Application of TD-DFT Theory to Studying Porphyrinoid-Based Photosensitizers for Photodynamic Therapy: A Review
Abstract
:1. Introduction
2. Results
2.1. Prediction of the Geometric Parameters of Porphyrinoid-Based Photosensitizers
2.2. Prediction of the Absorption Spectra
2.2.1. The Choice of Functional
2.2.2. Inclusion of Solvent
2.2.3. Prediction of Multiphoton Adsorption Spectra
2.3. Determination of the Singlet–Triplet Intersystem Crossing
2.4. Interaction with Molecular Oxygen
2.5. Quantitative Structure–Activity Relationship (QSAR) Studies
3. Conclusions
- As can be seen, TD-DFT is one of the most widely applied methods in these studies, due to its good balance between accuracy and computational cost. The fair agreement between theoretical and experiment spectra found for various porphyrinoids indicates that an a priori computation of some important photophysical properties may guide the design of new drugs that can be proposed as potential photosensitizers for photodynamic therapy.
- Most studies advise the use of B3LYP or M06-2X functionals for geometry optimization and the CAM-B3LYP functional for predicting the UV–VIS spectra of porphyrinoids. The latter well handles charge-transfer states, which dominate the photochemistry of these macrocycles.
- The inclusion of a solvent usually induces only minor geometry changes in the porphyrinoids. There are no significant differences in outcome among the implicit solvent models that are employed for the calculations.
- The S0–T1 gap is generally well reproduced by the B3LYP or PBE0PBE functionals.
- The spin-orbit couplings, computed at the B3LYP level, quantifying the singlet-to-triplet intersystem crossing, scale well with such experimental data as intersystem crossing yields and singlet oxygen quantum yields.
- Regarding the interactions between the photosensitizer and molecular oxygen, the relevant calculations are still to be determined. The mechanism of the energy transfer between the photosensitizer and molecular oxygen is sought, as pathways involved in this process are essential to the design of effective PDT drugs. Studies similar to [146] are highly demanded.
- QSAR analyses indicate that the structural parameters characterizing porphyrinoids’ shapes, volumes, and solubility levels are the most important factors determining their photodynamic activity. This is in line with the common observation that an important parameter for anticancer drugs is their solubility in aqueous solutions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niculescu, A.-G.; Grumezescu, A. Photodynamic Therapy—An Up-to-Date Review. Appl. Sci. 2021, 11, 3626. [Google Scholar] [CrossRef]
- Dąbrowski, J.M.; Pucelik, B.; Regiel-Futyra, A.; Brindell, M.; Mazuryk, O.; Kyzioł, A.; Stochel, G.; Macyk, W.; Arnaut, L.G. Engineering of relevant photodynamic processes through structural modifications of metal-lotetrapyrrolic photosensitizers. Coord. Chem. Rev. 2016, 325, 67–101. [Google Scholar] [CrossRef]
- Dąbrowski, J.M.; Arnaut, L.G. Photodynamic therapy (PDT) of cancer: From local to systemic treatment. Photochem. Photobiol. Sci. 2015, 14, 1765–1780. [Google Scholar] [CrossRef] [PubMed]
- Kou, J.; Dou, D.; Yang, L. Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget 2017, 8, 81591–81603. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; Wang, Z.; Shen, W.; Liang, R.; Yan, D.; Wei, M. Recent advances in innovative strategies for enhanced cancer photodynamic therapy. Theranostics 2021, 11, 3278–3300. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, H.; Shi, W.; Gan, L.; Zhong, L.; He, J.; Xie, L.; Wu, P.; Zhao, Y.; Deng, Z. Application of photodynamic therapy in cancer: Challenges and advancements. BIOCELL 2021, 45, 489–500. [Google Scholar] [CrossRef]
- Amos-Tautua, B.M.; Songca, S.P.; Oluwafemi, O.S. Application of Porphyrins in Antibacterial Photodynamic Therapy. Molecules 2019, 24, 2456. [Google Scholar] [CrossRef] [Green Version]
- Galstyan, A. Turning Photons into Drugs: Phthalocyanine-Based Photosensitizers as Efficient Photoantimicrobials. Chem. Eur. J. 2021, 27, 1903–1920. [Google Scholar] [CrossRef] [PubMed]
- Roomaney, I.A.; Holmes, H.K.; Engel, M.E. Treatment of oral fungal infections using photodynamic therapy: Systematic review and meta-analysis. Clin. Exp. Dent. Res. 2021, 7, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Bhapkar, S.; Kumbhar, N.; Gacche, R.; Jagtap, S.; Jadhav, U. Photodynamic Therapy (PDT): An Alternative Ap-proach for Combating COVID-19. Biointerface Res. Appl. Chem. 2021, 11, 12808–12830. [Google Scholar]
- Sabino, C.P.; Ball, A.R.; Baptista, M.S.; Dai, T.; Hamblin, M.R.; Ribeiro, M.S.; Santos, A.L.; Sellera, F.P.; Tegos, G.P.; Wainwright, M. Light-based technologies for management of COVID-19 pandemic crisis. J. Photochem. Photobiol. B Biol. 2020, 212, 111999. [Google Scholar] [CrossRef]
