Virtual Screening and Molecular Dynamics Simulation Study of Influenza Polymerase PB2 Inhibitors
Abstract
:1. Introduction
2. Results
2.1. Virtual Screening
2.1.1. Receptor Selection
2.1.2. Verification of the Docking Method Preparation
2.1.3. Virtual Screening, ADMET Property Prediction and Compound Selection
2.2. Biochemical Assays
2.2.1. Cytopathic Effect (CPE) Inhibition Assay and Cytotoxicity Assay
2.2.2. Surface Plasmon Resonance (SPR) Analysis
2.3. Molecular Dynamics (MD) Simulation and Analysis
2.3.1. MD Simulation Using Desmond
2.3.2. Representative Structures of the PB2 CBD/Ligand Complexes and Binding Free Energy Analysis by MM/GBSA
3. Discussion
3.1. The Screening Workflow
3.2. Analysis of PB2-Ligand Binding Model Based on Dynamic Simulation Results
3.3. Key Amino Acid Residues of PB2 CBD Analysis Based on Dynamic Simulation Results
4. Materials and Methods
4.1. Virtual Screening
4.1.1. Receptor Preparation
4.1.2. Glide-Grid Generation
4.1.3. Ligand Preparation
4.1.4. Structure-Based Virtual Screening of Compound Libraries
4.1.5. In Silico ADME Analysis and Compound Selection
4.2. Biological Evaluation
4.2.1. Cells and Viruses
4.2.2. CPE Inhibition Assay
4.2.3. Cytotoxicity Assay
4.2.4. Surface Plasmon Resonance (SPR) Analysis
4.3. Molecular Dynamics Simulation and Analysis
4.3.1. Molecular Dynamics Simulation
4.3.2. Interactions Analysis and Trajectory Clustering for MM/GBSA
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
Sample Availability
References
- Kendal, A.; Harmon, M.W. Orthomyxoviridae: The influenza viruses. In Laboratory Diagnosis of Infectious Diseases Principles and Practice; Springer: Berlin/Heidelberg, Germany, 1988; pp. 602–625. [Google Scholar]
- Zhou, Z.; Liu, T.; Zhang, J.; Zhan, P.; Liu, X. Influenza A virus polymerase: An attractive target for next-generation anti-influenza therapeutics. Drug Discov. Today 2018, 23, 503–518. [Google Scholar] [CrossRef] [PubMed]
- Hurt, A.C. Antiviral Therapy for the Next Influenza Pandemic. Trop. Med. Infect. Dis. 2019, 4, 67. [Google Scholar] [CrossRef] [PubMed]
- Moscona, A. Neuraminidase inhibitors for influenza. N. Engl. J. Med. 2005, 353, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
- Hayden, F.G.; Sugaya, N.; Hirotsu, N.; Lee, N.; de Jong, M.D.; Hurt, A.C.; Ishida, T.; Sekino, H.; Yamada, K.; Portsmouth, S.; et al. Baloxavir Marboxil for Uncomplicated Influenza in Adults and Adolescents. N. Engl. J. Med. 2018, 379, 913–923. [Google Scholar] [CrossRef]
- Bright, R.A.; Medina, M.-J.; Xu, X.; Perez-Oronoz, G.; Wallis, T.R.; Davis, X.M.; Povinelli, L.; Cox, N.J.; Klimov, A.I. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: A cause for concern. Lancet 2005, 366, 1175–1181. [Google Scholar] [CrossRef]
- Dharan, N.J.; Gubareva, L.V.; Meyer, J.J.; Okomo-Adhiambo, M.; McClinton, R.C.; Marshall, S.A.; St. George, K.; Epperson, S.; Brammer, L.; Klimov, A.I.; et al. Infections with Oseltamivir-Resistant Influenza A(H1N1) Virus in the United States. JAMA 2009, 301, 1034–1041. [Google Scholar] [CrossRef] [PubMed]
