Synthesis, Antimicrobial, Anticancer, PASS, Molecular Docking, Molecular Dynamic Simulations & Pharmacokinetic Predictions of Some Methyl β-D-Galactopyranoside Analogs
Abstract
:1. Introduction
2. Results
2.1. Characterization
2.2. In Vitro Antibacterial Activities
2.3. Determination of MIC and MBC
2.4. Antifungal Evaluation
2.5. Anticancer Screening
2.6. Assessment of Antimicrobial Activities: PASS
2.7. Thermodynamic Analysis
2.8. Frontier Molecular Orbitals (FMO)
2.9. Molecular Electrostatic Potential (MEP)
2.10. Molecular Docking Simulation
2.11. Molecular Dynamics
2.12. Pharmacokinetic Profile, Toxicity, and Molecular Radar
3. Materials and Methods
3.1. General Information
3.2. Synthesis
3.3. General Procedure of the Synthesis of 6-O-cinnamoyl Analogs
3.4. Biological Assessment
3.4.1. Collection of Bacterial Strains and Fungus
3.4.2. Antibacterial Activity
3.4.3. Determination of MIC and MBC
3.4.4. Aantifungal Evaluation
3.4.5. Anticancer Activity
3.5. PASS Parameter Evaluation
3.6. Computational Details
3.7. Preparation of Protein and Molecular Docking
3.8. Molecular Dynamics Simulation
3.9. Pharmacokinetic Prediction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bertozzi, C.R.; Kiessling, L.L. Chemical glycobiology. Science 2001, 291, 2357–2364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Fukuda, M. Cell type-specific roles of carbohydrates in tumor metastasis. Meth. Enzymol. 2006, 416, 371–380. [Google Scholar]
- Varki, A. Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 1993, 3, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Seeberger, P.H.; Werz, D.B. Synthesis and medical applications of oligosaccharides. Nature 2007, 446, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- Kawsar, S.M.A.; Islam, M.; Jesmin, S.; Manchur, M.A.; Hasan, I.; Rajia, S. Evaluation of the antimicrobial activity and cytotoxic effect of some uridine derivatives. Int. J. Biosci. 2018, 12, 211–219. [Google Scholar]
- Kawsar, S.M.A.; Hamida, A.A.; Sheikh, A.U.; Hossain, M.K.; Shagir, A.C.; Sanaullah, A.F.M.; Manchur, M.A.; Imtiaj, H.; Ogawa, Y.; Fujii, Y.; et al. Chemically modified uridine molecules incorporating acyl residues to enhance antibacterial and cytotoxic activities. Int. J. Org. Chem. 2015, 5, 232–245. [Google Scholar] [CrossRef] [Green Version]
- Shagir, A.C.; Bhuiyan, M.M.R.; Ozeki, Y.; Kawsar, S.M.A. Simple and rapid synthesis of some nucleoside derivatives: Structural and spectral characterization. Curr. Chem. Lett. 2016, 5, 83–92. [Google Scholar]
- Rana, K.M.; Ferdous, J.; Hosen, A.; Kawsar, S.M.A. Ribose moieties acylation and characterization of some cytidine analogs. J. Sib. Fed. Univ. Chem. 2020, 13, 465–478. [Google Scholar] [CrossRef]
- Bulbul, M.Z.H.; Chowdhury, T.S.; Misbah, M.M.H.; Ferdous, J.; Dey, S.; Hasan, I.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. Synthesis of new series of pyrimidine nucleoside derivatives bearing the acyl moieties as potential antimicrobial agents. Pharmacia 2021, 68, 23–34. [Google Scholar] [CrossRef]