- De Annunzio, S.R.; Costa, N.C.S.; Mezzina, R.D.; Graminha, M.A.S.; Fontana, C.R. Chlorin, Phthalocyanine, and Porphyrin Types Derivatives in Phototreatment of Cutaneous Manifestations: A Review. Int. J. Mol. Sci. 2019, 20, 3861. [Google Scholar] [CrossRef] [Green Version]
- Nagata, J.Y.; Hioka, N.; Kimura, E.; Batistela, V.R.; Terada, R.S.S.; Graciano, A.X.; Baesso, M.L.; Hayacibara, M.F. Antibacterial photodynamic therapy for dental caries: Evaluation of the photosensitizers used and light source properties. Photodiagnosis Photodyn. Ther. 2012, 9, 122–131. [Google Scholar] [CrossRef]
- Gallardo-Villagrán, M.; Leger, D.Y.; Liagre, B.; Therrien, B. Photosensitizers Used in the Photodynamic Therapy of Rheumatoid Arthritis. Int. J. Mol. Sci. 2019, 20, 3339. [Google Scholar] [CrossRef] [Green Version]
- Bashkatov, A.; Genina, E.; Kochubey, V.; Tuchin, V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 2005, 38, 2543–2555. [Google Scholar] [CrossRef]
- Algorri, J.; Ochoa, M.; Roldán-Varona, P.; Rodríguez-Cobo, L.; López-Higuera, J. Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers 2021, 13, 3484. [Google Scholar] [CrossRef]
- Swamy, P.C.A.; Sivaraman, G.; Priyanka, R.N.; Raja, S.O.; Ponnuvel, K.; Shanmugpriya, J.; Gulyani, A. Near Infrared (NIR) absorbing dyes as promising photosensitizer for photo dynamic therapy. Co-Ord. Chem. Rev. 2020, 411, 213233. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, R.; Kim, E.; Lee, S.; Park, Y.I. Near-Infrared Light-Triggered Photodynamic Therapy and Apoptosis Using Upconversion Nanoparticles With Dual Photosensitizers. Front. Bioeng. Biotechnol. 2020, 8, 275. [Google Scholar] [CrossRef]
- Hartl, B.A.; Hirschberg, H.; Marcu, L.; Cherry, S.R. Activating Photodynamic Therapy in vitro with Cerenkov Radiation Generated from Yttrium-90. J. Environ. Pathol. Toxicol. Oncol. 2016, 35, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Boschi, F.; Spinelli, A.E. Nanoparticles for Cerenkov and Radioluminescent Light Enhancement for Imaging and Radiotherapy. Nanomaterials 2020, 10, 1771. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, A.E.; Boschi, F. Photodynamic Therapy Using Cerenkov and Radioluminescence Light. Front. Phys. 2021, 9, 9. [Google Scholar] [CrossRef]
- Clement, S.; Chen, W.; Deng, W.; Goldys, E.M. X-ray radiation-induced and targeted photodynamic therapy with folic acid-conjugated biodegradable nanoconstructs. Int. J. Nanomed. 2018, 13, 3553–3570. [Google Scholar] [CrossRef] [Green Version]
- Larue, L.; Ben Mihoub, A.; Youssef, Z.; Colombeau, L.; Acherar, S.; André, J.C.; Arnoux, P.; Baros, F.; Vermandel, M.; Frochot, C. Using X-rays in photodynamic therapy: An overview. Photochem. Photobiol. Sci. 2018, 17, 1612–1650. [Google Scholar] [CrossRef]
- Wang, G.D.; Nguyen, H.T.; Chen, H.; Cox, P.B.; Wang, L.; Nagata, K.; Hao, Z.; Wang, A.; Li, Z.; Xie, J. X-ray Induced Photodynamic Therapy: A Combination of Radiotherapy and Photodynamic Therapy. Theranostics 2016, 6, 2295–2305. [Google Scholar] [CrossRef]
- Overchuk, M.; Cheng, M.H.Y.; Zheng, G. X-ray-Activatable Photodynamic Nanoconstructs. ACS Cent. Sci. 2020, 6, 613–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Hao, Y.; Chen, S.; Xu, M. Photodynamic Therapy of Cancers with Internal Light Sources: Chemiluminescence, Bioluminescence, and Cerenkov Radiation. Front. Chem. 2020, 8, 770. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.P.d.; Núnez-Montenegro, A.; Magalhães, C.M.; Ferreira, P.J.O.; Duarte, D.; González-Berdullas, P.; Rodríguez-Borges, J.E.; Vale, N.; Joaquim, C.G.; Silva, E. Single-molecule chemiluminescent photosensitizer for a self-activating and tumor-selective photodynamic therapy of cancer. Eur. J. Med. Chem. 2019, 183, 111683. [Google Scholar] [CrossRef]
- Magalhães, C.M.; González-Berdullas, P.; Duarte, D.; Correia, A.; Rodríguez-Borges, J.E.; Vale, N. Target-Oriented Synthesis of Marine Coelenterazine Derivatives with Anticancer Activity by Applying the Heavy-Atom Effect. Biomedicines 2021, 9, 1199. [Google Scholar] [CrossRef] [PubMed]
- Lan, M.; Zhao, S.; Liu, W.; Lee, C.S.; Zhang, W.; Wang, P. Photosensitizers for Photodynamic Therapy. Adv. Healthc. Mater. 2019, 8, 1900132. [Google Scholar] [CrossRef]
- Lovell, J.F.; Liu, T.W.B.; Chen, J.; Zheng, G. Activatable Photosensitizers for Imaging and Therapy. Chem. Rev. 2010, 110, 2839–2857. [Google Scholar] [CrossRef]
- Aggarwal, A.; Samaroo, D.; Jovanovic, I.R.; Singh, S.; Tuz, M.P.; Mackiewicz, M.R. Porphyrinoid-based photosensitizers for diagnostic and therapeutic applications: An update. J. Porphyr. Phthalocyanines 2019, 23, 729–765. [Google Scholar] [CrossRef]
