Two-dimensional Infrared Spectroscopy Reveals Better Insights of Structure and Dynamics of Protein
Abstract
:1. Introduction
2. Vibrational Spectra of Protein
3. Theoretical Approach
3.1. VSCF Method
3.2. C-H Vibrational Bands
3.3. Isotope Labeling
4. Experimental 2D Vibrational Spectroscopy
4.1. Two-dimensional IR Spectroscopic Technique
4.2. Two-dimensional IR Spectra
4.3. Two-dimensional IR Spectra of Amide I Band
4.4. Observation of Hydrogen Bond Breaking and Making
5. Dual Frequency 2DIR Spectroscopy
6. Watching Molecular Motion
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry; W. H. Freeman and Company: San Francisco, CA, USA, 2002. [Google Scholar]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: Boston, MA, USA, 2006. [Google Scholar] [CrossRef]
- Maiti, K.S.; Fill, E.; Strittmatter, F.; Volz, Y.; Sroka, R.; Apolonski, A. Towards reliable diagnostics of prostate cancer via breath. Sci. Rep. 2021, 11, 18381. [Google Scholar] [CrossRef]
- Volk, M. Fast initiation of peptide and protein folding processes. Eur. J. Org. Chem. 2001, 2001, 2605–2621. [Google Scholar] [CrossRef]
- Weinstein, J.A.; Hunt, N.T. Ultrafast chemical physics: In search of molecular movies. Nat. Chem. 2012, 4, 157–158. [Google Scholar] [CrossRef]
- Limongelli, V.; Marinelli, L.; Cosconati, S.; La Motta, C.; Sartini, S.; Mugnaini, L.; Da Settimo, F.; Novellino, E.; Parrinello, M. Sampling protein motion and solvent effect during ligand binding. Proc. Natl. Acad. Sci. USA 2012, 109, 1467–1472. [Google Scholar] [CrossRef] [Green Version]
- Hochstrasser, R.M. Two-dimensional spectroscopy at infrared and optical frequencies. Proc. Natl. Acad. Sci. USA 2007, 104, 14190–14196. [Google Scholar] [CrossRef] [Green Version]
- Maiti, K.S.; Lewton, M.; Fill, E.; Apolonski, A. Human beings as islands of stability: Monitoring body states using breath profiles. Sci. Rep. 2019, 9, 16167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egli, M. Diffraction Techniques in Structural Biology. Curr. Protoc. Nucleic Acid Chem. 2016, 65, 7. [Google Scholar] [CrossRef] [Green Version]
- Pople, J.A.; Schneider, W.G.; Bernstein, H.J. High-Resolution Nuclear Magnetic Resonance; McGraw-Hill Book Company: New York, NY, USA, 1959. [Google Scholar]
- Roberts, J.D. Nuclear Magnetic Resonance: Applications to Organic Chemistry; McGraw-Hill Book Company: New York, NY, USA, 1959. [Google Scholar]
- Maudsley, A.; Wokaun, A.; Ernst, R. Coherence transfer echoes. Chem. Phys. Lett. 1978, 55, 9–14. [Google Scholar] [CrossRef]
- Bragg, W.L.; Bragg, W.H. The analysis of crystals by the X-ray spectrometer. Proc. R. Soc. London. Ser. A Contain. Pap. Math. Phys. Character 1914, 89, 468–489. [Google Scholar] [CrossRef] [Green Version]
- Hauptman, H. Phasing methods for protein crystallography. Curr. Opin. Struct. Biol. 1997, 7, 672–680. [Google Scholar] [CrossRef]
- Chernov, A.A. Protein crystals and their growth. J. Struct. Biol. 2003, 142, 3–21. [Google Scholar] [CrossRef]
- Szabo, A.; Ostlund, N.S. Modern Quantum Chemistry; Dover Publications, INC: New York, NY, USA, 1996. [Google Scholar]
- Apolonski, A.; Roy, S.; Lampe, R.; Maiti, K.S. Application of vibrational spectroscopy in biology and medicine. Breath analysis. Proceedings 2019, 27, 26. [Google Scholar] [CrossRef] [Green Version]
- Ozaki, Y.; Baranska, M.; Lednev, I.K.; Wood, B.R. (Eds.) Vibrational Spectroscopy in Protein Research; Academic Press: San Diego, CA, USA, 2020. [Google Scholar] [CrossRef]
- Hegger, R.; Altis, A.; Nguyen, P.H.; Stock, G. How Complex Is the Dynamics of Peptide Folding? Phys. Rev. Lett. 2007, 98, 028102. [Google Scholar] [CrossRef] [PubMed]
