Persistence Enhancement of a Promising Tick Repellent, Benzyl Isothiocyanate, by Yeast Microcarriers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Repellency of A. rusticana Root Oil
2.2. Identification of the Active Component
2.3. Repellency of Phenethyl Isothiocyanate Isolated from A. rusticana Root Oil and Its Derivatives
2.4. Confirmation of Encapsulated Benzyl Isothiocyanate
2.5. Repellency of Encapsulated Benzyl Isothiocyanate
3. Conclusions
4. Methods
4.1. Chemicals
4.2. Plant Essential Oils
4.3. Ticks
4.4. Isolation and Identification of Active Compounds
4.5. Repellent Activity Bioassays
Filter Paper Bioassay
4.6. Encapsulation in Yeast Cells
4.7. Analysis of Encapsulated Benzyl Isothiocyanate
Loading Capacity (LC)
4.8. Fourier Transform Infrared Spectroscopy (FT-IR)
4.9. Confocal Imaging
4.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Luo, L.M.; Zhao, L.; Wen, H.L.; Zhang, Z.T.; Liu, J.W.; Fang, L.Z.; Xue, Z.F.; MA, D.Q.; Zhang, X.S.; Ding, S.J.; et al. Haemaphysalis longicornis ticks as reservoir and vector of severe fever with thrombocytopenia syndrome virus in China. Emerg. Infect. Dis. 2015, 27, 1770–1776. [Google Scholar] [CrossRef]
- Heath, A.C.G. Biology, ecology and distribution of the tick, Haemaphysalis longicornis Neumann (Acari: Ixodidae) in New Zealand. N. Z. Vet. J. 2016, 64, 10–20. [Google Scholar] [CrossRef]
- Wormser, G.P.; McKenna, D.; Piedmonte, N.; Vinci, V.; Egizi, A.M.; Backenson, B.; Falco, R.C. First recognized human bite in the United States by the Asian longhorned tick, Haemaphysalis longicornis. Clin. Infect. Dis. 2020, 70, 314–316. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Pavela, R. Repellence of essential oils and selected compounds against ticks—A systematic review. Acta Trop. 2018, 179, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Bissinger, B.W.; Roe, R.M. Tick repellents: Past, present, and future. Pestic. Biochem. Physiol. 2010, 96, 63–79. [Google Scholar] [CrossRef]
- Jordan, R.A.; Schulze, T.L.; Dolan, M.C. Efficacy of plant-derived and synthetic compounds on clothing as repellents against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae). J. Med. Entomol. 2012, 49, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Turek, C.; Stintzing, F.C. Stability of essential oils: A review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Majeed, H.; Bian, Y.Y.; Ali, B.; Jamil, A.; Majeed, U.; Khan, Q.F.; Iqbal, K.J.; Shoemaker, C.F.; Fang, Z. Essential oil encapsulations: Uses, procedures, and trends. Rsc Adv. 2015, 5, 58449–58463. [Google Scholar] [CrossRef]
- Kavetsou, E. Encapsulation of Mentha pulegium essential oil in yeast cell microcarriers: An approach to environmentally friendly pesticides. J. Agric. Food Chem. 2019, 67, 4746–4753. [Google Scholar] [CrossRef] [PubMed]
- Paramera, E.I.; Konteles, S.J.; Karathanos, V.T. Stability and release properties of curcumin encapsulated in Saccharomyces cerevisiae, β-cyclodextrin and modified starch. Food Chem. 2011, 125, 913–922. [Google Scholar] [CrossRef]
- Shi, G.; Rao, L.; Yu, H.; Xiang, H.; Yang, H.; Ji, R. Stabilization and encapsulation of photosensitive resveratrol within yeast cell. Int. J. Pharm. 2008, 349, 83–93. [Google Scholar] [CrossRef]