- Takashita, E.; Kawakami, C.; Ogawa, R.; Morita, H.; Fujisaki, S.; Shirakura, M.; Miura, H.; Nakamura, K.; Kishida, N.; Kuwahara, T. Influenza A (H3N2) virus exhibiting reduced susceptibility to baloxavir due to a polymerase acidic subunit I38T substitution detected from a hospitalised child without p rior baloxavir treatment, Japan, January 2019. Eurosurveillance 2019, 24, 1900170. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, T.M.; Te Velthuis, A.J. The RNA-dependent RNA polymerase of the influenza A virus. Future Virol. 2014, 9, 863–876. [Google Scholar] [CrossRef]
- Ferron, F.; Decroly, E.; Selisko, B.; Canard, B. The viral RNA capping machinery as a target for antiviral drugs. Antivir. Res. 2012, 96, 21–31. [Google Scholar] [CrossRef]
- Pflug, A.; Lukarska, M.; Resa-Infante, P.; Reich, S.; Cusack, S. Structural insights into RNA synthesis by the influenza virus transcription-replication machine. Virus Res. 2017, 234, 103–117. [Google Scholar] [CrossRef]
- Liu, M.; Lo, C.-Y.; Wang, G.; Chow, H.-F.; Ngo, J.C.-K.; Wan, D.C.-C.; Poon, L.L.-M.; Shaw, P.-C. Identification of influenza polymerase inhibitors targeting polymerase PB2 cap-binding domain through virtual screening. Antivir. Res. 2017, 144, 186–195. [Google Scholar] [CrossRef]
- Severin, C.; Rocha de Moura, T.; Liu, Y.; Li, K.; Zheng, X.; Luo, M. The cap-binding site of influenza virus protein PB2 as a drug target. Acta Crystallogr. Sect. D Struct. Biol. 2016, 72, 245–253. [Google Scholar] [CrossRef]
- Das, K.; Aramini, J.M.; Ma, L.-C.; Krug, R.M.; Arnold, E. Structures of influenza A proteins and insights into antiviral drug targets. Nat. Struct. Mol. Biol. 2010, 17, 530–538. [Google Scholar] [CrossRef]
- Mifsud, E.J.; Hayden, F.G.; Hurt, A.C. Antivirals targeting the polymerase complex of influenza viruses. Antivir. Res. 2019, 169, 104545. [Google Scholar] [CrossRef] [PubMed]
- Boyd, M.J.; Bandarage, U.K.; Bennett, H.; Byrn, R.R.; Davies, I.; Gu, W.; Jacobs, M.; Ledeboer, M.W.; Ledford, B.; Leeman, J.R.; et al. Isosteric replacements of the carboxylic acid of drug candidate VX-787: Effect of charge on antiviral potency and kinase activity of azaindole-based influenza PB2 inhibitors. Bioorganic Med. Chem. Lett. 2015, 25, 1990–1994. [Google Scholar] [CrossRef] [PubMed]
- McGowan, D.C.; Balemans, W.; Embrechts, W.; Motte, M.; Keown, J.R.; Buyck, C.; Corbera, J.; Funes, M.; Moreno, L.; Cooymans, L. Design, synthesis, and biological evaluation of novel indoles targeting the influenza PB2 cap binding region. J. Med. Chem. 2019, 62, 9680–9690. [Google Scholar] [CrossRef] [PubMed]
- Hooker, L.; Sully, R.; Handa, B.; Ono, N.; Koyano, H.; Klumpp, K. Quantitative analysis of influenza virus RNP interaction with RNA cap structures and comparison to human cap binding protein eIF4E. Biochemistry 2003, 42, 6234–6240. [Google Scholar] [CrossRef]
- Pautus, S.P.; Sehr, P.; Lewis, J.; Fortuneé, A.; Wolkerstorfer, A.; Szolar, O.; Guilligay, D.; Lunardi, T.; Deécout, J.-L.; Cusack, S. New 7-methylguanine derivatives targeting the influenza polymerase PB2 cap-binding domain. J. Med. Chem. 2013, 56, 8915–8930. [Google Scholar] [CrossRef]
- Shih, S.-R.; Chu, T.-Y.; Reddy, G.R.; Tseng, S.-N.; Chen, H.-L.; Tang, W.-F.; Wu, M.-S.; Yeh, J.-Y.; Chao, Y.-S.; Hsu, J.T. Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity. J. Biomed. Sci. 2010, 17, 13. [Google Scholar] [CrossRef]