- Scheurer, C.; Steinel, T. 2D Infrared Chemical Exchange Spectroscopy of Ultrafast Isomerizations. ChemPhysChem 2007, 8, 503–505. [Google Scholar] [CrossRef]
- Noda, I. Techniques of two-dimensional (2D) correlation spectroscopy useful in life science research. Biomed. Spectrosc. Imaging 2015, 4, 109–127. [Google Scholar] [CrossRef] [Green Version]
- Kraack, J.P. Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods. Top. Curr. Chem. 2017, 375, 86. [Google Scholar] [CrossRef]
- Mukamel, S. Principles of Nonliner Optical Spectroscopy; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Hochstrasser, R.M. Multidimensional ultrafast spectroscopy. Proc. Natl. Acad. Sci. USA 2007, 104, 14189. [Google Scholar] [CrossRef] [Green Version]
- Wilson, E.B., Jr.; Decius, J.C.; Cross, P.C. Molecular Vibrations; Dover Publications: New York, NY, USA, 1980. [Google Scholar]
- Apolonski, A.; Roy, S.; Lampe, R.; Maiti, K.S. Molecular identification of bio-fluids in gas phase using infrared spectroscopy. Appl. Opt. 2020, 59, E36–E41. [Google Scholar] [CrossRef] [PubMed]
- Gelin, M.F.; Blokhin, A.P.; Ostrozhenkova, E.; Apolonski, A.; Maiti, K.S. Theory helps experiment to reveal VOCs in human breath. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 258, 119785. [Google Scholar] [CrossRef]
- Arrondo, J.L.R.; Muga, A.; Castresana, J.; Goñi, F.M. Quantitative studies of the structure of proteins in solution by fourier-transform infrared spectroscopy. Prog. Biophys. Mol. Biol. 1993, 59, 23–56. [Google Scholar] [CrossRef]
- Maiti, K.S.; Lewton, M.; Fill, E.; Apolonski, A. Sensitive spectroscopic breath analysis by water condensation. J. Breath Res. 2018, 12, 046003. [Google Scholar] [CrossRef]
- Jackson, M.; Mantsch, H.H. The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 95–120. [Google Scholar] [CrossRef]
- Maiti, K.S.; Roy, S.; Lampe, R.; Apolonski, A. Breath indeed carries significant information about a disease. Potential biomarkers of cerebral palsy. J. Biophoton. 2020, 13, e202000125. [Google Scholar] [CrossRef]
- Fidder, H.; Yang, M.; Nibbering, E.T.J.; Elsaesser, T.; Röttger, K.; Temps, F. N–H Stretching Vibrations of Guanosine-Cytidine Base Pairs in Solution: Ultrafast Dynamics, Couplings, and Line Shapes. J. Phys. Chem. A 2013, 117, 845–854. [Google Scholar] [CrossRef]
- Knop, S.; Lindner, J.; Vöhringer, P. OH and NH Stretching Vibrational Relaxation of Liquid Ethanolamine. Z. Phys. Chem. 2011, 225, 913–926. [Google Scholar] [CrossRef]
- Wang, J.; Hochstrasser, R.M. Anharmonicity of Amide Modes. J. Phys. Chem. B 2006, 110, 3798–3807. [Google Scholar] [CrossRef] [PubMed]
- Hamm, P.; Lim, M.; Hochstrasser, R.M. Structure of the Amide I Band of Peptides Measured by Femtosecond Nonlinear-Infrared Spectroscopy. J. Phys. Chem. B 1998, 102, 6123–6138. [Google Scholar] [CrossRef]
- Hamm, P.; Zanni, M. Concepts and Methods of 2D Infrared Spectroscopy; Cambridge University Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Jonas, D.M. Optical Analogs of 2D NMR. Science 2003, 300, 1515–1517. [Google Scholar] [CrossRef]
- Bounouar, M.; Scheurer, C. Reducing the vibrational coupling network in N-methylacetamide as a model for ab initio infrared spectra computations of peptides. Chem. Phys. 2006, 323, 87–101. [Google Scholar] [CrossRef]
- Maiti, K.S.; Samsonyuk, A.; Scheurer, C.; Steinel, T. Hydrogen bonding characteristics of 2-pyrrolidinone: A joint experimental and theoretical study. Phys. Chem. Chem. Phys. 2012, 14, 16294–16300. [Google Scholar] [CrossRef]
