; Zhang, M. Synthesis of 2-Alkylaminoquinolines and 1,8-Naphthyridines by Successive Ruthenium-Catalyzed Dehydrogenative Annulation and N-Alkylation Processes. Adv. Synth. Catal. 2017, 359, 1202–1207. [Google Scholar] [CrossRef]
- Xiong, B.; Zhang, S.; Jiang, H.; Zhang, M. Hydrogen-Transfer-Mediated Direct β-Alkylation of Aryl-1,8-naphthyridines with Alcohols under Transition Metal Catalyst Free Conditions. Org. Lett. 2016, 18, 724–727. [Google Scholar] [CrossRef]
- Xiong, B.; Zhang, S.D.; Chen, L.; Li, B.; Jiang, H.F.; Zhang, M. An annulative transfer hydrogenation strategy enables straightforward access to tetrahydro fused-pyrazine derivatives. Chem. Commun. 2016, 52, 10636–10639. [Google Scholar] [CrossRef]
- Xiong, B.; Li, Y.; Lv, W.; Tan, Z.; Jiang, H.; Zhang, M. Ruthenium-Catalyzed Straightforward Synthesis of 1,2,3,4-Tetrahydronaphthyridines via Selective Transfer Hydrogenation of Pyridyl Ring with Alcohols. Org. Lett. 2015, 17, 4054–4057. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.J.; Tan, Z.D.; Jiang, H.F.; Zhang, M. Synthesis of (E)-2-Alkenylazaarenes via Dehydrogenative Coupling of (Hetero)aryl-fused 2-Alkylcyclic Amines and Aldehydes with a Cobalt Nanocatalyst. ChemCatChem 2018, 10, 2887–2892. [Google Scholar] [CrossRef]
- Zhou, C.J.; Tan, Z.D.; Jiang, H.F.; Zhang, M. A sustainable oxidative esterification of thiols with alcohols by a cobalt nanocatalyst supported on doped carbon. Green Chem. 2018, 20, 1992–1997. [Google Scholar] [CrossRef]
- Xie, R.; Xie, F.; Zhou, C.J.; Jiang, H.F.; Zhang, M. Hydrogen Transfer-mediated Selective Dual C–H Alkylations of 2-Alkylquinolines by Doped TiO2-Supported Nanocobalt Oxides. J. Catal. 2019, 377, 449–454. [Google Scholar] [CrossRef]
- Du, L.Y.; Shi, L.; Liu, Y.X.; Ling, Y.; Zhang, Y.N.; Zhou, C.J.; Xiong, B. Nanonickel Oxides Prepared by Atomic Layer Deposition as Efficient Catalyst for the Dehydrogenation of N-Heterocycles. ChemistrySelect 2020, 5, 11811–11816. [Google Scholar] [CrossRef]
- Dai, H.; Xiao, X.; Huang, L.H.; Zhou, C.J.; Deng, J. Different catalytic behavior of Pd/Palygorskite catalysts for semi-hydrogenation of acetylene. Appl. Clay Sci. 2021, 211, 106173. [Google Scholar] [CrossRef]
- Bai, C.H.; Yao, X.F.; Li, Y.W. Easy Access to Amides through Aldehydic C–H Bond Functionalization Catalyzed by Heterogeneous Co-Based Catalysts. ACS Catal. 2015, 5, 884–891. [Google Scholar] [CrossRef]
- Banerje, D.; Jagadeesh, R.V.; Junge, K.; Pohl, M.; Radnik, J.; Bürckner, A.; Beller, M. Angew. Chem. Int. Ed. 2014, 53, 4359–4363. [Google Scholar]
- Iosub, A.V.; Stahl, S.S. Catalytic Aerobic Dehydrogenation of Nitrogen Heterocycles Using Heterogeneous Cobalt Oxide Supported on Nitrogen-Doped Carbon. Org. Lett. 2015, 17, 4404–4407. [Google Scholar] [CrossRef]
- Forberg, D.; Schwob, T.; Zaheer, M.; Friedrich, M.; Miyajima, N.; Kempe, R. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia. Nat. Commun. 2016, 7, 13201. [Google Scholar] [CrossRef]
- Sachau, S.M.; Zaheer, M.; Lale, A.; Friedrich, M.; Denner, C.E.; Demirci, U.B.; Bernard, S.; Motz, G.; Kempe, R. Micro-/Mesoporous Platinum–SiCN Nanocomposite Catalysts (Pt@SiCN): From Design to Catalytic Applications. Chem. Eur. J. 2016, 22, 15508–15512. [Google Scholar] [CrossRef]
- Hahn, G.; Ewert, J.K.; Denner, C.; Tilgner, D.; Kempe, R. A Reusable Mesoporous Nickel Nanocomposite Catalyst for the Selective Hydrogenation of Nitroarenes in the Presence of Sensitive Functional Groups. ChemCatChem 2016, 8, 2461–2465. [Google Scholar] [CrossRef]