- Arifuzzaman, M.; Islam, M.M.; Rahman, M.M.; Mohammad, A.R.; Kawsar, S.M.A. An efficient approach to the synthesis of thymidine derivatives containing various acyl groups: Characterization and antibacterial activities. ACTA Pharm. Sci. 2018, 56, 7–22. [Google Scholar] [CrossRef]
- Maowa, J.; Alam, A.; Rana, K.M.; Hosen, A.; Dey, S.; Hasan, I.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. Synthesis, characterization, synergistic antimicrobial properties and molecular docking of sugar modified uridine derivatives. Ovidius. Univ. Ann. Chem. 2021, 32, 6–21. [Google Scholar] [CrossRef]
- Alam, A.; Hosen, M.A.; Hosen, A.; Fujii, Y.; Ozeki., Y.; Kawsar, S.M.A. Synthesis, characterization, and molecular docking against a receptor protein FimH of Escherichia coli (4XO8) of thymidine derivatives. J. Mex. Chem. Soc. 2021, 65, 256–276. [Google Scholar] [CrossRef]
- Rana, K.M.; Maowa, J.; Alam, A.; Hosen, A.; Dey, S.; Hasan, I.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. In silico DFT study, molecular docking, and ADMET predictions of cytidine analogs with antimicrobial and anticancer properties. Silico Pharmacol. 2021, 9, 1–24. [Google Scholar] [CrossRef]
- Farhana, Y.; Amin, M.R.; Hosen, A.; Kawsar, S.M.A. Bromobenzoylation of methyl α-D-mannopyranoside: Synthesis and spectral characterization. J. Sib. Fed. Univ. Chem. 2021, 14, 171–183. [Google Scholar]
- Devi, S.R.; Jesmin, S.; Rahman, M.; Manchur, M.A.; Fujii, Y.; Kanaly, R.A.; Ozeki, Y.; Kawsar, S.M.A. Microbial efficacy and two step synthesis of uridine derivatives with spectral characterization. ACTA Pharm. Sci. 2019, 57, 47–68. [Google Scholar] [CrossRef]
- Alam, A.; Hosen, M.A.; Islam, M.; Ferdous, J.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. Synthesis, Antibacterial and cytotoxicity assessment of modified uridine molecules. Curr. Adv. Chem. Biochem. 2021, 6, 114–129. [Google Scholar]
- Kawsar, S.M.A.; Kumar, A. Computational investigation of methyl α-D-glucopyranoside derivatives as inhibitor against bacteria, fungi and COVID-19 (SARS-2). J. Chil. Chem. Soc. 2021, 66, 5206–5214. [Google Scholar] [CrossRef]
- Mirajul, M.I.; Arifuzzaman, M.; Monjur, M.R.; Rahman, A.; Kawsar, S.M.A. Novel methyl 4,6-O-benzylidene-α-D-glucopyranoside derivatives: Synthesis, structural characterization and evaluation of antibacterial activities. Hacettepe J. Biol. Chem. 2019, 47, 153–164. [Google Scholar]
- Kawsar, S.M.A.; Faruk, M.O.; Rahman, M.S.; Fujii, Y.; Ozeki, Y. Regioselective synthesis, characterization and antimicrobial activities of some new monosaccharide derivatives. Sci. Pharm. 2014, 82, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Kawsar, S.M.A.; Hasan, T.; Chowdhury, S.A.; Islam, M.M.; Hossain, M.K.; Mansur, M.A. Synthesis, spectroscopic characterization and in vitro antibacterial screening of some D-glucose derivatives. Int. J. Pure Appl. Chem. 2013, 8, 125–135. [Google Scholar]