- Miller, L.M.; Bourassa, M.W.; Smith, R.J. FTIR spectroscopic imaging of protein aggregation in living cells. Biochim. Biophys. Acta (BBA) -Biomembr. 2013, 1828, 2339–2346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, M.; Ling, Y.; Yu, J.; Wu, J.; Xiao, J. Small proteins: Untapped area of potential biological importance. Front. Genet. 2013, 4, 286. [Google Scholar] [CrossRef] [PubMed]
- Hesse, S.; Wassermann, T.N.; Suhm, M.A. Brightening and Locking a Weak and Floppy N-H Chromophore: The Case of Pyrrolidine. J. Phys. Chem. A 2010, 114, 10492–10499. [Google Scholar] [CrossRef] [PubMed]
- Gerber, R.B.; Brauer, B.; Gregurick, S.K.; Chaban, G.M. Calculation of anharmonic vibrational spectroscopy of small biological molecules. PhysChemComm 2002, 5, 142–150. [Google Scholar] [CrossRef]
- Hao, M.H. Theoretical Calculation of Hydrogen-Bonding Strength for Drug Molecules. J. Chem. Theory Comput. 2006, 2, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Agarwalla, H.; Jana, K.; Maity, A.; Kesharwani, M.K.; Ganguly, B.; Das, A. Hydrogen Bonding Interaction between Active Methylene Hydrogen Atoms and an Anion as a Binding Motif for Anion Recognition: Experimental Studies and Theoretical Rationalization. J. Phys. Chem. A 2014, 118, 2656–2666. [Google Scholar] [CrossRef]
- Atkinson, A.; Graton, J.; Le Questel, J.Y. Insights into a highly conserved network of hydrogen bonds in the agonist binding site of nicotinic acetylcholine receptors: A structural and theoretical study. Proteins Struct. Funct. Bioinform. 2014, 82, 2303–2317. [Google Scholar] [CrossRef]
- Molčanov, K.; Stare, J.; Vener, M.V.; Kojić-Prodić, B.; Mali, G.; Grdadolnik, J.; Mohaček-Grošev, V. Nitranilic acid hexahydrate, a novel benchmark system of the Zundel cation in an intrinsically asymmetric environment: Spectroscopic features and hydrogen bond dynamics characterised by experimental and theoretical methods. Phys. Chem. Chem. Phys. 2014, 16, 998–1007. [Google Scholar] [CrossRef]
- Anderson, J.B. A random-walk simulation of the Schrödinger equation: H3+. J. Chem. Phys. 1975, 63, 1499–1503. [Google Scholar] [CrossRef] [Green Version]
- Buch, V. Treatment of rigid bodies by diffusion Monte Carlo: Application to the para-H2⋯H2O and ortho-H2⋯H2O clusters. J. Chem. Phys. 1992, 97, 726. [Google Scholar] [CrossRef]
- Barnett, R.N.; Whaley, K.B. Molecules in helium clusters: SF6HeN. J. Chem. Phys. 1993, 99, 9730. [Google Scholar] [CrossRef]
- Bačíc, Z.; Gerber, R.B.; Ratner, M.A. Vibrational levels and tunneling dynamics by the optimal coordinates, self-consistent field method: A study of hydrocyanic acid .dblarw. hydroisocyanic acid. J. Phys. Chem. 1986, 90, 3606. [Google Scholar] [CrossRef]
- Henderson, J.R.; Tennyson, J.; Sutcliffe, B.T. All the bound vibrational states of H3+: A reappraisal. J. Chem. Phys. 1993, 98, 7191. [Google Scholar] [CrossRef] [Green Version]
- Wright, N.J.; Hutson, J.M. Regular and irregular vibrational states: Localized anharmonic modes in Ar3. J. Chem. Phys. 1999, 110, 902. [Google Scholar] [CrossRef] [Green Version]
- Bowman, J.M. Self-consistent field energies and wavefunctions for coupled oscillators. J. Chem. Phys. 1978, 68, 608–610. [Google Scholar] [CrossRef]
- Gerber, R.; Ratner, M. A semiclassical self-consistent field (SC SCF) approximation for eigenvalues of coupled-vibration systems. Chem. Phys. Lett. 1979, 68, 195–198. [Google Scholar] [CrossRef]
- Gerber, R.B.; Ratner, M.A. Self-Consistent Field Methods for Vibrational Excitation in Polyatomic Systems. Adv. Chem. Phys. 1988, 70, 97–132. [Google Scholar]
- Jung, J.O.; Gerber, R.B. Vibrational wave functions and spectroscopy of (H2O)n, n = 2, 3, 4, 5: Vibrational self-consistent field with correlation corrections. J. Chem. Phys. 1996, 105, 10332–10348. [Google Scholar] [CrossRef]