- Pucelik, B.; Sułek, A.; Drozd, A.; Stochel, G.; Pereira, M.M.; Pinto, S.M.A.; Arnaut, L.G.; Dąbrowski, J.M. Enhanced Cellular Uptake and Photodynamic Effect with Amphiphilic Fluorinated Porphyrins: The Role of Sulfoester Groups and the Nature of Reactive Oxygen Species. Int. J. Mol. Sci. 2020, 21, 2786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sułek, A.; Pucelik, B.; Kobielusz, M.; Barzowska, A.; Dąbrowski, J.M. Photodynamic Inactivation of Bacteria with Porphyrin Derivatives: Effect of Charge, Lipophilicity, ROS Generation, and Cellular Uptake on Their Biological Activity In Vitro. Int. J. Mol. Sci. 2020, 21, 8716. [Google Scholar] [CrossRef]
- Almeida-Marrero, V.; van de Winckel, E.; Anaya-Plaza, E.; Torres, T.; de la Escosura, A. Porphyrinoid biohybrid materials as an emerging toolbox for biomedical light management. Chem. Soc. Rev. 2018, 47, 7369–7400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Runge, E.; Gross, E. Density-Functional Theory for Time-Dependent Systems. Phys. Rev. Lett. 1984, 52, 997–1000. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Gross, E.K.U.; Kohn, W. Time-Dependent Density-Functional Theory. Adv. Quantum Chem. 1990, 21, 255–291. [Google Scholar]
- Marques, M.A.L.; Gross, E.K.U. Time-dependent density-functional theory. Annu. Rev. Phys. Chem. 2004, 55, 427–455. [Google Scholar] [CrossRef] [Green Version]
- Gross, E.K.U.; Maitra, N.T. Introduction to TDDFT. In Fundamentals of Time-Dependent Density Functional Theory; Marques, M.A.L., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 53–99. [Google Scholar]
- Casida, M.E. Time-Dependent Density Functional Response Theory for Molecules. In Recent Advances in Density Functional Methods; Chong, D.P., Ed.; World Scientific: Singapore, 1995; pp. 155–192. [Google Scholar]
- Dreuw, A.A.; Head-Gordon, M. Failure of Time-Dependent Density Functional Theory for Long-Range Charge-Transfer Excited States: The Zincbacteriochlorin−Bacteriochlorin and Bacteriochlorophyll−Spheroidene Complexes. J. Am. Chem. Soc. 2004, 126, 4007–4016. [Google Scholar] [CrossRef]
- Tozer, D.J.; Amos, R.; Handy, N.C.; Roos, B.O.; Serrano-Andrés, L. Does density functional theory contribute to the understanding of excited states of unsaturated organic compounds? Mol. Phys. 1999, 97, 859–868. [Google Scholar] [CrossRef]
- Caldeweyher, E.; Brandenburg, J.G. Simplified DFT methods for consistent structures and energies of large systems. J. Phys. Condens. Matter 2018, 30, 213001. [Google Scholar] [CrossRef] [PubMed]
- Zandler, M.E.; D’Souza, F. The remarkable ability of B3LYP/3-21G(*) calculations to describe geometry, spectral and electrochemical properties of molecular and supramolecular porphyrin–fullerene conjugates. Comptes. Rendus. Chim. 2006, 9, 960–981. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Quantum mechanics of many-electron systems. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1929, 123, 714–733. [Google Scholar] [CrossRef] [Green Version]
- Slater, J.C. A Simplification of the Hartree-Fock Method. Phys. Rev. 1951, 81, 385–390. [Google Scholar] [CrossRef]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Liu, Y.F.; Guan, J.; Hu, D.; Du, L.; Sun, H.; Gao, J.; Zhao, J.; Lan, Z. Computational Investigation of Acene-Modified Zinc-Porphyrin Based Sensitizers for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2015, 119, 8417–8430. [Google Scholar] [CrossRef]
- Fransson, T.; Saue, T.; Norman, P. Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spectra and Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins. J. Chem. Theory Comput. 2016, 12, 2324–2334. [Google Scholar] [CrossRef] [PubMed]
- Rintoul, L.; Harper, S.R.; Arnold, D.P. A systematic theoretical study of the electronic structures of porphyrin dimers: DFT and TD-DFT calculations on diporphyrins linked by ethane, ethene, ethyne, imine, and azo bridges. Phys. Chem. Chem. Phys. 2013, 15, 18951–18964. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef] [Green Version]
- Simone, B.C.D.; Mazzone, G.; Russo, N.; Sicilia, E.; Toscano, M. Metal Atom Effect on the Photophysical Properties of Mg(II), Zn(II), Cd(II), and Pd(II) Tetra-phenylporphyrin Complexes Proposed as Possible Drugs in Photodynamic Therapy. Molecules 2017, 22, 1093. [Google Scholar] [CrossRef] [Green Version]
- Vijay, D.; Varathan, E.; Subramanian, V. Theoretical design of core modified (oxa and thia) porphyrin based organic dyes with bridging thiophene linkers. J. Mater. Chem. A 2013, 1, 4358–4369. [Google Scholar] [CrossRef]