- Hsu, J.T.-A.; Yeh, J.-Y.; Lin, T.-J.; Li, M.-L.; Wu, M.-S.; Hsieh, C.-F.; Chou, Y.C.; Tang, W.-F.; Lau, K.S.; Hung, H.-C. Identification of BPR3P0128 as an inhibitor of cap-snatching activities of influenza virus. Antimicrob. Agents Chemother. 2012, 56, 647–657. [Google Scholar] [CrossRef]
- Wang, J.; Chen, F.; Liu, Y.; Liu, Y.; Li, K.; Yang, X.; Liu, S.; Zhou, X.; Yang, J. Spirostaphylotrichin X from a marine-derived fungus as an anti-influenza agent targeting RNA polymerase PB2. J. Nat. Prod. 2018, 81, 2722–2730. [Google Scholar] [CrossRef]
- Liu, T.; Liu, M.; Chen, F.; Chen, F.; Tian, Y.; Huang, Q.; Liu, S.; Yang, J. A Small-Molecule Compound Has Anti-influenza A Virus Activity by Acting as a “PB2 Inhibitor”. Mol. Pharm. 2018, 15, 4110–4120. [Google Scholar] [CrossRef] [PubMed]
- Pflug, A.; Gaudon, S.; Resa-Infante, P.; Lethier, M.; Reich, S.; Schulze, W.M.; Cusack, S. Capped RNA primer binding to influenza polymerase and implications for the mechanism of cap-binding inhibitors. Nucleic Acids Res. 2018, 46, 956–971. [Google Scholar] [CrossRef]
- Massari, S.; Goracci, L.; Desantis, J.; Tabarrini, O. Polymerase Acidic Protein–Basic Protein 1 (PA–PB1) Protein–Protein Interaction as a Target for Next-Generation Anti-influenza Therapeutics. J. Med. Chem. 2016, 59, 7699–7718. [Google Scholar] [CrossRef]
- Bandarage, U.K.; Clark, M.P.; Perola, E.; Gao, H.; Jacobs, M.D.; Tsai, A.; Gillespie, J.; Kennedy, J.M.; Maltais, F.; Ledeboer, M.W.; et al. Novel 2-Substituted 7-Azaindole and 7-Azaindazole Analogues as Potential Antiviral Agents for the Treatment of Influenza. Acs Med. Chem. Lett. 2017, 8, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.P.; Ledeboer, M.W.; Davies, I.; Byrn, R.A.; Jones, S.M.; Perola, E.; Tsai, A.; Jacobs, M.; Nti-Addae, K.; Bandarage, U.K.; et al. Discovery of a novel, first-in-class, orally bioavailable azaindole inhibitor (VX-787) of influenza PB2. J. Med. Chem. 2014, 57, 6668–6678. [Google Scholar] [CrossRef]
- Ma, X.; Xie, L.; Wartchow, C.; Warne, R.; Xu, Y.; Rivkin, A.; Tully, D.; Shia, S.; Uehara, K.; Baldwin, D.M. Structural basis for therapeutic inhibition of influenza A polymerase PB2 subunit. Sci. Rep. 2017, 7, 9385. [Google Scholar] [CrossRef] [PubMed]
- Byrn, R.A.; Jones, S.M.; Bennett, H.B.; Bral, C.; Clark, M.P.; Jacobs, M.D.; Kwong, A.D.; Ledeboer, M.W.; Leeman, J.R.; McNeil, C.F.; et al. Preclinical activity of VX-787, a first-in-class, orally bioavailable inhibitor of the influenza virus polymerase PB2 subunit. Antimicrob. Agents Chemother. 2015, 59, 1569–1582. [Google Scholar] [CrossRef] [PubMed]
- Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, FL, USA, 11–17 November 2006; p. 43. [Google Scholar]
- Berendsen, H.J.; Postma, J.P.; van Gunsteren, W.F.; Hermans, J. Interaction models for water in relation to protein hydration. In Intermolecular Forces; Springer: Berlin/Heidelberg, Germany, 1981; pp. 331–342. [Google Scholar]
- Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J.M.; Lu, C.; Dahlgren, M.K.; Mondal, S.; Chen, W.; Wang, L. OPLS3e: Extending force field coverage for drug-like small molecules. J. Chem. Theory Comput. 2019, 15, 1863–1874. [Google Scholar] [CrossRef]