- Barone, V.; Bloino, J.; Biczysko, M.; Santoro, F. Fully Integrated Approach to Compute Vibrationally Resolved Optical Spectra: From Small Molecules to Macrosystems. J. Chem. Theo. Comput. 2009, 5, 540–554. [Google Scholar] [CrossRef]
- Strobusch, D.; Scheurer, C. Hierarchical expansion of the kinetic energy operator in curvilinear coordinates for the vibrational self-consistent field method. J. Chem. Phys. 2011, 135, 124102. [Google Scholar] [CrossRef] [PubMed]
- Hudecová, J.; Profant, V.; Novotná, P.; Baumruk, V.; Urbanová, M.; Bouř, P. CH Stretching Region: Computational Modeling of Vibrational Optical Activity. J. Chem. Theory Comput. 2013, 9, 3096–3108. [Google Scholar] [CrossRef]
- Maiti, K.S. High Level ab Initio Potential Energy Surfaces and Vibrational Spectroscopy. Ph.D. Thesis, Technische Universität München, München, Germany, 2007. [Google Scholar]
- Maiti, K.S. Vibrational spectroscopy of Methyl benzoate. Phys. Chem. Chem. Phys. 2015, 17, 19735–19744. [Google Scholar] [CrossRef] [Green Version]
- Keçeli, M.; Hirata, S. Size-extensive vibrational self-consistent field method. J. Chem. Phys. 2011, 135, 134108. [Google Scholar] [CrossRef]
- Roy, T.K.; Gerber, R.B. Vibrational self-consistent field calculations for spectroscopy of biological molecules: New algorithmic developments and applications. Phys. Chem. Chem. Phys. 2013, 15, 9468–9492. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S. On the assignment of vibrational frequencies of Methyl and Ethyl Benzoate. Indian J. Phys. 1968, 42, 335–343. [Google Scholar]
- Zhang, Y.; Duan, Y.; Wang, T. Excited-state hydrogen-bonding dynamics of camphorsulfonic acid doped polyaniline: A theoretical study. Phys. Chem. Chem. Phys. 2014, 16, 26261–26265. [Google Scholar] [CrossRef] [Green Version]
- Tonannavar, J.; Chavan, Y.B.; Yenagi, J. (R)-(-)-2-Pyrrolidinemethanol: A combined experimental and DFT vibrational analysis of monomers, dimers and hydrogen bonding. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 2015, 149, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Maiti, K.S.; Scheurer, C. Basis Set Extrapolation for the High Resolution Spectroscopy. J. Chem. Chem. Eng. 2013, 7, 1100–1110. [Google Scholar] [CrossRef]
- Woywod, C.; Roy, S.; Maiti, K.S.; Ruud, K. An efficient pseudo-spectral method for the description of atomic electronic wave functions—Application to the hydrogen atom in a uniform magnetic field. Chem. Phys. 2018, 515, 299–314. [Google Scholar] [CrossRef]
- Rauhut, G. Efficient calculation of potential energy for the generation of vibrational wave functions. J. Chem. Phys. 2004, 121, 9313. [Google Scholar] [CrossRef]
- Maiti, K.S.; Apolonski, A. Monitoring the Reaction of the Body State to Antibiotic Treatment against Helicobacter pylori via Infrared Spectroscopy: A Case Study. Molecules 2021, 26, 3474. [Google Scholar] [CrossRef] [PubMed]
- Bulkin, B.J.; Krishnamachari, N. Vibrational spectra of liquid crystals. IV. Infrared and raman spectra of phospholipid-water mixtures. J. Am. Chem. Soc. 1972, 94, 1109–1112. [Google Scholar] [CrossRef] [PubMed]
- Snyder, R.; Hsu, S.; Krimm, S. Vibrational spectra in the C-H stretching region and the structure of the polymethylene chain. Spectrochim. Acta Part A Mol. Spectrosc. 1978, 34, 395–406. [Google Scholar] [CrossRef] [Green Version]