- Misbah, M.M.H.; Ferdous, J.; Bulbul, M.Z.H.; Chowdhury, T.S.; Dey, S.; Hasan, I.; Kawsar, S.M.A. Evaluation of MIC, MBC, MFC and anticancer activities of acylated methyl β-D-galactopyranoside esters. Int. J. Biosci. 2020, 16, 299–309. [Google Scholar]
- Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends 2020, 14, 69–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawsar, S.M.A.; Hosen, M.A.; Fujii, Y.; Ozeki, Y. Thermochemical, DFT, molecular docking and pharmacokinetic studies of methyl β-D-galactopyranoside esters. J. Comput. Chem. Mol. Model. 2020, 4, 452–462. [Google Scholar] [CrossRef]
- Wang, P.; Anderson, N.; Pan, Y.; Poon, L.; Charlton, C.; Zelyas, N.; Persing, D.; Rhoads, D.; Babcock, H. The SARS-CoV-2 outbreak: Diagnosis, infection prevention, and public perception. Clin. Chem. 2020, 66, 644–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science 2020, 368, 409–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maowa, J.; Hosen, M.A.; Alam, A.; Rana, K.M.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. Pharmacokinetics and molecular docking studies of uridine derivatives as SARS- COV-2 Mpro inhibitors. Phys. Chem. Res. 2021, 9, 385–412. [Google Scholar]
- Farhana, Y.; Amin, M.R.; Hosen, M.A.; Bulbul, M.Z.H.; Dey, S.; Kawsarm, S.M.A. Monosaccharide derivatives: Synthesis, antimicrobial, PASS, antiviral, and molecular docking studies against sars-cov-2 mpro inhibitors. J. Cellul. Chem. Technol. 2021, 55, 477–499. [Google Scholar]
- Bulbul, M.Z.H.; Hosen, M.A.; Ferdous, J.; Misbah, M.M.H.; Chowdhury, T.S.; Kawsar, S.M.A. Thermochemical, DFT study, physicochemical, molecular docking and ADMET predictions of some modified uridine derivatives. Int. J. New Chem. 2021, 8, 88–110. [Google Scholar]
- Kawsar, S.M.A.; Hosen, M.A. An optimization and pharmacokinetic studies of some thymidine derivatives. Turk. Comp. Theor. Chem. 2020, 4, 59–66. [Google Scholar] [CrossRef]
- Kawsar, S.M.A.; Kabir, A.K.M.S.; Manik, M.M.; Hossain, M.K.; Anwar, M.N. Antibacterial and mycelial growth inhibition of some acylated derivatives of D-glucopyranoside. Int. J. Biosci. 2012, 2, 66–73. [Google Scholar]
- Kabir, A.K.M.S.; Matin, M.M.; Kawsar, S.M.A. Synthesis and antibacterial activities of some uridine derivatives. Chittagong Univ. J. Sci. 1998, 22, 13–18. [Google Scholar]
- Cohen, N.; Benson, S.W. Estimation of heats of formation of organic compounds by additivity methods. Chem. Rev. 1993, 93, 2419–2438. [Google Scholar] [CrossRef]
- Lien, E.J.; Guo, Z.R.; Li, R.L.; Su, C.T. Use of dipole moment as a parameter in drug-receptor interaction and quantitative structure-activity relationship studies. J. Pharm. Sci. 1982, 71, 641–655. [Google Scholar] [CrossRef]
- Saravanan, S.; Balachandran, V. Quantum chemical studies, natural bond orbital analysis and thermodynamic function of 2,5-di-chlorophenylisocyanate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 120, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.L. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insight 2013, 7, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Politzer, P.; Murray, J.S. Molecular electrostatic potentials and chemical reactivity. Rev. Comput. Chem. 1991, 2, 273–312. [Google Scholar]
