Cadmium and Lead Content in Selected Fungi from Poland and Their Edible Safety Assessment
Abstract
:1. Introduction
2. Results
Boletus badius | Boletus edulis | Cantharellus cibarius | |||||
---|---|---|---|---|---|---|---|
Mean Content [mg/25 g d.w.] | Percentage Share in TWI/PTWI | Mean Content [mg/25 g d.w.] | Percentage Share in TWI/PTWI | Mean Content [mg/25 g d.w.] | Percentage Share in TWI/PTWI | ||
Region 1 | Cd | 0.017 | 9.71% | 0.062 | 35.43% | 0.009 | 5.14% |
Pb | 0.007 | 0.40% | 0.008 | 0.46% | 0.011 | 0.63% | |
Region 2 | Cd | 0.014 | 8.00% | 0.045 | 25.71% | 0.009 | 5.14% |
Pb | 0.005 | 0.29% | 0.007 | 0.40% | 0.011 | 0.63% | |
Total | Cd | 0.015 | 8.57% b | 0.054 | 30.87% a | 0.009 | 5.14% b |
Pb | 0.060 | 0.34% c | 0.008 | 0.46% b | 0.011 | 0.63% a |
3. Discussion
4. Materials and Methods
4.1. Research Material
4.2. Analytical Methods
4.2.1. Samples Preparation
4.2.2. Samples Mineralization
4.2.3. Cd and Pb Determination
4.3. Statistical Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Statistical Yearbook of Forestry, Statistics Poland, Warsaw 2019. ISSN 2657-3199, pp. 33–75. Available online: https://stat.gov.pl/files/gfx/portalinformacyjny/en/defaultaktualnosci/3328/12/2/1/statistical_yearbook_of_forestry_2019.pdf (accessed on 9 September 2021). (In Polish)
- Deshmukh, S.K.; Misra, J.K.; Tewari, J.P.; Papp, T. Fungi: Applications and Management Strategies; CRC Press: Boca Raton, FL, USA, 2016; pp. 32–60. [Google Scholar]
- Rasalanavho, M.; Moodley, R.; Jonnalagadda, S.B. Elemental bioaccumulation and nutritional value of five species of wild growing mushrooms from South Africa. Food Chem. 2020, 319, 126596. [Google Scholar] [CrossRef]
- Money, N.P. Mushrooms: A Natural and Cultural History; Reaction Books: London, UK, 2017; pp. 19–48. [Google Scholar]
- Manjunathan, J.; Kaviyarasan, V. Nutrient composition in wild and cultivated edible mushroom, Lentinus tuberregium (Fr.) Tamil Nadu., India. Int. Food Res. J. 2011, 18, 809–811. [Google Scholar]
- Kalač, P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J. Sci. Food Agric. 2013, 93, 209–218. [Google Scholar] [CrossRef]
- Reis, F.S.; Barros, L.; Martins, A.; Ferreira, I.C. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An interspecies comparative study. Food Chem. Toxicol. 2012, 50, 191–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, C. Reactive oxygen species and antioxidant properties from mushrooms. Synthetic Syst. Biotechnol. 2017, 2, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Boonsong, S.; Klaypradit, W.; Wilaipuna, P. Antioxidant activities of extracts from five edible mushrooms using different extractants. Agric. Nat. Resour. 2016, 50, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Roncero-Ramos, I.; Delgado-Andrade, C. The beneficial role of edible mushrooms in human health. Curr. Opin. Food Sci. 2017, 14, 122–128. [Google Scholar] [CrossRef]
- Chiocchetti, G.M.; Latorre, T.; Jesús Clemente, M.J.; Jadán-Piedra, C.; Devesa, V.; Vélez, D. Toxic trace elements in dried mushrooms: Effects of cooking and gastrointestinal digestion on food safety. Food Chem. 2020, 306, 125478. [Google Scholar] [CrossRef] [PubMed]
- Nnorom, I.C.; Eze, S.O.; Ukaogo, P.O. Mineral contents of three wild-grown edible mushrooms collected from forests of south eastern Nigeria: An evaluation of bioaccumulation potentials and dietary intake risks. Sci. Afr. 2020, 8, 163. [Google Scholar] [CrossRef]
- Kalač, P. Edible Mushrooms: Chemical Composition and Nutritional Value; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–199. ISBN 9780128044551. [Google Scholar]