- Mazzone, G.; Alberto, M.E.; De Simone, B.C.; Marino, T.; Russo, N. Can Expanded Bacteriochlorins Act as Photosensitizers in Photodynamic Therapy? Good News from Density Functional Theory Computations. Mol. 2016, 21, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, X.D.; Xiao, H.M.; Tian, H. Comparative studies on the structures, infrared spectrum, and thermodynamic properties of phthalocyanine using ab initio Hartree–Fock and density functional theory methods. Int. J. Quantum Chem. 2002, 86, 531–540. [Google Scholar] [CrossRef]
- Bloch, F. Bemerkung zur Elektronentheorie des Ferromagnetismus und der elektrischen Leitfähigkeit. Z. Phys. 1929, 57, 545. [Google Scholar] [CrossRef]
- Huh, D.S.; Choe, S.J. Comparative DFT study for molecular geometries and spectra of methyl pheophorbides-a: Test of M06-2X and two other functionals. J. Porphyr. Phthalocyanines 2010, 14, 592–604. [Google Scholar] [CrossRef]
- Becke, A.D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [Green Version]
- Staroverov, V.N.; Scuseria, G.E.; Tao, J.; Perdew, J.P. Comparative assessment of a new nonempirical density functional: Molecules and hydrogen- bonded complexes. J. Chem. Phys. 2003, 119, 12129. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158. [Google Scholar] [CrossRef]
- Ernzerhof, M.; Scuseria, G.E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 1999, 110, 5029. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Perdew, J.P.; Staroverov, V.N.; Scuseria, G.E. Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett. 2003, 91, 146401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdew, J.P.; Tao, J.; Staroverov, V.N.; Scuseria, G.E. Meta-generalized gradient approximation: Explanation of a realistic nonempirical density functional. J. Chem. Phys. 2004, 120, 6898–6911. [Google Scholar] [CrossRef]
- Rydberg, P.; Olsen, L. The Accuracy of Geometries for Iron Porphyrin Complexes from Density Functional Theory. J. Phys. Chem. A 2009, 113, 11949–11953. [Google Scholar] [CrossRef]
- Wang, J.; Durbeej, B. How accurate are TD-DFT excited-state geometries compared to DFT ground-state geometries? J. Comput. Chem. 2020, 41, 1718–1729. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.; Handy, N.C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822–8824. [Google Scholar] [CrossRef] [PubMed]
- Grotjahn, R.; Kaupp, M. Validation of Local Hybrid Functionals for Excited States: Structures, Fluorescence, Phosphorescence, and Vibronic Spectra. J. Chem. Theory Comput. 2020, 16, 5821–5834. [Google Scholar] [CrossRef] [PubMed]
- Winter, N.O.C.; Graf, N.K.; Leutwyler, S.; Hättig, C. Benchmarks for 0–0 transitions of aromatic organic molecules: DFT/B3LYP, ADC(2), CC2, SOS-CC2 and SCS-CC2 compared to high-resolution gas-phase data. Phys. Chem. Chem. Phys. 2013, 15, 6623–6630. [Google Scholar] [CrossRef]
- Gouterman, M. Spectra of Porphyrins. J. Mol. Spectrosc. 1961, 6, 138–163. [Google Scholar] [CrossRef]
- Dev, P.; Agrawal, S.; English, N.J. Determining the appropriate exchange-correlation functional for time-dependent density functional theory studies of charge-transfer excitations in organic dyes. J. Chem. Phys. 2012, 136, 224301. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-J.; Balanay, M.P.; Kim, D.H. Molecular design of distorted push–pull porphyrins for dye-sensitized solar cells. Theor. Chem. Acc. 2012, 131, 1–12. [Google Scholar] [CrossRef]
- Laurent, A.D.; Adamo, C.; Jacquemin, D. Dye chemistry with time-dependent density functional theory. Phys. Chem. Chem. Phys. 2014, 16, 14334–14356. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Rafiq, M.I.; Zhang, Z.; Cao, J.; Geng, R.; Zhou, B.; Tang, W. TD-DFT benchmark for UV-visible spectra of fused-ring electron acceptors using global and range-separated hybrids. Phys. Chem. Chem. Phys. 2020, 22, 7864–7874. [Google Scholar] [CrossRef]
- Bhuyan, J. Metalloisoporphyrins: From synthesis to applications. Dalton Trans. 2015, 44, 15742–15756. [Google Scholar] [CrossRef]
- Körzdörfer, T.; Brédas, J.-L. Organic Electronic Materials: Recent Advances in the DFT Description of the Ground and Excited States Using Tuned Range-Separated Hybrid Functionals. Acc. Chem. Res. 2014, 47, 3284–3291. [Google Scholar] [CrossRef]
- Castro, A.; Marques, M.A.; Varsano, D.; Sottile, F.; Rubio, A. The challenge of predicting optical properties of biomolecules: What can we learn from time-dependent density-functional theory? Comptes Rendus Phys. 2009, 10, 469–490. [Google Scholar] [CrossRef] [Green Version]
- Jacquemin, D.; Planchat, A.; Adamo, C.; Mennucci, B. TD-DFT Assessment of Functionals for Optical 0–0 Transitions in Solvated Dyes. J. Chem. Theory Comput. 2012, 8, 2359–2372. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Eriksson, E.S.E.; Eriksson, L.A. Can Range-Separated and Hybrid DFT Functionals Predict Low-Lying Excitations? A Tookad Case Study. J. Chem. Theory Comput. 2010, 6, 2086–2094. [Google Scholar] [CrossRef]
