Determination of Benzophenones in Water and Cosmetics Samples: A Comparison of Solid-Phase Extraction and Microextraction by Packed Sorbent Methods
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of SPE Conditions
2.2. Optimization of MEPS Conditions
2.3. Application of SPE and MEPS Methods for the Quantitative Determination of BP-3 in Cosmetics Samples
3. Materials and Methods
3.1. Materials and Reagents
3.2. Standard Solutions
3.3. SPE Procedure
3.4. MEPS Procedure
3.5. GC Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Negreira, N.; Rodríguez, I.; Ramil, M.; Rubí, E.; Cela, R. Solid-phase extraction followed by liquid chromatography-tandem mass spectrometry for the determination of hydroxylated benzophenone UV absorbers in environmental water samples. Anal. Chim. Acta 2009, 654, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Vela-Soria, F.; Ballesteros, O.; Zafra-Gómez, A.; Ballesteros, L.; Navalón, A. A new method for the determination of benzophenone-UV filters in human serum samples by dispersive liquid–liquid microextraction with liquid chromatography–tandem mass spectrometry. Talanta 2014, 121, 97–104. [Google Scholar] [CrossRef]
- Felix, T.; Hall, B.J.; Brodbelt, J.S. Determination of benzophenone-3 and metabolites in water and human urine by solid-phase microextraction and quadrupole ion trap GC-MS. Anal. Chim. Acta 1998, 371, 195–203. [Google Scholar] [CrossRef]
- Teglia, C.M.; Santamaría, C.G.; Rodriguez, H.A.; Culzoni, M.J.; Goicoeche, H.C. Determination of 2-hydroxy-4-methoxybenzophenone in mice serum and human plasma by ultra-high-performance liquid chromatography enhanced by chemometrics. Microchem. J. 2019, 148, 35–41. [Google Scholar] [CrossRef]
- Zhang, H.; Kee Lee, H. Simultaneous determination of ultraviolet filters in aqueous samples by plunger-in-needle solid-phase microextraction with graphene-based sol–gel coating as sorbent coupled with gas chromatography–mass spectrometry. Anal. Chim. Acta 2012, 742, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Tarazona, I.; Chisvert, A.; León, Z.; Salvador, A. Determination of hydroxylated benzophenone UV filters in sea water samples by dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. J. Chromatogr. A 2010, 1217, 4771–4778. [Google Scholar] [CrossRef]
- Kim, S.; Choi, K. Occurrences, toxicities, and ecological risk of benzophenone-3, a common component of organic sunscreen products: A mini-review. Environ. Int. 2014, 70, 143–157. [Google Scholar] [CrossRef]
- Vidal, L.; Chisvert, A.; Canalsa, A.; Salvador, A. Ionic liquid-based single-drop microextraction followed by liquid chromatography-ultraviolet spectrophotometry detection to determine typical UV filters in surface water samples. Talanta 2010, 81, 549–555. [Google Scholar] [CrossRef]
- Guo, Q.; Wei, D.; Zhao, H.; Du, Y. Predicted no-effect concentrations determination and ecological risk assessment for benzophenone-type UV filters in aquatic environment. Environ. Pollut. 2020, 256, 113460. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Chang, J.-P.; Chen, H.-C.; Huang, Y.-M. Simultaneous trace analysis of 10 benzophenone-type ultraviolet filters in fish through liquid chromatography–tandem mass spectrometry. Environ. Pollut. 2021, 286, 110376. [Google Scholar] [CrossRef]
- Gackowska, A.; Studziński, W.; Gaca, J. Effect of sodium hypochlorite on conversions of octyl-dimethyl-para-aminobenzoic acid. Desalina. Water Treat. 2016, 57, 1429–1435. [Google Scholar] [CrossRef]
- Gackowska, A.; Studziński, W.; Gaca, J.; Przybyłek, M. Formation of chlorinated breakdown products during degradation of sunscreen agent, 2-ethylhexyl-4-methoxycinnamate in the presence of sodium hypochlorite. Environ. Sci. Pollut. Res. 2016, 23, 1886–1897. [Google Scholar] [CrossRef] [Green Version]