- Politzer, P.; Truhlar, D.G. Chemical Applications of Atomic and Molecular Electrostatic Potentials: Reactivity, Structure, Scattering, and Energetics of Organic, Inorganic, and Biological Systems; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Perlstein, J. The weak hydrogen bond in structural chemistry and biology. J. Am. Chem. Soc. 2001, 123, 191–192. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.J. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J. Genet. Genom. 2020, 7, 119–121. [Google Scholar] [CrossRef]
- Pires, D.E.V.; Blundell, T.L.; Ascher, B.D. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Hunt, W.A. The effects of aliphatic alcohols on the biophysical and biochemical correlates of membrane function. Adv. Exp. Med. Biol. 1975, 56, 195–210. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests, 23rd ed.; Informational Supplement M100-S23; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2013. [Google Scholar]
- Kabir, A.K.M.S.; Dutta, P.; Anwar, M.N. Synthesis of some new derivatives of D-mannose. Chittagong Univ. J. Sci. 2005, 29, 1–8. [Google Scholar]
- Kawsar, S.M.A.; Mymona, K.; Asma, R.; Manchur, M.A.; Koide, Y.; Ozeki, Y. Infrared, 1 H-NMR Spectral Studies of some Methyl 6-O-Myristoyl-α-DGlucopyranoside Derivatives: Assessment of Antimicrobial Effects. Int. Lett. Chem. Phys. Astron. 2015, 58, 122–136. [Google Scholar] [CrossRef]
- Ahmed, F.R.S.; Amin, R.; Hasan, I.; Asaduzzaman, A.K.M.; Kabir, S.R. Antitumor properties of a methyl-β-d-galactopyranoside specific lectin from Kaempferia rotunda against Ehrlich ascites carcinoma cells. Int. J. Biol. Macromol. 2017, 102, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Kumaresan, S.; Senthilkumar, V.; Stephen, A.; Balakumar, B.S. GC-MS analysis and pass-assisted prediction of biological activity spectra of extract of Phomopsis sp. isolated from Andrographis paniculata. World J. Pharm. Res. 2015, 4, 1035–1053. [Google Scholar]
- Kawsar, S.M.A.; Hosen, M.A.; Chowdhury, T.S.; Rana, K.M.; Fujii, Y.; Ozeki, Y. Thermochemical, PASS, Molecular Docking, Drug-Likeness and In Silico ADMET Prediction of Cytidine Derivatives Against HIV-1 Reverse Transcriptase. Rev. Chim. 2021, 72, 159–178. [Google Scholar] [CrossRef]
- Gaussian, R.A.; Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; et al. Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, R.G. Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Nat. Acad. Sci. USA 1986, 83, 8440–8441. [Google Scholar] [CrossRef] [Green Version]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delano, W.L. The PyMOL Molecular Graphics System; De-Lano Scientific: San Carlos, CA, USA, 2002; Available online: http://www.pymol.org (accessed on 9 September 2021).
- Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis 1997, 18, 2714–2723. [Google Scholar] [CrossRef]