- Batra, K.; Zahn, S.; Heine, T. Benchmark of Simplified Time-Dependent Density Functional Theory for UV–Vis Spectral Properties of Porphyrinoids. Adv. Theory Simul. 2019, 3. [Google Scholar] [CrossRef]
- Mack, J.; Bunya, M.; Shimizu, Y.; Uoyama, H.; Komobuchi, N.; Okujima, T.; Uno, H.; Ito, S.; Stillman, M.J.; Ono, N.; et al. Application of MCD Spectroscopy and TD-DFT to Nonplanar Core-Modified Tetrabenzoporphyrins: Effect of Reduced Symmetry on Nonplanar Porphyrinoids. Chem. Eur. J. 2008, 14, 5001–5020. [Google Scholar] [CrossRef]
- Mack, J. Expanded, Contracted, and Isomeric Porphyrins: Theoretical Aspects. Chem. Rev. 2017, 117, 3444–3478. [Google Scholar] [CrossRef]
- Mack, J.; Stone, J.; Nyokong, T. Trends in the TD-DFT calculations of porphyrin and phthalocyanine analogs. J. Porphyr. Phthalocyanines 2014, 18, 630–641. [Google Scholar] [CrossRef]
- Petit, L.; Quartarolo, A.; Adamo, C.; Russo, N. Spectroscopic Properties of Porphyrin-Like Photosensitizers: Äâ Insights from Theory. J. Phys. Chem. B 2006, 110, 2398–2404. [Google Scholar] [CrossRef] [PubMed]
- Tessaro, A.L.; Batistela, V.R.; Pellosi, D.S.; Caetano, W.; Ueno, L.T.; Machado, A.E.D.H.; Van Der Linden, M.G.; Hioka, N. Electronic structures and spectroscopic properties of benzoporphyrin protolytic species: A TD-DFT study. Comput. Theor. Chem. 2013, 1020, 173–179. [Google Scholar] [CrossRef]
- Dulski, M.; Kempa, M.; Kozub, P.; Wójcik, J.; Rojkiewicz, M.; Kuś, P.; Szurko, A.; Ratuszna, A.; Wrzalik, R. DFT/TD-DFT study of solvent effect as well the substituents influence on the different features of TPP derivatives for PDT application. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 104, 315–327. [Google Scholar] [CrossRef]
- Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256, 454–464. [Google Scholar] [CrossRef]
- Pan, Y.; Li, L.; Qiu, F.; Wei, Y.; Hua, W.; Tian, G. On the spectral profile change in the Q band absorption spectra of metalloporphyrins (Mg, Zn, and Pd): A first-principles study. J. Chem. Phys. 2019, 150, 164308. [Google Scholar] [CrossRef]
- Improta, R.; Ferrante, C.; Bozio, R.; Barone, V. The polarizability in solution of tetra-phenyl-porphyrin derivatives in their excited electronic states: A PCM/TD-DFT study. Phys. Chem. Chem. Phys. 2009, 11, 4664–4673. [Google Scholar] [CrossRef]
- Wójcik, J.; Peszke, J.; Ratuszna, A.; Kuś, P.; Wrzalik, R. Theoretical investigation of porphyrin-based photosensitizers with enhanced NIR absorption. Phys. Chem. Chem. Phys. 2013, 15, 19651–19658. [Google Scholar] [CrossRef]
- Bettanin, F.; Antonio, F.C.T.; Honorio, K.M.; Homem-De-Mello, P. Quantum-chemistry descriptors for photosensitizers based on macrocycles. Chem. Biol. Drug Des. 2017, 89, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Alberto, M.E.; Marino, T.; Quartarolo, A.D.; Russo, N. Photophysical origin of the reduced photodynamic therapy activity of temocene compared to Foscan(R): Insights from theory. Phys. Chem. Chem. Phys. 2013, 15, 16167–16171. [Google Scholar] [CrossRef]
- Cai, Z.-L.; Crossley, M.J.; Reimers, J.R.; Kobayashi, A.R.; Amos, R.D. Density Functional Theory for Charge Transfer: The Nature of the N-Bands of Porphyrins and Chlorophylls Revealed through CAM-B3LYP, CASPT2, and SAC-CI Calculations. J. Phys. Chem. B 2006, 110, 15624–15632. [Google Scholar] [CrossRef] [PubMed]
- Klamt, A.; Schüürmann, G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 1993, 1993, 799–805. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef] [PubMed]
- Osadchuk, I.; Konrad, N.; Truong, K.-N.; Rissanen, K.; Clot, E.; Aav, R.; Kananovich, D.; Borovkov, V. Supramolecular Chirogenesis in Bis-Porphyrin: Crystallographic Structure and CD Spectra for a Complex with a Chiral Guanidine Derivative. Symmetry 2021, 13, 275. [Google Scholar] [CrossRef]
- Hasegawa, J.-Y.; Takata, K.; Miyahara, T.; Neya, S.; Frisch, M.J.; Nakatsuji, H. Excited States of Porphyrin Isomers and Porphycene Derivatives: A SAC-CI Study. J. Phys. Chem. A 2005, 109, 3187–3200. [Google Scholar] [CrossRef]
- Balanay, M.P.; Kim, D.H. DFT/TD-DFT molecular design of porphyrin analogues for use in dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2008, 10, 5121–5127. [Google Scholar] [CrossRef] [Green Version]
- Cammi, R.; Corni, S.; Mennucci, B.; Tomasi, J. Electronic excitation energies of molecules in solution: State specific and linear response methods for nonequilibrium continuum solvation models. J. Chem. Phys. 2005, 122, 104513. [Google Scholar] [CrossRef]
- Corni, S.; Cammi, R.; Mennucci, B.; Tomasi, J. Electronic excitation energies of molecules in solution within continuum solvation models: Investigating the discrepancy between state-specific and linear-response methods. J. Chem. Phys. 2005, 123, 134512. [Google Scholar] [CrossRef] [PubMed]