- Rzymski, P.; Klimaszyk, P. Is the yellow knight mushroom edible or not? A systematic review and critical viewpoints on the toxicity of Tricholoma equestre. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1309–1324. [Google Scholar] [CrossRef] [Green Version]
- Muszyńska, B.; Kała, K.; Rojowski, J.; Grzywacz, A.; Opoka, W. Composition and biological properties of Agaricus bisporus fruiting bodies—A review. Polish J. Food Nutr. Sci. 2017, 67, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Siwulski, M.; Rzymski, P.; Budka, A.; Kalač, P.; Budzyńska, S.; Dawidowicz, L.; Hajduk, E.; Kozak, L.; Budzula, J.; Sobieralski, K.; et al. The effect of different substrates on the growth of six cultivated mushroom species and composition of macro and trace elements in their fruiting bodies. Eur. Food Res. Technol. 2019, 245, 419–431. [Google Scholar] [CrossRef] [Green Version]
- Falandysz, J.; Zalewska, T.; Fernandes, A.R. Cs and K in Cortinarius caperatus mushrooms (1996–2016) in Poland-Bioconcentration and estimated intake: 137Cs in Cortinarius spp. from the Northern Hemisphere from 1974 to 2016. Environ. Pollut. 2019, 255, 113208. [Google Scholar] [CrossRef] [PubMed]
- Kavčič, A.; Mikuš, K.; Debeljak, M.; Teun van Elteren, J.; Arčon, I.; Kodre, A.; Kump, P.; Germanos, A.; Karydas, A.G.; Migliori, A.; et al. Localization, ligand environment, bioavailability and toxicity of mercury in Boletus spp. and Scutiger pes-caprae mushrooms. Ecotoxicol. Environ. Saf. 2019, 184, 109623. [Google Scholar] [CrossRef]
- Falandysz, J.; Borovička, J. Macro and trace mineral constituents and radionuclides in mushrooms: Health benefits and risks. Appl. Microbiol. Biotechnol. 2013, 97, 477–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zsigmond, A.R.; Kántor, I.; May, Z.; Urák, I.; Héberger, K. Elemental composition of Russula cyanoxantha along an urbanization gradient in Cluj-Napoca (Romania). Chemosphere 2019, 27, 124566. [Google Scholar] [CrossRef] [PubMed]
- Gałgowska, M.; Pietrzak-Fiećko, R. The level of selected organochlorine compounds residues in popular edible mushrooms from north-eastern Poland. Food Chem. 2021, 353, 129441. [Google Scholar] [CrossRef]
- Rzymski, P.; Mleczek, M.; Siwulski, M.; Jasińska, A.; Budka, A.; Niedzielski, P.; Kalač, P.; Gąsecka, M.; Budzyńska, S. Multi- elemental analysis of fruit bodies of three cultivated commercial Agaricus species. J. Food Compos. Anal. 2017, 59, 170–178. [Google Scholar] [CrossRef]
- Bahadori, M.B.; Sarikurkcu, C.; Yalcin, O.U.; Cengiz, M.; Gungor, H. Metal concentration, phenolics profiling, and antioxidant activity of two wild edible Melanoleuca mushrooms (M. cognata and M. stridula). Microchem. J. 2019, 150, 104172. [Google Scholar] [CrossRef]
- Rahimzadeh, M.R.; Rahimzadeh, M.R.; Kazemi, S.; Moghadamnia, A. Cadmium toxicity and treatment: An update. The Effects of Cadmium Toxicity. Caspian J. Intern. Med. 2017, 8, 135–145. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Filipič, M.; Fatur, T.; Vudrag, M. Molecular mechanisms of cadmium induced mutagenicity. Hum. Exp. Toxicol. 2006, 25, 67–77. [Google Scholar] [CrossRef]
- Aliyu, H.S.; Musa, A. Lead: A concise review of its toxicity, mechanism and health effect. GSC Biol. Pharm. Sci. 2021, 15, 55–62. [Google Scholar] [CrossRef]
- Nutritional Value and Culinary Usefulness of Mushrooms. Available online: https://www.gov.pl/web/gis/wartosc-odzywcza-przydatnosc-kulinarna-grzybow (accessed on 9 September 2021).
- World Health Organization. WHO Technical Report Series 960. Evaluation of Certain Food Additives and Contaminants 2011. Available online: https://www.who.int/publications/i/item/9789241209601 (accessed on 9 September 2021).