Compounds | Docking Score | Aqueous Solubility Level | ADMET Absorption Level | H1N1-IC50(μM) | H3N2-IC50(μM) | CC50 (μM) | SPR (Kd, (μM)) | MMGBSA ΔG Bind (kcal/mol) |
---|---|---|---|---|---|---|---|---|
OC | - | - | - | 0.95 | 0.01 | >100 | - | - |
VX-787 | −10.440 | - | - | 0.004 ± 0.001 | 0.09 ± 0.02 | >100 | 0.054 | −85.68 |
Str1614 | −9.321 | 2 | 2 | 26.27 ± 8.69 | 19.55 ± 0.93 | >100 | 0.081 | −87.36 |
Str1916 | −8.115 | 2 | 0 | 4.82 ± 3.03 | 16.97 ± 7.94 | >100 | 0.917 | −84.02 |
Str3107 | −9.993 | 3 | 0 | 18.18 ± 4.96 | 45.71 ± 3.01 | >100 | ND * | −72.63 |
Str5776 | −8.569 | 3 | 0 | 3.55 ± 1.23 | 2.51 ± 0.12 | >100 | 0.178 | −55.37 |
Str6318 | −7.389 | 3 | 0 | 28.62 ± 9.46 | 11.17 ± 3.39 | >100 | 1.530 | −57.71 |
Str7374 | −8.511 | 3 | 2 | 31.85 ± 8.15 | 55.43 ± 26.99 | >100 | 0.910 | −75.81 |
VX-787 | STR1614 | STR1916 | Str3107 | STR5776 | Str6318 | Str7374 | The Accumulation Value of Interaction Fractions Between Residues and Our Active Compounds (Number of Asterisks). | |
---|---|---|---|---|---|---|---|---|
Phe323 | *** | ** | * | ** | - | ** | • | *******(7) |
Ser324 | - | ** | - | - | • | - | **(2) | |
Phe325 | • | * | * | * | * | • | ****(4) | |
Arg332 | • | * | • | *** | **** | • | - | *******(7) |
Ser337 | • | * | • | * | - | - | - | *(7) |
Lys339 | ** | • | **** | * | * | *** | ** | ***********(11) |
Arg355 | **** | • | *** | ****** | ***** | *** | ******** | ************************************(25) |
His357 | **** | **** | * | **** | ** | ** | ** | ***************(15) |
Glu361 | ** | ** | - | ** | - | • | • | ****(4) |
Phe363 | ** | * | • | - | ** | - | • | ***(3) |
Lys376 | * | • | - | *** | - | ** | *****(5) | |
Phe404 | ** | ** | * | *** | ** | * | * | **********(10) |
Glu406 | - | ** | - | ** | * | • | * | ******(6) |
Asn429 | ** | ** | ** | • | • | * | • | *****(5) |
Met431 | * | - | * | • | * | * | * | ****(4) |
His432 | - | * | - | - | - | - | *(1) | |
Arg505 | - | - | • | * | •- | • | *(1) | |
Arg508 | • | * | ** | * | *** | - | - | *******(7) |
Asn510 | * | • | * | * | • | * | * | ***(3) |
Vla511 | *** | *** | * | ** | • | ** | * | *********(9) |
Ser514 | - | * | - | - | *(1) | |||
Glu516 | * | *(1) | ||||||
Glu517 | - | ** | • | **(2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, K.; Xu, L.; Hou, Y.; Zhang, Q.; Che, J.; Zhao, L.; Li, X. Virtual Screening and Molecular Dynamics Simulation Study of Influenza Polymerase PB2 Inhibitors. Molecules 2021, 26, 6944. https://doi.org/10.3390/molecules26226944
Zong K, Xu L, Hou Y, Zhang Q, Che J, Zhao L, Li X. Virtual Screening and Molecular Dynamics Simulation Study of Influenza Polymerase PB2 Inhibitors. Molecules. 2021; 26(22):6944. https://doi.org/10.3390/molecules26226944
Chicago/Turabian StyleZong, Keli, Lei Xu, Yuxin Hou, Qian Zhang, Jinjing Che, Lei Zhao, and Xingzhou Li. 2021. "Virtual Screening and Molecular Dynamics Simulation Study of Influenza Polymerase PB2 Inhibitors" Molecules 26, no. 22: 6944. https://doi.org/10.3390/molecules26226944
APA StyleZong, K., Xu, L., Hou, Y., Zhang, Q., Che, J., Zhao, L., & Li, X. (2021). Virtual Screening and Molecular Dynamics Simulation Study of Influenza Polymerase PB2 Inhibitors. Molecules, 26(22), 6944. https://doi.org/10.3390/molecules26226944