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. In Chemical Biology: Methods and Protocols; Hempel, J.E., Williams, C.H., Hong, C.C., Eds.; Springer: New York, NY, USA, 2015; pp. 243–250. [Google Scholar]
- 56. Version ADS 4.0; Accelrys: San Diego, CA, USA, 2017.
- Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Mod. 2012, 52, 3099–3105. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development. Adv. Drug Deliv. Rev. 2001, 46, 3–25. [Google Scholar] [CrossRef]
- Land, H.; Humble, M.S. YASARA: A tool to obtain structural guidance in biocatalytic investigations. Methods Mol. Biol. 2018, 1685, 43–67. [Google Scholar] [PubMed]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general Amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Harrach, M.F.; Drossel, B. Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity. J. Chem. Phys. 2014, 140, 174501. [Google Scholar] [CrossRef] [PubMed]
- Krieger, E.; Vriend, G. New ways to boost molecular dynamics simulations. J. Comput. Chem. 2015, 36, 996–1007. [Google Scholar] [CrossRef] [PubMed]
- Krieger, E.; Nielsen, J.E.; Spronk, C.A.E.M.; Vriend, G. Fast empirical pKa prediction by Ewald summation. J. Mol. Graph. Model. 2006, 25, 481–506. [Google Scholar] [CrossRef]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef] [Green Version]
- Harvey, M.J.; De Fabritiis, G. An implementation of the smooth particle mesh Ewald method on GPU hardware. J. Chem. Theory Comput. 2009, 5, 2371–2407. [Google Scholar] [CrossRef]
- Uddin, Z.; Paul, A.; Rakib, A.; Sami, S.A.; Mahmud, S.; Rana, S.; Hossain, S.; Tareq, M.A.; Dutta, M.; Emran, T.; et al. Chemical profiles and pharmacological properties with in silico studies on elatostema papillosum wedd. Molecules 2021, 26, 809. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, S.; Paul, G.K.; Afroze, M.; Islam, S.; Gupt, S.B.R.; Razu, M.H.; Biswas, S.; Zaman, S.; Uddin, M.S.; Khan, M.; et al. Efficacy of phytochemicals derived from avicennia officinalis for the management of covid-19: A combined in silico and biochemical study. Molecules 2021, 26, 2210. [Google Scholar] [CrossRef] [PubMed]
- Obaidullah, A.J.; Alanazi, M.M.; Alsaif, N.A.; Albassam, H.; Almehizia, A.A.; Alqahtani, A.M.; Mahmud, S.; Sami, S.A.; Emran, T. Immunoinformatics-guided design of a multi-epitope vaccine based on the structural proteins of severe acute respiratory syndrome coronavirus 2. RSC Adv. 2021, 11, 18103–18121. [Google Scholar] [CrossRef]
- Mahmud, S.; Paul, G.K.; Biswas, S.; Afrose, S.; Mita, M.A.; Hasan, M.R.; Shimu, M.S.R.; Hossain, A.; Promi, M.M.; Ema, F.K.; et al. Prospective Role of Peptide-Based Antiviral Therapy Against the Main Protease of SARS-CoV-2. Front. Mol. Biosci. 2021, 8, 383. [Google Scholar] [CrossRef] [PubMed]
Compound no. | Zone of Inhibition in mm | |
---|---|---|
Bacillus subtilis | Staphylococcus aureus | |
2 | 15 ± 0.3 | NI |
3 | NI | 25 ± 0.3 * |
4 | 13 ± 0.2 | 22 ± 0.3 * |
5 | 13 ± 0.2 | 33 ± 0.4 * |
6 | 21 ± 0.3 * | 15 ± 0.3 |
7 | NI | 10 ± 0.1 |