- Improta, R.; Barone, V.; Scalmani, G.; Frisch, M.J. A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J. Chem. Phys. 2006, 125, 054103. [Google Scholar] [CrossRef]
- Fukuda, R.; Ehara, M. Mechanisms for Solvatochromic Shifts of Free-Base Porphine Studied with Polarizable Continuum Models and Explicit Solute–Solvent Interactions. J. Chem. Theory Comput. 2013, 9, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.-D.; Valiev, M.; Kowalski, K. Large-scale parallel calculations with combined coupled cluster and molecular mechanics formalism: Excitation energies of zinc–porphyrin in aqueous solution. Chem. Phys. Lett. 2008, 458, 205–209. [Google Scholar] [CrossRef]
- Shen, L. Theoretical investigation on the triplet excited state properties of the porphyrin-related photosensitizers and the implications in illustrating their photosensitization mechanisms. J. Mol. Struct. THEOCHEM 2008, 862, 130–132. [Google Scholar] [CrossRef]
- Shenderovich, I.G.; Denisov, G.S. Adduct under Field—A Qualitative Approach to Account for Solvent Effect on Hydrogen Bonding. Molecules 2020, 25, 436. [Google Scholar] [CrossRef] [Green Version]
- Shenderovich, I.G. Electric field effect on 31P NMR magnetic shielding. J. Chem. Phys. 2020, 153, 184501. [Google Scholar] [CrossRef] [PubMed]
- Chojecki, M.; Rutkowska-Zbik, D.; Korona, T. Dimerization Behavior of Methyl Chlorophyllide a as the Model of Chlorophyll a in the Presence of Water Molecules—Theoretical Study. J. Chem. Inf. Model. 2019, 59, 2123–2140. [Google Scholar] [CrossRef]
- Korona, T.; Rutkowska-Zbik, D. A theoretical study on elementary building blocks for organic solar cells—Influence of a donor molecule on electronic spectrum of PCBM. Comput. Theor. Chem. 2014, 1040, 243–258. [Google Scholar] [CrossRef]
- Park, Y.I.; Kuo, C.Y.; Martinez, J.S.; Park, Y.S.; Postupna, O.; Zhugayevych, A. Tailored Electronic Structure and Optical Properties of Conjugated Systems through Aggregates and Dipole–Dipole Interactions. ACS Appl. Mater. Interfaces 2013, 5, 4685–4695. [Google Scholar] [CrossRef]
- Mennucci, B.; Cappelli, C.; Guido, C.A.; Cammi, R.; Tomasi, J. Structures and Properties of Electronically Excited Chromophores in Solution from the Polarizable Continuum Model Coupled to the Time-Dependent Density Functional Theory. J. Phys. Chem. A 2009, 113, 3009–3020. [Google Scholar] [CrossRef] [PubMed]
- Korona, K.; Korona, T.; Rutkowska-Zbik, D.; Grankowska-Ciechanowicz, S.; Iwan, A.; Kamińska, M. Polyazomethine as a component of solar cells-theoretical and optical study. J. Phys. Chem. Solids 2015, 86, 186–193. [Google Scholar] [CrossRef]
- Shenderovich, I.G.; Denisov, G.S. Solvent effects on acid-base complexes. What is more important: A macroscopic reac-tion field or solute-solvent interactions? J. Chem. Phys. 2019, 150, 204505. [Google Scholar] [CrossRef]
- Alam, M.; Daniel, C. One- and two-photon activity of diketopyrrolopyrrole-Zn-porphyrin conjugates: Linear and quadratic density functional response theory applied to model systems. Theor. Chem. Acc. 2016, 135, 1–13. [Google Scholar] [CrossRef]
- Olsen, J.; Jo/rgensen, P. Linear and nonlinear response functions for an exact state and for an MCSCF state. J. Chem. Phys. 1985, 82, 3235–3264. [Google Scholar] [CrossRef] [Green Version]
- Furche, F. On the density matrix based approach to time-dependent density functional response theory. J. Chem. Phys. 2001, 114, 5982–5992. [Google Scholar] [CrossRef]
- Sałek, P.; Vahtras, O.; Guo, J.; Luo, Y.; Helgaker, T.; Ågren, H. Calculations of two-photon absorption cross sections by means of density-functional theory. Chem. Phys. Lett. 2003, 374, 446–452. [Google Scholar] [CrossRef]
- Esipova, T.V.; Rivera-Jacquez, H.J.; Weber, B.; Masunov, A.E.; Vinogradov, S.A. Two-Photon Absorbing Phosphorescent Metalloporphyrins: Effects of pi-Extension and Peripheral Substitution. J. Am. Chem. Soc. 2016, 138, 15648–15662. [Google Scholar] [CrossRef]
- Esipova, T.V.; Rivera-Jacquez, H.J.; Weber, B.; Masunov, A.E.; Vinogradov, S.A. Stabilizing g-States in Centrosymmetric Tetrapyrroles: Two-Photon-Absorbing Porphyrins with Bright Phosphorescence. J. Phys. Chem. A 2017, 121, 6243–6255. [Google Scholar] [CrossRef] [PubMed]
- Day, P.N.; Nguyen, K.A.; Pachter, R. Calculation of One-Photon and Two-Photon Absorption Spectra of Porphyrins Using Time-Dependent Density Functional Theory. J. Chem. Theory Comput. 2008, 4, 1094–1106. [Google Scholar] [CrossRef]
- Greco, J.A.; Shima, S.; Wagner, N.L.; McCarthy, J.R.; Atticks, K.; Brückner, C.; Birge, R.R. Two-Photon Spectroscopy of the Q-Bands of meso-Tetraphenyl-Porphyrin and -Chlorin Framework Derivatives. J. Phys. Chem. C 2015, 119, 3711–3724. [Google Scholar] [CrossRef]