- Jamin, N.; Dumas, P.; Moncuit, J.; Fridman, W.H.; Teillaud, J.L.; Carr, G.L.; Williams, G.P. Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry. Proc. Natl. Acad. Sci. USA 1998, 95, 4837–4840. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.X.; Xie, X.S. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science 2015, 350. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ishiyama, T.; Morita, A. Theoretical Investigation of C–H Vibrational Spectroscopy. 1. Modeling of Methyl and Methylene Groups of Ethanol with Different Conformers. J. Phys. Chem. A 2017, 121, 6687–6700. [Google Scholar] [CrossRef]
- Zheng, J.; Kwak, K.; Xie, J.; Fayer, M.D. Ultrafast Carbon-Carbon Single-Bond Rotational Isomerization in Room-Temperature Solution. Science 2006, 313, 1951–1955. [Google Scholar] [CrossRef] [Green Version]
- Maiti, K.S. Ultrafast vibrational coupling between C–H and C=O band of cyclic amide 2-Pyrrolidinone revealed by 2DIR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 228, 117749. [Google Scholar] [CrossRef]
- Potma, E.O.; Xie, X.S. CARS Microscopy for Biology and Medicine. Opt. Photon. News 2004, 15, 40–45. [Google Scholar] [CrossRef]
- Apolonski, A.; Maiti, K.S. Towards a standard operating procedure for revealing hidden volatile organic compounds in breath. The FTIR spectroscopy case. Appl. Opt. 2021, 60, 4217. [Google Scholar] [CrossRef]
- Maiti, K.S.; Fill, E.; Strittmatter, F.; Volz, Y.; Sroka, R.; Apolonski, A. Accurate diagnosis of prostate cancer via infrared spectroscopy of breath. In Proceedings of the 2021 European Conferences on Biomedical Optics (ECBO), Virtual, 20–24 June 2021; p. ETu1A.3. [Google Scholar]
- Faiman, R.; Larsson, K. Assignment of the C–H stretching vibrational frequencies in the Raman spectra of lipids. J. Raman Spectrosc. 1976, 4, 387–394. [Google Scholar] [CrossRef]
- Yu, Y.; Lin, K.; Zhou, X.; Wang, H.; Liu, S.; Ma, X. New C–H Stretching Vibrational Spectral Features in the Raman Spectra of Gaseous and Liquid Ethanol. J. Phys. Chem. C 2007, 111, 8971–8978. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Maiti, K.S. Structural sensitivity of CH vibrational band in methyl benzoate. Spectrochim. Acta Mol. Biomol. Spectrosc. 2018, 196, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Peuker, S.; Andersson, H.; Gustavsson, E.; Maiti, K.S.; Kania, R.; Karim, A.; Niebling, S.; Pedersen, A.; Erdelyi, M.; Westenhoff, S. Efficient Isotope Editing of Proteins for Site-Directed Vibrational Spectroscopy. J. Am. Chem. Soc. 2016, 138, 2312–2318. [Google Scholar] [CrossRef] [PubMed]
- Bredenbeck, J.; Helbing, J.; Behrendt, R.; Renner, C.; Moroder, L.; Wachtveitl, J.; Hamm, P. Transient 2D-IR spectroscopy: Snapshots of the nonequilibrium Ensemble during the Picosecond Conformational Transition of a Small Peptide. J. Phys. Chem. B 2003, 107, 8654–8660. [Google Scholar] [CrossRef]
- Anna, J.M.; Baiz, C.R.; Ross, M.R.; McCanne, R.; Kubarych, K.J. Ultrafast equilibrium and non-equilibrium chemical reaction dynamics probed with multidimensional infrared spectroscopy. Int. Rev. Phys. Chem. 2012, 31, 367–419. [Google Scholar] [CrossRef]
- Gallagher Faeder, S.M.; Jonas, D.M. Two-dimensional electronic correlation and relaxation spectra: Theory and model calculation. J. Phys. Chem. A 1999, 103, 10489–10505. [Google Scholar] [CrossRef]
- Khalil, M.; Demirdöven, N.; Tokmakoff, A. Coherent 2D IR Spectroscopy: Molecular Structure and Dynamics in Solution. J. Phys. Chem. A 2003, 107, 5258–5279. [Google Scholar] [CrossRef]
- Asplund, M.C.; Zanni, M.T.; Hochstrasser, R.M. Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes. Proc. Natl. Acad. Sci. USA 2000, 97, 8219–8224. [Google Scholar] [CrossRef] [Green Version]