8 | NI | 15 ± 0.3 |
9 | 22 ± 0.3 * | 30 ± 0.4 * |
10 | 20 ± 0.3 * | 23 ± 0.3 * |
Azithromycin | 19 ± 0.3 ** | 18 ± 0.3 ** |
Compound no. | Zone of Inhibition in mm | ||
---|---|---|---|
Escherichia coli | Salmonella abony | Pseudomonas aeruginosa | |
2 | 10 ± 0.1 | NI | NI |
3 | 16 ± 0.3 | 20 ± 0.3 * | 10 ± 0.1 |
4 | 16 ± 0.3 | 14 ± 0.3 | 18 ± 0.3 * |
5 | 21 ± 0.3 * | 27 ± 0.4 * | 26 ± 0.4 * |
6 | 26 ± 0.4 * | 12 ± 0.2 | 15 ± 0.3 |
7 | NI | 11 ± 0.1 | NI |
8 | NI | NI | 15 ± 0.3 |
9 | 18 ± 0.3 * | 9 ± 0.1 | 13 ± 0.2 |
10 | 10 ± 0.1 | 10 ± 0.1 | NI |
Azithromycin | 17 ± 0.3 ** | 19 ± 0.3 ** | 17 ± 0.3 ** |
Compound no. | Percentage (%) of Inhibition | |
---|---|---|
Aspergillus niger | Aspergillus. flavus | |
2 | 0 | 67.77 ± 1.0 |
3 | 83.39 ± 1.2 * | 66.67 ± 1.0 |
4 | 86.67 ± 1.2 * | 79.44 ± 1.1 * |
5 | 81.11 ± 1.2 * | 64.44 ± 1.0 |
6 | 77.22 ± 1.1 * | 68.89 ± 1.0 |
7 | 0 | 0 |
8 | 73.81 ± 1.1 | 0 |
9 | 84.44 ± 1.2 * | 56 |
10 | 91.67 ± 1.2 * | 82.77 ± 1.2 * |
Nystatin | 66.4 ± 1.0 ** | 63.1 ± 1.0 ** |
Compound no. | Binding Affinity | Interaction Types | Compound no. | Binding Affinity | Interaction Types |
---|---|---|---|---|---|
1 | −5.9 | H | 7 | −8.7 | H, C, PPS, A, PA |
2 | −6.8 | H, C, PPS | 8 | −6.7 | H, C, A, PA |
3 | −8.5 | H. C, A, PA | 9 | −8.7 | H, PAn, PDH, PA |
4 | −8.5 | H. C, A, PA | 10 | −8.8 | H. C, A, PA |
5 | −7.6 | H. C, PPS, A, PA | Remdesivir | −10.5 | H, A, PA |
6 | −7.8 | H, C, PPS, A, PA |
Main Protease 6Y84 | Main Protease 6Y84 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Hydrogen Bond | Hydrophobic Bond | Hydrogen Bond | Hydrophobic Bond | ||||||
Compound no. | Residues | Distance (Å) | Residues | Distance (Å) | Compound no. | Residues | Distance (Å) | Residues | Distance (Å) |
1 | THR111 | 3.085 | 6 | ASP153 | 5.079 | PHE294 | 3.481 | ||
THR111 | 2.244 | CYS145 | 2.927 | HIS41 | 4.094 | ||||
GLY143 | 3.363 | GLY143 | 2.790 | PRO293 | 4.284 | ||||
HIS41 | 2.078 | ARG298 | 2.843 | PHE294 | 4.029 | ||||
CYS145 | 2.990 | ASP153 | 2.588 | PHE294 | 5.168 | ||||
CYS145 | 2.872 | ||||||||
2 | LEU287 | 2.320 | LEU287 | 3.555 | 7 | ASN151 | 2.781 | PRO293 | 3.862 |
ASP289 | 3.070 | ARG298 | 2.351 | ILE200 | 5.043 | ||||
THR199 | 2.482 | CYS145 | 2.279 | VAL202 | 4.935 | ||||
CYS145 | 3.110 | ILE152 | 3.334 | HIS246 | 4.247 | ||||
ASP197 | 3.540 | GLN110 | 3.730 | PHE294 | 5.241 | ||||
ASP295 | 3.681 | PHE294 | 4.434 | ||||||
PHE294 | 4.246 | PHE294 | 4.531 | ||||||
3 | GLY143 | 2.257 | CYS145 | 5.498 | 8 | LEU75 | 3.025 | HIS41 | 2.028 |
THR26 | 3.750 | HIS41 | 5.148 | GLN110 | 3.520 | PHE294 | 3.308 | ||
4 | HIS41 | 3.330 | MET165 | 3.644 | 9 | CYS145 | 3.330 | HIS41 | 3.644 |
ASN142 | 3.329 | CYS145 | 5.085 | CYS145 | 3.329 | MET49 | 5.085 | ||
THR26 | 3.252 | HIS41 | 5.165 | THR199 | 3.252 | LYS137 | 5.165 | ||
HIS41 | 3.572 | GLU166 | 3.572 | ||||||
HIS41 | 3.715 | GLY143 | 3.715 | ||||||
5 | SER158 | 2.331 | PHE294 | 3.887 | 10 | PHE294 | 2.816 | CYS145 | 4.741 |
CYS145 | 2.464 | ILE106 | 3.478 | GLU166 | 3.789 | HIS41 | 5.280 | ||