- Chandra Jha, P.; Minaev, B.; Agren, H. One- and two-photon absorptions in asymmetrically substituted free-base por-phyrins: A density functional theory study. J. Chem. Phys. 2008, 128, 74302. [Google Scholar] [CrossRef]
- Ravotto, L.; Meloni, S.L.; Esipova, T.V.; Masunov, A.E.; Anna, J.M.; Vinogradov, S.A. Three-Photon Spectroscopy of Porphyrins. J. Phys. Chem. A 2020, 124, 11038–11050. [Google Scholar] [CrossRef] [PubMed]
- Cohanoschi, I.; Echeverría, L.; Hernández, F.E. Three-photon absorption measurements in hematoporphyrin IX: “Ground-breaking opportunities in deep photodynamic therapy”. Chem. Phys. Lett. 2006, 419, 33–36. [Google Scholar] [CrossRef]
- Morisue, M.; Ogawa, K.; Kamada, K.; Ohta, K.; Kobuke, Y. Strong two-photon and three-photon absorptions in the antiparallel dimer of a porphyrin–phthalocyanine tandem. Chem. Commun. 2010, 46, 2121–2123. [Google Scholar] [CrossRef] [Green Version]
- Ågren, H.; Vahtras, O.; Minaev, B. Response Theory and Calculations of Spin-Orbit Coupling Phenomena in Molecules. Quantum Boundaries Life 1996, 27, 71–162. [Google Scholar] [CrossRef]
- Gao, X.; Bai, S.; Fazzi, D.; Niehaus, T.; Barbatti, M.; Thiel, W. Evaluation of Spin-Orbit Couplings with Linear-Response Time-Dependent Density Functional Methods. J. Chem. Theory Comput. 2017, 13, 515–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, P.; Autschbach, J. Variational versus Perturbational Treatment of Spin–Orbit Coupling in Relativistic Density Functional Calculations of Electronic g Factors: Effects from Spin-Polarization and Exact Exchange. J. Chem. Theory Comput. 2013, 9, 1052–1067. [Google Scholar] [CrossRef]
- Plotnikov, V.G. Regularities of the processes of radiationless conversion in polyatomic molecules. Int. J. Quantum Chem. 1979, 16, 527–541. [Google Scholar] [CrossRef]
- De Simone, B.C.; Mazzone, G.; Russo, N.; Sicilia, E.; Toscano, M. Computational Investigation of the Influence of Halogen Atoms on the Photophysical Properties of Tetraphenylporphyrin and Its Zinc(II) Complexes. J. Phys. Chem. A 2018, 122, 2809–2815. [Google Scholar] [CrossRef]
- Alberto, M.E.; De Simone, B.C.; Mazzone, G.; Marino, T.; Russo, N. Photophysical properties of free and metallated meso-substituted tetrabenzotriazaporphyrin from density functional theory investigation. Dye. Pigment. 2015, 120, 335–339. [Google Scholar] [CrossRef]
- Yamamoto, S.; Diercksen, G.H.; Karelson, M. An ab initio CI study of electronic spectra of substituted free-base porphyrins. Chem. Phys. Lett. 2000, 318, 590–596. [Google Scholar] [CrossRef]
- Dougherty, T.J. Photosensitizers: Therapy and detection of malignant tumors. Photochem. Photobiol. 1987, 45, 879–889. [Google Scholar] [CrossRef] [PubMed]
- Scurlock, R.D.; Nonell, S.; Braslavsky, S.E.; Ogilby, P. Effect of Solvent on the Radiative Decay of Singlet Molecular Oxygen (a1.DELTA.g). J. Phys. Chem. 1995, 99, 3521–3526. [Google Scholar] [CrossRef]
- Alberto, M.E.; Marino, T.; Russo, N.; Sicilia, E.; Toscano, M. The performance of density functional based methods in the description of selected biological systems and processes. Phys. Chem. Chem. Phys. 2012, 14, 14943–14953. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, Z.H.; Sharma, D.; Mukherjee, A.; Basu, S.; Shukla, P.K.; Jha, T.; Sengupta, D. meso-Thiophenium Porphyrins and Their Zn(II) Complexes: A New Category of Cationic Photo-sensitizers. ACS Med. Chem. Lett. 2020, 11, 2041–2047. [Google Scholar] [CrossRef]
- Henderson, B.W.; A Bellnier, D.; Greco, W.R.; Sharma, A.; Pandey, R.K.; A Vaughan, L.; Weishaupt, K.R.; Dougherty, T.J. An in vivo quantitative structure-activity relationship for a congeneric series of pyropheophorbide derivatives as photosensitizers for photodynamic therapy. Cancer Res. 1997, 57, 4000–4007. [Google Scholar]
- Potter, W.R.; Henderson, B.W.; Bellnier, D.A.; Pandey, R.K.; Vaughan, L.A.; Weishaupt, K.R.; Dougherty, T.J. Parabolic quantitative structure-activity relationships and photodynamic therapy: Application of a three-compartment model with clearance to the in vivo quantitative structure-activity relationships of a congeneric series of pyropheophorbide derivatives used as photosensitizers for photodynamic therapy. Photochem. Photobiol. 1999, 70, 781–788. [Google Scholar]
- Banfi, S.; Caruso, E.; Buccafurni, L.; Murano, R.; Monti, E.; Gariboldi, M. Comparison between 5,10,15,20-Tetraaryl- and 5,15-Diarylporphyrins as Photosensitizers: Synthesis, Pho-todynamic Activity, and Quantitative Structure-Activity Relationship Modeling. J. Med. Chem. 2006, 49, 3293–3304. [Google Scholar] [CrossRef]
- Geary, R.C. The Contiguity Ratio and Statistical Mapping. Inc. Stat. 1954, 5, 115. [Google Scholar] [CrossRef]