- Rubtsov, I.V.; Wang, J.P.; Hochstrasser, R.M. Dual-frequency 2D-IR spectroscopy heterodyned photon echo of peptide bond. Proc. Natl. Acad. Sci. USA 2003, 100, 5601–5606. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Hochstrasser, R.M. Applications of 2D IR Spectroscopy to Peptides, Proteins, and Hydrogen-Bond Dynamics. J. Phys. Chem. B 2009, 113, 8231–8251. [Google Scholar] [CrossRef] [Green Version]
- Kania, R.; Stewart, A.I.; Clark, I.P.; Greetham, G.M.; Parker, A.W.; Towrie, M.; Hunt, N.T. Investigating the vibrational dynamics of a 17e- metallocarbonyl intermediate using ultrafast two-dimensional infrared spectroscopy. Phys. Chem. Chem. Phys. 2010, 12, 1051–1063. [Google Scholar] [CrossRef]
- Maiti, K.S. Broadband two-dimensional infrared spectroscopy of cyclic amide 2-Pyrrolidinone. Phys. Chem. Chem. Phys. 2015, 17, 24998–25003. [Google Scholar] [CrossRef]
- Weiner, A.M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 2000, 71, 1929–1960. [Google Scholar] [CrossRef]
- Shim, S.; Zanni, M. How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping. Phys. Chem. Chem. Phys. 2009, 11, 748–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.S.; Hochstrasser, R.M. Comparison of linear and 2D IR spectra in the presence of fast exchange. J. Phys. Chem. B 2006, 110, 8531–8534. [Google Scholar] [CrossRef] [Green Version]
- Fayer, M.D. (Ed.) Ultrafast Infrared Vibrational Spectroscopy; CRC Press: New York, NY, USA; London, UK, 2013. [Google Scholar]
- Lepetit, L.; Chériaux, G.; Joffre, M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B 1995, 12, 2467–2474. [Google Scholar] [CrossRef]
- Likforman, J.P.; Joffre, M.; Thierry-Mieg, V. Measurement of photon echoes by use of femtosecond Fourier-transform spectral interferometry. Opt. Lett. 1997, 22, 1104–1106. [Google Scholar] [CrossRef] [PubMed]
- de Boeij, W.P.; Pshenichnikov, M.S.; Wiersma, D.A. Heterodyne-detected stimulated photon echo: Applications to optical dynamics in solution. Chem. Phys. 1998, 233, 287–309. [Google Scholar] [CrossRef] [Green Version]
- Shim, S.H.; Strasfeld, D.B.; Zanni, M.T. Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses. Opt. Express 2006, 14, 13120–13130. [Google Scholar] [CrossRef] [PubMed]
- DeFlores, L.P.; Nicodemus, R.A.; Tokmakoff, A. Two-dimensional Fourier transform spectroscopy in the pump-probe geometry. Opt. Lett. 2007, 32, 2966–2968. [Google Scholar] [CrossRef] [PubMed]
- Maiti, K.S. Ultrafast N–H vibrational dynamics of hydrogen-bonded cyclic amide reveal by 2DIR spectroscopy. Chem. Phys. 2018, 515, 509–512. [Google Scholar] [CrossRef]
- Krimm, S.; Bandekar, J. Vibrational Spectroscopy and Conformation of Peptides, Polypeptides, and Proteins. In Advances in Protein Chemistry; Academic Press: Cambridge, MA, USA, 1986; Volume 38, pp. 181–364. [Google Scholar] [CrossRef]
- Rubtsov, I.V.; Wang, J.; Hochstrasser, R.M. Vibrational Coupling between Amide-I and Amide-A Modes Revealed by Femtosecond Two Color Infrared Spectroscopy. J. Phys. Chem. A 2003, 107, 3384–3396. [Google Scholar] [CrossRef]
- Baiz, C.R.; Reppert, M.; Tokmakoff, A. Amide I Two-Dimensional Infrared Spectroscopy: Methods for Visualizing the Vibrational Structure of Large Proteins. J. Phys. Chem. A 2013, 117, 5955–5961. [Google Scholar] [CrossRef]
- Roy, S.; Lessing, J.; Meisl, G.; Ganim, Z.; Tokmakoff, A.; Knoester, J.; Jansen, T.L.C. Solvent and conformation dependence of amide I vibrations in peptides and proteins containing proline. J. Chem. Phys. 2011, 135, 234507. [Google Scholar] [CrossRef] [Green Version]
- Wahl, M.C.; Sundaralingam, M. C-H⋯O hydrogen bonding in biology. Trends Biochem. Sci. 1997, 22, 97–102. [Google Scholar] [CrossRef]