- Adamiak, E.A.; Kalembasa, S.; Kuziemska, B. Contents of heavy metals in selected species of edible mushrooms. Acta Agrophys. 2013, 20, 7–16. (In Polish) [Google Scholar]
- Karmańska, A.; Wędzisz, A. Content of selected macro- and microelements in various species of large fruiting body mushrooms collected in the province of Łódź. Bromat. Chem. Toksykol. 2010, 43, 124–129. [Google Scholar]
- Mleczek, M.; Siwulski, M.; Kaczmarek, Z.; Rissmann, I.; Sobieralski, K.; Goliński, P. Concentration of selected trace element in Xerocomus badius mushroom bodies-A health risk for humans? Acta Sci. Pol. Technol. Aliment. 2013, 12, 331–343. [Google Scholar]
- Giannaccini, G.; Betti, L.; Palego, L.; Mascia, G.; Schmid, L.; Lanza, M.; Mela, A.; Fabbrini, L.; Biondi, L.; Lucacchini, A. The trace element content of top-soil and wild edible mushroom samples collected in Tuscany, Italy. Environ. Monit. Assess. 2012, 184, 7579–7585. [Google Scholar] [CrossRef] [PubMed]
- Zavastin, D.E.; Biliută, G.; Dodi, G.; Macsim, A.M.; Lisa, G.; Gherman, S.P.; Breabăn, J.G.; Miron, A.; Coseri, S. Metal content and crude polysaccharide characterization of selected mushrooms growing in Romania. J. Food Compos. Anal. 2018, 67, 149–158. [Google Scholar] [CrossRef]
- Coroian, A.; Odagiu, A.; Marchiș, Z.; Mireșan, V.; Răducu, C.; Oroian, C.; Longodor, A.L. Heavy metals and the radioactivity in boletus (Boletus edulis), and chanterelle mushrooms (Cantharellus cibarius) in Transylvanian area. AgroLife Sci. J. 2018, 7, 17–21. [Google Scholar]
- Su, J.; Zhang, J.; Li, J.; Li, T.; Liu, H.; Wang, Y. Determination of mineral contents of wild Boletus edulis mushroom and its edible safety assessment. J. Environ. Sci. Health B 2018, 53, 454–463. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, D.; You, Y.; Zeng, S.; Li, Y.; Tang, Q.; Han, G.; Liu, A.; Feng, C.; Li, C.; et al. Nutritional composition of boletus mushrooms from Southwest China and their antihyperglycemic and antioxidant activities. Food Chem. 2016, 211, 83–91. [Google Scholar] [CrossRef]
- Falandysz, J.; Chudzińska, M.; Barałkiewicz, D.; Drewnowska, M.; Hanć, A. Toxic elements and bio-metals in Cantharellus mushrooms from Poland and China. Environ. Sci. Pollut. Res. 2017, 24, 11472–11482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mleczek, M.; Niedzielski, M.; Kalac, P.; Budka, A.; Siwulski, M.; Gasecka, M.; Rzymski, P.; Magdziak, Z.; Sobieralski, K. Multielemental analysis of 20 mushroom species growing near a heavily trafficked road in Poland. Environ. Sci. Pollut. Res. 2016, 23, 16280–16295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arvay, J.; Tomáš, J.; Hauptvogl, M.; Kopernická, M.; Kováčik, A.; Bajčan, D.; Massányi, P. Contamination of wild-grown edible mushrooms by heavy metals in a former mercury-mining area. J. Environ. Sci. Health B 2014, 49, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Türkmen, M.; Budur, D. Heavy metal contaminations in edible wild mushroom species from Turkey’s Black Sea region. Food Chem. 2018, 254, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU) No 488/2014 of 12 May 2014 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Cadmium in Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32014R0488 (accessed on 9 September 2021).
- Commission Regulation (EU) 2015/1005 of 25 June 2015 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Lead in Certain Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32015R1005 (accessed on 9 September 2021).