- Agneta, R.; Möllers, C.; Rivelli, A.R. Horseradish (Armoracia rusticana), a neglected medical and condiment species with a relevant glucosinolate profile: A review. Genet. Resour. Crop. Evol. 2013, 60, 1923–1943. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, Q.H.; Xu, K. Are isothiocyanates potential anti-cancer drugs. Acta Pharmacol. Sin. 2009, 30, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Dufour, V.; Stahl, M.; Baysse, C. The antibacterial properties of isothiocyanates. Microbiology 2015, 161, 229–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kara, M.; Soylu, E.M. Assessment of glucosinolate-derived isothiocyanates as potential natural antifungal compounds against citrus sour rot disease agent Geotrichum citri-aurantii. J. Phytopathol. 2020, 168, 279–289. [Google Scholar] [CrossRef]
- Du, Y.; Grodowitz, M.J.; Chen, J. Insecticidal and enzyme inhibitory activities of isothiocyanates against red imported fire ants, Solenopsis invicta. Biomolecules 2020, 10, 716. [Google Scholar] [CrossRef]
- Lwande, W.; Ndakala, A.J.; Hassanali, A.; Moreka, L.; Nyandat, E.; Ndungu, M.; Amiani, H.; Gitu, P.M.; Malonza, M.M.; Punyua, D.K. Gynandropsis gynandra essential oil and its constituents as tick (Rhipicephalus appendiculatus) repellents. Phytochemistry 1999, 50, 401–405. [Google Scholar] [CrossRef]
- Chen, H.; Wang, C.; Ye, J.; Zhou, H.; Chen, X. Antimicrobial activities of phenethyl isothiocyanate isolated from horseradish. Nat. Prod. Res. 2012, 26, 1016–1021. [Google Scholar] [CrossRef]
- Borek, V.; Elberson, L.R.; McCaffrey, J.P.; Morra, M.J. Toxicity of isothiocyanates produced by glucosinolates in Brassicaceae species to black vine weevil eggs. J. Agric. Food Chem. 1998, 46, 5318–5323. [Google Scholar] [CrossRef]
- Jang, M.; Hong, E.; Kim, G.H. Evaluation of antibacterial activity of 3-butenyl, 4-pentenyl, 2-phenylethyl, and benzyl isothiocyanate in Brassica vegetables. J. Food Sci. 2010, 75, M412–M416. [Google Scholar] [CrossRef]
- Wong, C.; Crystal, K.; Coats, J. Three molecules found in rosemary or nutmeg essential oils repel ticks (Dermacentor variabilis) more effectively than DEET in a no-human assay. Pest Manag. Sci. 2021, 77, 1348–1354. [Google Scholar] [CrossRef] [PubMed]
- Schreck, C.E.; Fish, D.; McGovern, T.P. Activity of repellents applied to skin for protection against Amblyomma americanum and Ixodes scapularis ticks (Acari: Ixodidae) J. Am. Mosq. Control Assoc.-Mosq. News 1995, 11, 136–140. [Google Scholar]
- Adenubi, O.T.; McGaw, L.J.; Eloff, J.N.; Naidoo, V. In vitro bioassays used in evaluating plant extracts for tick repellent and acaricidal properties: A critical review. Vet. Parasitol. 2018, 254, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.F.; Klun, J.A.; Debboun, M. Repellency of deet and SS220 applied to skin involves olfactory sensing by two species of ticks. Med. Vet. Entomol. 2005, 19, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Burattini, E.; Cavagna, M.; Dell’Anna, R.; Campeggi, F.M.; Monti, F.; Rossi, F.; Torriani, S. A FTIR microspectroscopy study of autolysis in cells of the wine yeast Saccharomyces cerevisiae. Vib. Spectrosc. 2008, 47, 139–147. [Google Scholar] [CrossRef]