- Steinel, T.; Asbury, J.B.; Zheng, J.; Fayer, M.D. Watching Hydrogen Bonds Break: A Transient Absorption Study of Water. J. Phys. Chem. A 2004, 108, 10957–10964. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Kuhlman, B.; Kortemme, T.; Baker, D. A “solvated rotamer” approach to modeling water-mediated hydrogen bonds at protein–protein interfaces. Proteins Struct. Funct. Bioinform. 2005, 58, 893–904. [Google Scholar] [CrossRef]
- Bagchi, B. Water Dynamics in the Hydration Layer around Proteins and Micelles. Chem. Rev. 2005, 105, 3197–3219. [Google Scholar] [CrossRef]
- Kabsch, W.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22, 2577–2637. [Google Scholar] [CrossRef]
- DeFlores, L.P.; Ganim, Z.; Nicodemus, R.A.; Tokmakoff, A. Amide I’–II’ 2D IR Spectroscopy Provides Enhanced Protein Secondary Structural Sensitivity. J. Am. Chem. Soc. 2009, 131, 3385–3391. [Google Scholar] [CrossRef]
- Ganim, Z.; Chung, H.S.; Smith, A.W.; DeFlores, L.P.; Jones, K.C.; Tokmakoff, A. Amide I Two-Dimensional Infrared Spectroscopy of Proteins. Acc. Chem. Res. 2008, 41, 432–441. [Google Scholar] [CrossRef]
- Arrondo, J.L.R.; Goñi, F.M. Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog. Biophys. Mol. Biol. 1999, 72, 367–405. [Google Scholar] [CrossRef]
- Kong, J.; Yu, S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef] [Green Version]
- de Campos Vidal, B.; Mello, M.L.S. Collagen type I amide I band infrared spectroscopy. Micron 2011, 42, 283–289. [Google Scholar] [CrossRef]
- Fellows, A.P.; Casford, M.T.; Davies, P.B. Spectral Analysis and Deconvolution of the Amide I Band of Proteins Presenting with High-Frequency Noise and Baseline Shifts. Appl. Spectrosc. 2020, 74, 597–615. [Google Scholar] [CrossRef] [PubMed]
- Sobolewski, A.L.; Domcke, W. The chemical physics of the photostability of life. Europhys. News 2006, 37, 20–23. [Google Scholar] [CrossRef] [Green Version]
- Sobolewski, A.L.; Domcke, W. Computational Studies of the Photophysics of Hydrogen-Bonded Molecular Systems. J. Phys. Chem. A 2007, 111, 11725–11735. [Google Scholar] [CrossRef]
- Gnanakaran, S.; Hochstrasser, R.M. Conformational Preferences and Vibrational Frequency Distributions of Short Peptides in Relation to Multidimensional Infrared Spectroscopy. J. Am. Chem. Soc. 2001, 123, 12886–12898. [Google Scholar] [CrossRef]
- Levy, Y.; Onuchic, J.N. Water mediation in protein folding and molecular recognition. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 389–415. [Google Scholar] [CrossRef] [Green Version]
- Domcke, W.; Sobolewski, A.L. Peptide deactivation: Spectroscopy meets theory. Nat. Chem. 2013, 5, 257–258. [Google Scholar] [CrossRef]
- Nibbering, E.T.J.; Elsaesser, T. Ultrafast Vibrational Dynamics of Hydrogen Bonds in the Condensed Phase. Chem. Rev. 2004, 104, 1887–1914. [Google Scholar] [CrossRef] [PubMed]
- Kolano, C.; Helbing, J.; Kozinski, M.; Sander, W.; Hamm, P. Watching hydrogen-bond dynamics in a beta-turn by transient two-dimensional infrared spectroscopy. Nature 2006, 444, 469–472. [Google Scholar] [CrossRef]
- Röttger, K.; Schwalb, N.K.; Temps, F. Electronic Deactivation of Guanosine in Extended Hydrogen-Bonded Self-Assemblies. J. Phys. Chem. A 2013, 117, 2469–2478. [Google Scholar] [CrossRef]
- Kim, Y.S.; Hochstrasser, R.M. Chemical exchange 2D IR of hydrogen-bond making and breaking. Proc. Natl. Acad. Sci. USA 2005, 102, 11185–11190. [Google Scholar] [CrossRef] [Green Version]