ARG298 | 2.046 | PRO293 | 4.459 | MET49 | 4.776 | ||||
ASP153 | 3.063 | HIS41 | 4.617 | TYR237 | 4.768 | ||||
VAL104 | 5.079 | ||||||||
Remdesivir | ASP295 | 2.334 | ASP295 | 4.223 | |||||
CYS145 | 2.698 | ||||||||
GLN110 | 2.268 | ||||||||
THR111 | 2.203 | ||||||||
THR111 | 2.358 |
Compound no. | Water Solubility (log mol/L) | Caco-2 Permeability | Intestinal Absorption | Skin Permeability |
---|---|---|---|---|
1 | 0.067 | −0.211 | 32.866 | −3.391 |
2 | −1.874 | 0.508 | 49.613 | −2.793 |
3 | −5.009 | 1.025 | 89.256 | −2.733 |
4 | −4.106 | 1.031 | 94.430 | −2.735 |
5 | −2.919 | 0.854 | 100 | −2.735 |
6 | −2.896 | 0.782 | 100 | −2.735 |
7 | −2.892 | 0.709 | 100 | −2.735 |
8 | −2.892 | 0.488 | 100 | −2.735 |
9 | −2.898 | −0.181 | 79.877 | −2.735 |
10 | −3.043 | 1.200 | 90.898 | −2.735 |
Compound no. | Distribution | Execration | |||
---|---|---|---|---|---|
Vdss | BBB Permeability | CNS Permeability | Total Clearance | Renal OCT2 Substrate | |
1 | 0.035 | −0.881 | −4.670 | 0.686 | No |
2 | −0.403 | −0.799 | −3.671 | 0.499 | No |
3 | 0.253 | −1.682 | −2.849 | 1.408 | No |
4 | 0.359 | −1.807 | −2.389 | 1.520 | No |
5 | −1.151 | −2.194 | −1.840 | 1.187 | No |
6 | −1.582 | −2.323 | −1.770 | 1.913 | No |
7 | −1.646 | −2.453 | −1.700 | 2.009 | No |
8 | 0.010 | −1.296 | −3.252 | −0.122 | No |
9 | −0.759 | −3.094 | −3.492 | 0.649 | No |
10 | −0.149 | −2.148 | −3.269 | −0.273 | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, M.R.; Yasmin, F.; Hosen, M.A.; Dey, S.; Mahmud, S.; Saleh, M.A.; Emran, T.B.; Hasan, I.; Fujii, Y.; Yamada, M.; et al. Synthesis, Antimicrobial, Anticancer, PASS, Molecular Docking, Molecular Dynamic Simulations & Pharmacokinetic Predictions of Some Methyl β-D-Galactopyranoside Analogs. Molecules 2021, 26, 7016. https://doi.org/10.3390/molecules26227016
Amin MR, Yasmin F, Hosen MA, Dey S, Mahmud S, Saleh MA, Emran TB, Hasan I, Fujii Y, Yamada M, et al. Synthesis, Antimicrobial, Anticancer, PASS, Molecular Docking, Molecular Dynamic Simulations & Pharmacokinetic Predictions of Some Methyl β-D-Galactopyranoside Analogs. Molecules. 2021; 26(22):7016. https://doi.org/10.3390/molecules26227016
Chicago/Turabian StyleAmin, Md. Ruhul, Farhana Yasmin, Mohammed Anowar Hosen, Sujan Dey, Shafi Mahmud, Md. Abu Saleh, Talha Bin Emran, Imtiaj Hasan, Yuki Fujii, Masao Yamada, and et al. 2021. "Synthesis, Antimicrobial, Anticancer, PASS, Molecular Docking, Molecular Dynamic Simulations & Pharmacokinetic Predictions of Some Methyl β-D-Galactopyranoside Analogs" Molecules 26, no. 22: 7016. https://doi.org/10.3390/molecules26227016
APA StyleAmin, M. R., Yasmin, F., Hosen, M. A., Dey, S., Mahmud, S., Saleh, M. A., Emran, T. B., Hasan, I., Fujii, Y., Yamada, M., Ozeki, Y., & Kawsar, S. M. A. (2021). Synthesis, Antimicrobial, Anticancer, PASS, Molecular Docking, Molecular Dynamic Simulations & Pharmacokinetic Predictions of Some Methyl β-D-Galactopyranoside Analogs. Molecules, 26(22), 7016. https://doi.org/10.3390/molecules26227016