- Narloch, I.; Wejnerowska, G. An overview of the analytical methods for the determination of organic ultraviolet filters in cosmetic products and human samples. Molecules 2021, 26, 4780. [Google Scholar] [CrossRef]
- Wang, S.P.; Lee, W.T. Determination of benzophenones in a cosmetic matrix by supercritical fluid extraction and capillary electrophoresis. J. Chromatogr. A 2003, 987, 269–275. [Google Scholar] [CrossRef]
- Da Silva, A.P.; Trindale, M.A.G.; Ferreira, V.S. Polarographic determination of sunscreen agents in cosmetic products in micellar media. Talanta 2006, 68, 679–685. [Google Scholar] [CrossRef]
- Jeon, H.K.; Chung, Y.; Ryu, J.C. Simultaneous determination of benzophenone-type UV filters in water and soil by gas chromatography-mass spectrometry. J. Chromatogr. A 2006, 1131, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Lambropoulou, D.A.; Giokas, G.L.; Sakkas, V.A.; Albanis, T.A.; Karayannis, M.I. Gas chromatographic determination of 2-hydroxy-4-methoxybenzophenone and octyldimethyl-p-aminobennzoic acid sunscreen agents in swimming pool and bathing waters by solid-phase microextraction. J. Chromatogr. A 2002, 967, 243–253. [Google Scholar] [CrossRef]
- Giokas, D.L.; Sakkas, V.A.; Albanis, T.A. Determination of residues of UV filters in natural waters by solid-phase extraction coupled to liquid chromatography-photodiode array detection and gas chromatography-mass spectrometry. J. Chromatogr. A 2004, 1026, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.C.; Ding, W.H. Solid-phase extraction coupled simple on-line derivatization gas chromatography tandem mass spectrometry for the determination of benzophenone-type UV filters in aqueous samples. J. Chin. Chem. Soc. 2012, 59, 107–113. [Google Scholar] [CrossRef]
- Vila, M.; Celeiro, M.; Lamas, J.P.; Garcia-Jares, C.; Dagnac, T.; Llompart, M. Simultaneous in-vial acetylation solid phase microextraction followed by gas chromatography tandem mass spectrometry for the analysis of multiclass organic UV filters in water. J. Hazard. Mater. 2017, 323, 45–55. [Google Scholar] [CrossRef]
- Negreira, N.; Rodríguez, I.; Ramil, M.; Rubí, E.; Cela, R. Sensitive determination of salicylate and benzophenone type UV filters in water samples using solid-phase microextraction, derivatization and gas chromatography tandem mass spectrometry. Anal. Chim. Acta 2009, 638, 36–44. [Google Scholar] [CrossRef]
- Basaglia, G.; Pietrograde, M.C. Optimization of a SPME/GC/MS method for the simultaneous determination of pharmaceuticals and personal care products in waters. Chromatographia 2012, 75, 361–370. [Google Scholar] [CrossRef]
- Okanouchi, N.; Honda, H.; Ito, R.; Kawaguchi, M.; Saito, K.; Nakazawa, H. Determination of benzophenones in river-water samples using-drop-based liquid phase microextraction coupled with gas chromatography/mass spectrometry. Anal. Sci. 2008, 24, 627–630. [Google Scholar] [CrossRef] [Green Version]
- Cunha, S.C.; Pena, A.; Fernandes, J.O. Dispersive liquid-liquid microextraction followed by microwave-assisted silylation and gas chromatography-mass spectrometry analysis for simultaneous trace quantification of bisphenol A and 13 ultrafiolet filters in wastewaters. J. Chromatogr. A 2015, 1414, 10–21. [Google Scholar] [CrossRef]
- Liao, F.Y.; Su, Y.L.; Weng, J.R.; Lin, Y.C.; Feng, C.H. Ultrasound–vortex-assisted dispersive liquid–liquid microextraction combined with high performance liquid chromatography–diode array detection for determining UV filters in cosmetics and the human stratum corneum. Molecules 2020, 25, 4642. [Google Scholar] [CrossRef]
- Wu, J.W.; Chen, H.C.; Ding, W.H. Ultrasound-assisted dispersive liquid-liquid microextraction plus simultaneous silylation for rapid determination of salicylate and benzophenone-type ultraviolet filters in aqueous samples. J. Chromatogr. A 2013, 1302, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, M.; Ito, R.; Endo, N.; Sakui, N.; Okanouchi, N.; Saito, K.; Sato, N.; Shiozaki, T.; Nakazawa, H. Stir bar sorptive extraction and thermal desorption-gas chromatography-mass spectrometry for trace analysis of benzophenone and its derivatives in water sample. Anal. Chim. Acta 2006, 557, 272–277. [Google Scholar] [CrossRef]