- Fayer, M.D.; Levinger, N.E. Analysis of Water in Confined Geometries and at Interfaces. Annu. Rev. Anal. Chem. 2010, 3, 89–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moilanen, D.E.; Wong, D.; Rosenfeld, D.E.; Fenn, E.E.; Fayer, M.D. Ion–water hydrogen-bond switching observed with 2D IR vibrational echo chemical exchange spectroscopy. Proc. Natl. Acad. Sci. USA 2009, 106, 375–380. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.K.; Li, R.D.; Kim, C.; Kumar, P. Traveling-wave optical parametric amplifier: Investigation of its phase-sensitive and phase-insensitive gain response. J. Opt. Soc. Am. B 1997, 14, 1564–1575. [Google Scholar] [CrossRef]
- Manzoni, C.; Polli, D.; Cerullo, G. Two-color pump-probe system broadly tunable over the visible and the near infrared with sub-30 fs temporal resolution. Rev. Sci. Inst. 2006, 77, 023103. [Google Scholar] [CrossRef]
- Thämer, M.; Marco, L.D.; Ramasesha, K.; Mandaland, A.; Tokmakoff, A. Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science 2015, 350, 78–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubtsov, I.V.; Wang, J.; Hochstrasser, R.M. Dual frequency 2D-IR of peptide amide-A and amide-I modes. J. Chem. Phys. 2003, 118, 7733–7736. [Google Scholar] [CrossRef]
- Kumar, K.; Sinks, L.E.; Wang, J.; Kim, Y.S.; Hochstrasser, R.M. Coupling between C–D and CO motions using dual-frequency 2D IR photon echo spectroscopy. Chem. Phys. Lett. 2006, 432, 122–127. [Google Scholar] [CrossRef]
- Anna, J.M.; King, J.T.; Kubarych, K.J. Multiple Structures and Dynamics of [CpRu(CO)2]2 and [CpFe(CO)2]2 in Solution Revealed with Two-Dimensional Infrared Spectroscopy. Inorg. Chem. 2011, 50, 9273–9283. [Google Scholar] [CrossRef]
- Yang, F.; Zhao, J.; Wang, J. Two-Dimensional Infrared Study of 13C-Natural Abundant Vibrational Transition Reveals Intramolecular Vibrational Redistribution Rather than Fluxional Exchange in Mn(CO)5Br. J. Phys. Chem. B 2016, 120, 1304–1311. [Google Scholar] [CrossRef] [PubMed]
- Ganim, Z.; Tokmakoff, A.; Vaziri, A. Vibrational excitons in ionophores: Experimental probes for quantum coherence-assisted ion transport and selectivity in ion channels. New J. Phys. 2011, 13, 113030. [Google Scholar] [CrossRef]
- Elsaesser, T. Two-Dimensional Infrared Spectroscopy of Intermolecular Hydrogen Bonds in the Condensed Phase. Acc. Chem. Res. 2009, 42, 1220–1228. [Google Scholar] [CrossRef] [PubMed]
- Woutersen, S.; Mu, Y.; Stock, G.; Hamm, P. Hydrogen-bond lifetime measured by time-resolved 2D-IR spectroscopy: N-methylacetamide in methanol. Chem. Phys. 2001, 266, 137–147. [Google Scholar] [CrossRef]
Mode | Frequency in cm | Assignment a | |||
---|---|---|---|---|---|
Harmonic | Diagonal | Experiment | Pair Coupling | ||
41 | 3092 | 3059 | 2998 | 2989 | methyl C-H ss |
42 | 3183 | 3255 | 2543 | 2550 | methyl C-H as |
43 | 3205 | 3208 | 2905 | 2889 | phenyl C-H as |
44 | 2341 | 2338 | 2185 | 2189 | phenyl C-D as |
45 | 3217 | 3213 | 2845 | 2832 | methyl C-H ss |
46 | 3222 | 3233 | 2954 | 2957 | phenyl C-H as |
47 | 3226 | 3191 | 3064 | 3065 | phenyl C-H as |
48 | 3238 | 3161 | 3022 | 3017 | phenyl C-H as |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maiti, K.S. Two-dimensional Infrared Spectroscopy Reveals Better Insights of Structure and Dynamics of Protein. Molecules 2021, 26, 6893. https://doi.org/10.3390/molecules26226893
Maiti KS. Two-dimensional Infrared Spectroscopy Reveals Better Insights of Structure and Dynamics of Protein. Molecules. 2021; 26(22):6893. https://doi.org/10.3390/molecules26226893
Chicago/Turabian StyleMaiti, Kiran Sankar. 2021. "Two-dimensional Infrared Spectroscopy Reveals Better Insights of Structure and Dynamics of Protein" Molecules 26, no. 22: 6893. https://doi.org/10.3390/molecules26226893
APA StyleMaiti, K. S. (2021). Two-dimensional Infrared Spectroscopy Reveals Better Insights of Structure and Dynamics of Protein. Molecules, 26(22), 6893. https://doi.org/10.3390/molecules26226893