- Deng, D.; Yu, L.; Chen, X.; Wang, G.; Jin, L.; Pan, X.; Deng, J.; Sun, G.; Bao, X. Angew. Chem. Int. Ed. 2013, 52, 371–375. [Google Scholar] [CrossRef]
- Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Zhang, L.; Yan, W.; Liu, X.; Yang, X.; Miao, S.; Wang, W.; Wang, A.; Zhang, T. Single-atom Dispersed Co-N-C catalyst: Structure Identification and Performance for Hydrogenative Coupling of Nitroarenes. Chem. Sci. 2016, 7, 5758–5764. [Google Scholar] [CrossRef] [Green Version]
- Jagadeesh, R.V.; Junge, H.; Beller, M. Green synthesis of nitriles using non-noble metal oxides-based nanocatalysts. Nat. Commun. 2014, 5, 5123. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.R.; Yang, F.K.; Kostka, A.; Xia, W. Interaction of Cobalt Nanoparticles with Oxygen- and Nitrogen-Functionalized Carbon Nanotubes and Impact on Nitrobenzene Hydrogenation Catalysis. ACS Catal. 2014, 4, 1478–1486. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, J.; Mao, S.; Su, D.; Jin, H.; Wang, Y.; Xu, F.; Li, H.; Wang, Y. In Situ-Generated Co0-Co3O4/N-Doped Carbon Nanotubes Hybrids as Efficient and Chemoselective Catalysts for Hydrogenation of Nitroarenes. ACS Catal. 2015, 5, 4783–4789. [Google Scholar] [CrossRef]
- Zhang, L.L.; Wang, A.Q.; Wang, W.T.; Huang, Y.Q.; Liu, X.Y.; Miao, S.; Liu, J.Y.; Zhang, T. Co-N-C Catalyst for C-C Coupling Reactions: On the Catalytic Performance and Active Sites. ACS Catal. 2015, 5, 6563–6572. [Google Scholar] [CrossRef]
- Casanovas, J.; Ricart, J.M.; Rubio, J.; Illas, F.; Jiménez-Mateos, J.M. Origin of the Large N 1s Binding Energy in X-ray Photoelectron Spectra of Calcined Carbonaceous Materials. J. Am. Chem. Soc. 1996, 118, 8071–8076. [Google Scholar] [CrossRef]
- Lefevre, M.; Proietti, E.; Jaouen, F.; Dodelet, J.P. Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells. Science 2009, 324, 71–74. [Google Scholar] [CrossRef]
- Mannel, D.S.; King, J.; Preger, Y.; Ahmed, M.S.; Root, T.W.; Stahl, S.S. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts. ACS Catal. 2018, 8, 1038–1047. [Google Scholar] [CrossRef]
Entry | Catalyst | t (h) | Yield (%) b |
---|---|---|---|
1 | Co-N-Si/AC | 3 | 0 c |
2 | Co-N/AC | 3 | 69 |
3 | N-Si/AC | 3 | 0 |
3 | Co-Si/AC | 3 | 0 |
5 | Co(OAc)2·4H2O | 3 | trace |
6 | Co-N-Si/AC | 3 | 97 |
7 | - | 3 | 0 |
8 | Co-N-Si/AC | 3 | 0 d |
9 | Cu-N-Si/AC | 3 | 0 |
10 | Mn-N-Si/AC | 3 | 0 |
11 | Pd-N-Si/AC | 3 | 0 |
12 | Fe-N-Si/AC | 3 | 0 |
Catalyst | Binding Energy/eV (Area/%) | ||
---|---|---|---|
Co-O | Co-N | Satellites | |
Co-N/AC | 780.2 | 782.0 | - |
(60.9) | (39.1) | ||
Co-N-Si/AC | 780.0 | 782.2 | 787.0 |
(23.2) | (63.2) | (13.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Sun, R.; Zhang, Y.; Xiong, B.; Dai, H.; Dai, Y. Co-N-Si/AC Catalyst for Aerobic Oxidation of Benzyl Alcohols to Esters under Mild Conditions. Molecules 2021, 26, 6792. https://doi.org/10.3390/molecules26226792
Zhou C, Sun R, Zhang Y, Xiong B, Dai H, Dai Y. Co-N-Si/AC Catalyst for Aerobic Oxidation of Benzyl Alcohols to Esters under Mild Conditions. Molecules. 2021; 26(22):6792. https://doi.org/10.3390/molecules26226792
Chicago/Turabian StyleZhou, Changjian, Rong Sun, Yuting Zhang, Biao Xiong, Hui Dai, and Yong Dai. 2021. "Co-N-Si/AC Catalyst for Aerobic Oxidation of Benzyl Alcohols to Esters under Mild Conditions" Molecules 26, no. 22: 6792. https://doi.org/10.3390/molecules26226792
APA StyleZhou, C., Sun, R., Zhang, Y., Xiong, B., Dai, H., & Dai, Y. (2021). Co-N-Si/AC Catalyst for Aerobic Oxidation of Benzyl Alcohols to Esters under Mild Conditions. Molecules, 26(22), 6792. https://doi.org/10.3390/molecules26226792