- Karaman, K. Characterization of Saccharomyces cerevisiae based microcarriers for encapsulation of black cumin seed oil: Stability of thymoquinone and bioactive properties. Food Chem. 2020, 313, 126129. [Google Scholar] [CrossRef]
- Li, W.; Liu, X.; Yang, Q.; Zhang, N.; Du, Y.; Zhu, H. Preparation and characterization of inclusion complex of benzyl isothiocyanate extracted from papaya seed with β-cyclodextrin. Food Chem. 2015, 184, 99–104. [Google Scholar] [CrossRef]
- Pavela, R. Insecticidal and repellent activity of selected essential oils against of the pollen beetle, Meligethes aeneus (Fabricius) adults. Ind. Crops Prod. 2011, 34, 888–892. [Google Scholar] [CrossRef]
- Renkema, J.M.; Wright, D.; Buitenhuis, R.; Hallett, R.H. Plant essential oils and potassium metabisulfite as repellents for Drosophila suzukii (Diptera: Drosophilidae). Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef]
- Uppal, S.; Kumar, R.; Sareen, S.; Kaur, K.; Mehta, S.K. Biofabrication of cerium oxide nanoparticles using emulsification for an efficient delivery of Benzyl isothiocyanate. Appl. Surf. Sci. 2020, 510, 145011. [Google Scholar] [CrossRef]
- Normand, V.; Dardelle, G.; Bouquerand, P.E.; Nicolas, L.; Johnston, D.J. Flavor encapsulation in yeasts: Limonene used as a model system for characterization of the release mechanism. J. Agric. Food Chem. 2005, 53, 7532–7543. [Google Scholar] [CrossRef]
- Kavosi, M.; Mohammadi, A.; Shojaee Aliabadi, S.; Khaksar, R.; Hosseini, S.M. Characterization and oxidative stability of purslane seed oil microencapsulated in yeast cells biocapsules. J. Sci. Food Agric. 2018, 98, 2490–2497. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, H.S. Acaricidal target and mite indicator as color alteration using 3,7-dimethyl-2,6-octadienal and its derivatives derived from Melissa officinalis leaves. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Barker, S.C.; Walker, A.R. Ticks of Australia. The species that infest domestic animals and humans. Zootaxa 2014, 3816, 1–144. [Google Scholar] [CrossRef]
- Del Fabbro, S.; Nazzi, F. From chemistry to behavior. Molecular structure and bioactivity of repellents against Ixodes ricinus ticks. PLoS ONE 2013, 8, e67832. [Google Scholar]
- Tavares, M.; da Silva, M.R.M.; de Siqueira, L.B.D.O.; Rodrigues, R.A.S.; Bodjolle-d’Almeida, L.; Dos Santos, E.P.; Ricci-Júnior, E. Trends in insect repellent formulations: A review. Int. J. Pharm. 2018, 539, 190–209. [Google Scholar] [CrossRef]
- Junior, C.F.C.; Pederiva, C.N.; Bose, R.C.; Garcia, V.A.; Lino-de-Oliveira, C.; Marino-Neto, J. ETHOWATCHER: Validation of a tool for behavioral and video-tracking analysis in laboratory animals. Comput. Biol. Med. 2012, 42, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Kader, M.S.; Khamis, E.H.; Foudah, A.I.; Alqarni, M.H. GC quantitative analysis of benzyl isothiocyanate in Salvadora persica roots extract and dental care herbal products. Saudi Pharm. J. 2018, 26, 462–466. [Google Scholar] [CrossRef]