- Rodil, R.; Moeder, M. Development of a method for the determination of UV filters in water samples using stir bar sorptive extraction and thermal desorption-gas chromatography-mass spectrometry. J. Chromatogr. A 2008, 1179, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, M.; Ito, R.; Honda, H.; Endo, N.; Okanouchi, N.; Saito, K.; Seto, Y.; Nakazawa, H. Simultaneous analysis of benzophenone sunscreen compounds in water sample by stir bar sorptive extraction with in situ derivatization and thermal desorption–gas chromatography mass spectrometry. J. Chromatogr. A 2008, 1200, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Gilart, N.; Miralles, N.; Marcé, R.M.; Borrull, F.; Fontanals, N. Novel coatings for stir bar sorptive extraction to determine pharmaceuticals and personal care products in environmental waters by liquid chromatography and tandem mass spectrometry. Anal. Chim. Acta 2013, 774, 51–60. [Google Scholar] [CrossRef]
- Pintado-Herrera, M.G.; González-Mazo, E.; Lara-Martín, P.A. Environmentally friendly analysis of emerging contaminants by pressurized hot water extraction–stir bar sorptive extraction–derivatization and gas chromatography–mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Moeder, M.; Schrader, S.; Winkler, U.; Rodil, R. At-line microextraction by packed sorbent-gas chromatography-mass spectrometry for the determination of UV filter and polycyclic musk compounds in water samples. J. Chromatogr. A 2010, 1217, 2925–2932. [Google Scholar] [CrossRef] [PubMed]
- Noche, G.G.; Laespada, M.E.F.; Pavón, J.L.P.; Cordero, B.M.; Lorenzo, S.M. Determination of chlorobenzenes in water samples based on fully automated microextraction by packed sorbent coupled with programmed temperature vaporization-gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 2013, 105, 6739–6748. [Google Scholar] [CrossRef]
- Benedé, J.L.; Chisvert, A.; Giokas, D.L.; Salvador, A. Determination of ultraviolet filters in bathing waters by stir bar sorptive-dispersive microextraction coupled to thermal desorption-gas chromatography- mass spectrometry. Talanta 2016, 147, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.H.; Tzing, S.H.; Ding, W.H. Optimization of dispersive micro solid-phase extraction for the rapid determination of benzophenone-type UV absorbers in aqueous samples. J. Chromatogr. A 2015, 1411, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Celeiro, M.; Acerbi, R.; Kabir, A.; Furton, K.G.; Llompart, M. Development of an analytical methodology based on fabric phase sorptive extraction followed by gas chromatography-tandem mass spectrometry to determine UV filters in environmental and recreational waters. Anal. Chim. Acta X 2020, 4, 100038. [Google Scholar] [CrossRef]
- Vila, M.; Lamas, J.P.; Garcia-Jares, C.; Dagnac, T.; Llompart, M. Optimization of an analytical methodology for the simultaneous determination of different classes of ultraviolet filters in cosmetics by pressurized liquid extraction–gas chromatography tandem mass spectrometry. J. Chromatogr. A 2015, 1405, 12–22. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, P.G.; Wittenberg, J.B.; Rua, D.; Krynitsky, A.J. Simultaneous determination of cosmetics ingredients in nail products by fast gas chromatography with tandem mass spectrometry. J. Chromatogr. A 2016, 1446, 134–140. [Google Scholar] [CrossRef] [PubMed]
Analytes | SPE | MEPS | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intra-Day (RSD, %) (n = 6) | Inter-Day. (RSD, %) (n = 6) | LOD b, (µg/L) | Recovery a, (%) | EF c | Intra-Day (RSD, %) (n = 6) | Inter-Day (RSD, %) (n = 6) | LOD b, (µg/L) | Recovery a, (%) | EF d | |||||