- Randić, M. Novel Shape Descriptors for Molecular Graphs. J. Chem. Inf. Comput. Sci. 2001, 41, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Consonni, V.; Todeschini, R.; Pavan, M. Structure/Response Correlation and Similarity/Diversity Analysis by GETA-WAY descriptors. Part 1. Theory of the Novel 3D Molecular Descriptors. J. Chem. Inf. Comput. Sci. 2002, 42, 682–692. [Google Scholar] [CrossRef]
- Rutkowska-Zbik, D.; Witko, M. Metallobacteriochlorophylls as potential dual agents for photodynamic therapy and chemotherapy. J. Mol. Model. 2013, 19, 4155–4161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falahati, K.; Hamerla, C.; Huix-Rotllant, M.; Burghardt, I. Ultrafast photochemistry of free-base porphyrin: A theoretical investigation of B → Q internal conversion mediated by dark states. Phys. Chem. Chem. Phys. 2018, 20, 12483–12492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Functional | ME [eV] | MAE [eV] | MAXE [eV] |
---|---|---|---|
GGA and meta-GGA functionals | |||
PBE | −0.04 | 0.11 | 0.48 |
BP89 | −0.04 | 0.11 | 0.47 |
BLYP | −0.05 | 0.10 | 0.46 |
TPSS | 0.00 | 0.10 | 0.38 |
M06-L | 0.05 | 0.11 | 0.26 |
Global hybrid functionals | |||
PBE0 | 0.15 | 0.15 | 0.25 |
B3P86 | 0.13 | 0.13 | 0.24 |
B3LYP | 0.12 | 0.12 | 0.23 |
TPSS0 | 0.16 | 0.16 | 0.27 |
M06 | 0.07 | 0.10 | 0.17 |
BHLYP | 0.14 | 0.14 | 0.22 |
M06-2X | 0.15 | 0.15 | 0.23 |
Range separated hybrid functionals | |||
ωB97 | −0.16 | 0.16 | 0.23 |
ωB97X | −0.08 | 0.09 | 0.17 |
LC-BLYP | −0.09 | 0.10 | 0.18 |
CAM-B3LYP | 0.07 | 0.08 | 0.16 |
System | Basis-Set | Q [nm] | B [nm] | Exp. [nm] | Ref. |
---|---|---|---|---|---|
H2P (free-base porphyrin) | 6-31G | 502 | 331 | Q 514 B 372 | [51] |
Zn-P | 6-31G | 512 | 334 | Q 569–532 B 396 | [51] |
Zn-P | 6-31G(d) | 517 | 335 | Q 572 B 402 | [86] |
Zn-TPP | 6-31G(d) | 541 | 359 | Q 586 B 419 | [86] |
5,10,15,20-tetrakis(4-hydroxyphenyl)-porphyrin (p-THPP) | 6-31G** | Qy 590 Qx 539 | n/d | Qy 651, 594 Qx 553, 516 | [93] |
Phtalocyanine (Pcs) | 6-311G(d,p) | Qy 624 Qx 610 | 295 | Qy 654 Qx 689 B 337 | [94] |
Zn-Pcs | 6-311G(d,p) | 612 | 296 | Q 667 B 343 | [94] |
Zn-Pcs | 6-31G(d) | 607 | 313, 295 | Q 670 B 370, 330 | [86] |
System | Basis-Set | Q [nm] | B [nm] | Exp. [nm] | Ref. |
---|---|---|---|---|---|
H2P (free-base porphyrin) | 6-31G | 500 | 348 | Q 514 B 372 | [51] |
Zn-P | 6-31G | 506 | 347 | Q 569-532 B 396 | [51] |
Zn-P | 6-31G(d) | 507 | 349 | Q 572 B 402 | [86] |
Zn-TPP | 6-31G(d) | 535 | 381 | Q 586 B 419 | [86] |
meso-tetrakis(3-metoxy-4-hydroxyphenyl)-porphyrin | 6-31G(d) | Qy 599.01 Qx 563.37 | 435.12; 431.77; 425.25; 423.87; 407.23 | Qy 651,594 Qx 553, 516 B 421, 403 | [89] |
meso-tetra (hydroxyphenyl) porphycene (m-THPPo, temocene), | 6-31G(d) | 594, 571 | n/d | 656, 624, 583 | [95] |
5,10,15,20-tetrakis- (m-hydroxyphenyl)chlorin (m-THPC, Foscan) | 6-311+G(d,p) | 558, 523 | n/d | 650, 414 | [95] |
5,10,15,20-tetrakis(4-hydroxyphenyl)-porphyrin (p-THPP) | 6-31G | Qy 587 Qx 544 | n/d | Qy 651, 594 Qx 553, 516 | [93] |
p-THPP | 6-31G** | Qy 588 Qx 552 | n/d | Qy 651, 594 Qx 553, 516 | [93] |
p-THPP | 6-31G+** | Qy 585 Qx 549 | n/d | Qy 651, 594 Qx 553, 516 | [93] |
B-ring benzoporphyrin derivative B3B− | 6-311+G(d,p) | Qy 626 Qx 556 | 442, 437, 409 | Qy 689, 628 Qx 564, 502 B 432, 416 | [88] |
B-ring benzoporphyrin derivative B3B0 | 6-311+G(d,p) | Qy 636 Qx 588 | 474, 466, 412, 403 | Qy 688, 628 Qx 576, 546 B 432 | [88] |
B-ring benzoporphyrin derivative B3B2+ | 6-311+G(d,p) | Qy 668 Qx 592 | 467, 460, 430, 419 | Qy 672,616 Qx 592, 552 B 432 | [88] |
Phtalocyanine (Pcs) | 6-311G(d,p) | Qy 602 Qx 597 | 328 | Qy 654 Qx 689 B 337 | [94] |
Zn-Pcs | 6-311G(d,p) | 596 | 323 | Q 667 B 343 | [94] |
Zn-Pcs | 6-31G(d) | 593 | 366, 338 | Q 670 B 370, 330 | [86] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drzewiecka-Matuszek, A.; Rutkowska-Zbik, D. Application of TD-DFT Theory to Studying Porphyrinoid-Based Photosensitizers for Photodynamic Therapy: A Review. Molecules 2021, 26, 7176. https://doi.org/10.3390/molecules26237176
Drzewiecka-Matuszek A, Rutkowska-Zbik D. Application of TD-DFT Theory to Studying Porphyrinoid-Based Photosensitizers for Photodynamic Therapy: A Review. Molecules. 2021; 26(23):7176. https://doi.org/10.3390/molecules26237176
Chicago/Turabian StyleDrzewiecka-Matuszek, Agnieszka, and Dorota Rutkowska-Zbik. 2021. "Application of TD-DFT Theory to Studying Porphyrinoid-Based Photosensitizers for Photodynamic Therapy: A Review" Molecules 26, no. 23: 7176. https://doi.org/10.3390/molecules26237176
APA StyleDrzewiecka-Matuszek, A., & Rutkowska-Zbik, D. (2021). Application of TD-DFT Theory to Studying Porphyrinoid-Based Photosensitizers for Photodynamic Therapy: A Review. Molecules, 26(23), 7176. https://doi.org/10.3390/molecules26237176