- Fu, J.; Guan, J.; Sun, C.; Zhou, D.; Zhu, B. Encapsulation of Antarctic krill oil in yeast cell microcarriers: Evaluation of oxidative stability and in vitro release. Food Chem. 2021, 338, 128089. [Google Scholar] [CrossRef] [PubMed]
Dose (mg/cm2) | Treatment Median (s) b | Negative Control Median (s) b | p-Value c | Treatment/Negative Control d |
---|---|---|---|---|
0.1 | 227.5 | 12.5 | < 0.01 | 18.2 |
0.05 | 221.0 | 13.0 | < 0.01 | 17.0 |
0.025 | 219.0 | 15.0 | < 0.01 | 14.6 |
0.0125 | 34.50 | 14.5 | n.s. e | 2.4 |
Samples | Dose (mg/cm2) | Treatment Median (s) b | Negative Control Median (s) b | p-Value c | Treatment/Negative Control d |
---|---|---|---|---|---|
Allyl isothiocyanate | 0.1 | 15.5 | 14.5 | n.s. e | 1.2 |
Benzyl isothiocyanate | 0.1 | 500.0 | 11.0 | <0.01 | 45.5 |
0.05 | 500.0 | 12.5 | <0.01 | 40.0 | |
0.025 | 500.0 | 12.0 | <0.01 | 41.7 | |
0.0125 | 244.0 | 13.5 | <0.01 | 18.1 | |
0.00625 | 76.5 | 14.0 | <0.01 | 5.5 | |
0.003125 | 24.0 | 16.5 | n.s. | 1.5 | |
Butyl isothiocyanate | 0.1 | 15.5 | 14.5 | n.s. | 1.1 |
Ethyl isothiocyanate | 0.1 | 16.5 | 12.5 | n.s. | 1.3 |
Isobutyl isothiocyanate | 0.1 | 16.5 | 14.0 | n.s. | 1.2 |
Isopropyl isothiocyanate | 0.1 | 14.5 | 13.0 | n.s. | 1.1 |
Methyl isothiocyanate | 0.1 | 19.0 | 14.0 | n.s. | 1.4 |
Phenyl isothiocyanate | 0.1 | 139.5 | 13.0 | <0.01 | 10.7 |
0.05 | 48.0 | 14.0 | <0.05 | 3.4 | |
0.025 | 39.5 | 14.0 | <0.05 | 2.8 | |
0.0125 | 8.5 | 13.0 | n.s. | 0.7 | |
Phenethyl isothiocyanate | 0.1 | 500.0 | 12.0 | <0.01 | 41.7 |
0.05 | 500.0 | 12.5 | <0.01 | 40.0 | |
0.025 | 500.0 | 14.0 | <0.01 | 35.7 | |
0.0125 | 202.5 | 13.5 | <0.01 | 15.0 | |
0.00625 | 26.5 | 12.0 | n.s. | 2.2 | |
Propyl isothiocyanate | 0.1 | 18.0 | 12.5 | n.s. | 1.4 |
Positive control(IR3535) | 0.1 | 292.5 | 15.0 | <0.01 | 19.5 |
0.05 | 145.5 | 14.5 | <0.01 | 10.0 | |
0.025 | 17.5 | 14.0 | n.s. | 1.3 |
Samples b | Time Post-Treatment (min) | Treatment Median (s) c | Negative Control Median (s) c | p-Value d | Treatment /Negative Control e |
---|---|---|---|---|---|
Pure benzyl isothiocyanate | 60 | 39.5 | 13.5 | <0.01 | 2.9 |
120 | 11.0 | 10.5 | n.s. f | 1.1 | |
Encapsulated benzyl isothiocyanate | 60 | 49.0 | 13.0 | <0.01 | 3.8 |
120 | 27.0 | 14.0 | <0.01 | 1.9 | |
180 | 12.5 | 11.0 | n.s. | 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-J.; Jeong, A.-H.; Lee, J.-H.; Park, J.-H. Persistence Enhancement of a Promising Tick Repellent, Benzyl Isothiocyanate, by Yeast Microcarriers. Molecules 2021, 26, 6817. https://doi.org/10.3390/molecules26226817
Kim H-J, Jeong A-H, Lee J-H, Park J-H. Persistence Enhancement of a Promising Tick Repellent, Benzyl Isothiocyanate, by Yeast Microcarriers. Molecules. 2021; 26(22):6817. https://doi.org/10.3390/molecules26226817
Chicago/Turabian StyleKim, Hui-Ju, Ah-Hyeon Jeong, Ji-Hoon Lee, and Jun-Hwan Park. 2021. "Persistence Enhancement of a Promising Tick Repellent, Benzyl Isothiocyanate, by Yeast Microcarriers" Molecules 26, no. 22: 6817. https://doi.org/10.3390/molecules26226817
APA StyleKim, H. -J., Jeong, A. -H., Lee, J. -H., & Park, J. -H. (2021). Persistence Enhancement of a Promising Tick Repellent, Benzyl Isothiocyanate, by Yeast Microcarriers. Molecules, 26(22), 6817. https://doi.org/10.3390/molecules26226817