5.0 (µg L−1) | 50.0 (µg L−1) | 5.0 (µg L−1) | 50.0 (µg L−1) | 5.0 (µg L−1) | 50.0 (µg L−1) | 5.0 (µg L−1) | 50.0 (µg L−1) | |||||||
BP-1 | 9.0 | 7.7 | 10.8 | 8.0 | 0.034 | 101 | 1010 | 14.2 | 7.6 | 18.8 | 11.2 | 1.8 | 96 | 20 |
BP-3 | 8.2 | 11.2 | 8.6 | 11.0 | 0.050 | 105 | 1050 | 11.8 | 4.0 | 14.8 | 6.6 | 2.9 | 90 | 18 |
BP-8 | 11.8 | 11.0 | 10.9 | 13.4 | 0.067 | 107 | 1070 | 15.6 | 6.6 | 17.2 | 9.6 | 3.2 | 106 | 21 |
Sample Preparation Technique | Matrix | LOD (ng L−1) | R (%) | RSD (%) | SAV a (mL) | SOV b (mL) | ET c (min) | EF | Reference |
---|---|---|---|---|---|---|---|---|---|
SPE-GC-MS/MS | water | 0.3–1.0 | 67–73 | 1.8–3.0 | 100 | 6.1 | - | 700 | [17] |
SPE-GC-MS | water | 3 | 95–97 | 5 | 500 | 20 | 60 | 50,000 | [18] |
MEPS-GC-MS | water | 44.0–53.0 | 95–109 | 4–8 | 0.8 | 2 | - | 16 | [32] |
(DI)SPME-GC-MS/MS | water | 0.15–3.0 | 80–115 | 6–13 | 10 | - | 30 | - | [21] |
(HS)SPME-GC-MS | water | 9.0 | - | <20% | 40 | - | 125 | - | [22] |
(DI)SPME-GC-MS/MS | water | 0.3–8.2 | 80–103 | 8.4–11 | 10 | - | 30 | - | [20] |
SBSE-LD-GC-MS | water, wastewater | 2.0 | 28 | 1.3 | 100 | 0.2 | 510 | 140 | [31] |
SBSE-TD-GC-MS | water, wastewater | 11.0 | 63 | 12–15 | 20 | - | 180 | - | [28] |
(DI)µ-SPE-GC-MS | water | 0.5–2.0 | 85–96 | 4–9 | 10 | - | 10 | - | [35] |
SBSDµE-GC-MS | water | 148 | 80–116 | <12 | 25 | - | 50 | - | [34] |
FPSE-GC-MS/MS | water | 4.5 | 88–110 | 9.2–12.0 | 30 | 20 | 3 | - | [36] |
MEPS-GC-MS | water | 1.8–3.2 | 90–106 | 4.0–16 | 2 | 2 | 10 | 20 | proposed method |
Analytes | SPE | MEPS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Intra-Day (RSD, %) (n = 6) | Inter-Day (RSD, %) (n = 6) | Recovery (%) | Intra-Day (RSD, %) (n = 6) | Inter-Day (RSD, %) (n = 6) | Recovery (%) | |||||||
BP-3 | 11.5 a | 12.4 b | 13.8 a | 14.0 b | 69.5 a | 58.2 b | 3.9 a | 14.4 b | 6.6 a | 15.5 b | 69.7 a | 44.0 b |
Analyte | SPE Mean ± s1 (%) | MEPS Mean ± s2 (%) | F Ratio (Fcr) | t-Values (tcr) |
---|---|---|---|---|
BP-3 | 0.059 ± 0.006 | 0.065 ± 0.004 | 2.25 (19.00) | 1.440 (2.78) |
Sample Preparation Technique | LOD (%) | R (%) | RSD (%) | SAV a (mL) | SOV b (mL) | ET c (min) | Reference |
---|---|---|---|---|---|---|---|
GC-MS/MS | 0.0018–0.27 | 101–105 | 0.69–1.13 | 0.1 g | 0.7 | 40 | [38] |
PLE-GC-MS/MS | 0.01–0.046 | 51.9–87.6 | 6.4–8.8 | 0.1 g | 10 | 10 | [37] |
SPE-GC-MS | 0.0003 | 58–70 | 12 | 0.1 g | 15.5 | 60 | proposed method |
MEPS-GC-MS | 0.001 | 44–70 | 14 | 0.3 g | 2 | 15–30 | proposed method |
Analyte | Molecular Formula | CAS Number | Structure | Log Kow | pKa |
---|---|---|---|---|---|
2,4-dihydoxybenophenone (BP-1) | C13H10O3 | 131–56-6 | 2.96 | 7.1 | |
2-hydroxy-4-methoxybenophenone (BP-3) | C14H12O3 | 131-57-7 | 3.79 | 7.56 | |
2,2′-dihydroxy-4-methoxybenzophenone (BP-8) | C14H12O4 | 131-53-3 | 3.82 | 6.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wejnerowska, G.; Narloch, I. Determination of Benzophenones in Water and Cosmetics Samples: A Comparison of Solid-Phase Extraction and Microextraction by Packed Sorbent Methods. Molecules 2021, 26, 6896. https://doi.org/10.3390/molecules26226896
Wejnerowska G, Narloch I. Determination of Benzophenones in Water and Cosmetics Samples: A Comparison of Solid-Phase Extraction and Microextraction by Packed Sorbent Methods. Molecules. 2021; 26(22):6896. https://doi.org/10.3390/molecules26226896
Chicago/Turabian StyleWejnerowska, Grażyna, and Izabela Narloch. 2021. "Determination of Benzophenones in Water and Cosmetics Samples: A Comparison of Solid-Phase Extraction and Microextraction by Packed Sorbent Methods" Molecules 26, no. 22: 6896. https://doi.org/10.3390/molecules26226896
APA StyleWejnerowska, G., & Narloch, I. (2021). Determination of Benzophenones in Water and Cosmetics Samples: A Comparison of Solid-Phase Extraction and Microextraction by Packed Sorbent Methods. Molecules, 26(22), 6896. https://doi.org/10.3390/molecules26226896