- Whiteside, P.; Miner, B. Pye Unicam Atomic Absorption Data Book; Pye Unicam LTD: Cambridge, UK, 1984. [Google Scholar]
Boletus badius | Boletus edulis | Cantharellus cibarius | ||||
---|---|---|---|---|---|---|
Cd | Pb | Cd | Pb | Cd | Pb | |
Region 1 | 0.669 ± 0.022 a | 0.268 ± 0.014 a | 2.490 ± 0.078 a | 0.334 ± 0.019 a | 0.377 ± 0.022 a | 0.421 ± 0.019 a |
Region 2 | 0.562 ± 0.018 a | 0.218 ± 0.011 a | 1.811 ± 0.053 b | 0.267 ± 0.014 a | 0.362 ± 0.025 a | 0.427 ± 0.022 a |
Total | 0.615 ± 0.020 B | 0.243 ± 0.013 B | 2.151 ± 0.066 A | 0.301 ± 0.017 B | 0.370 ± 0.024 B | 0.424 ± 0.021 A |
Localization | Boletus badius | Boletus edulis | Cantharellus cibarius | References | ||||
---|---|---|---|---|---|---|---|---|
Cd | Pb | Cd | Pb | Cd | Pb | |||
Poland | Wysoczyzna Siedlecka, | 0.721– 0.767 | 0.142– 0.357 | 1.770– 1.900 | 0.440– 0.552 | nd | nd | Adamiak et al., 2013 |
Poland | nd | nd | nd | nd | 0.230– 1.600 | 0.170– 0.660 | Falandysz et al., 2017 | |
Łódzkie Voivodship, | 0.900–1.600 | nd | 2.450–5.600 | nd | 1.900– 2.100 | nd | Karmańska and Wędzisz, 2010 | |
Pomeranian, the Greater Poland, the Łódź, the Opole and Silesian region | 1.470– 1.890 | 0.510– 1.100 | nd | nd | nd | nd | Mleczek et al., 2013 | |
Surroundings of a heavily trafficked road | nd | nd | nd | nd | 0.210 | 0.300 | Mleczek et al., 2016 | |
Europe | Slovak Republic, the central Spiš region, | nd | nd | nd | nd | 0.200– 5.700 | 0.100– 3.200 | Arvay et al., 2014 |
Spain | nd | nd | 0.756– 1.310 | 0.094– 1.940 | 0.194–0.622 * | 0.219–0.645 * | Chiocchetti et al., 2020 | |
Romania, Transylvania | nd | nd | 0.120– 1.320 | 0.150– 0.340 | 0.600– 1.130 | 0.120– 0.300 | Coroian et al., 2018 | |
Italy, Lucca province, North-Central | nd | nd | 2.000– 3.400 | 0.800– 2.600 | nd | nd | Giannaccini et al., 2012 | |
Romania, Poiana Stampei area, Suceava County | nd | nd | 1.070 | 0.626 | 0.080 | 0.280 | Zavastin et al., 2018 | |
Others | China | nd | nd | nd | nd | 0.580 | 1.100 | Falandysz et al., 2017 |
China Southwest, Yunnan and Sichuan Provinces | nd | nd | 0.000– 2.800 | 1.300– 5.500 | nd | nd | Liu et al., 2016 | |
KwaZulu, South Africa | nd | nd | 0.960– 1.850 | 0.00– 2.020 | nd | nd | Rasalanavho et al., 2020 | |
China, Yunnan Province, | nd | nd | 5.700– 88.450 | nd | nd | nd | Su et al., 2018 | |
Turkey’s Black Sea region | nd | nd | nd | nd | 0.200– 0.800 | 0.340– 0.910 | Türkmen and Budur, 2018 |
Product | The Highest Level of Cd mg/kg of Wet Weight | |
---|---|---|
1 | Vegetables and fruit, excluding root and tuber vegetables, leaf vegetables, fresh herbs, leafy brassica, stem vegetables, fungi, and seaweed | 0.050 |
2 | Root and tuber vegetables (excluding celeriac, parsnips, salsify, and horseradish), stem vegetables (excluding celery). For potatoes, the maximum level applies to peeled potatoes | 0.100 |
3 | Leaf vegetables, fresh herbs, leafy brassica, celery, celeriac, parsnips, salsify, horseradish, and the following fungi: Agaricus bisporus (common mushroom), Pleurotus ostreatus (Oyster mushroom), and Lentinula edodes (Shiitake mushroom) | 0.200 |
4 | Fungi, excluding those listed above | 1.000 |
5 | Cereal grains excluding wheat and rice | 0.100 |
6 | Wheat grains, rice grains, wheat bran, and wheat germ for direct consumption, soy beans | 0.200 |
7 | Meat of bovine animals, sheep, pig, and poultry | 0.050 |
8 | Muscle meat of fish excluding species: mackerel, tuna, bichique, bullet tuna, anchovy, swordfish, and sardine | 0.050 |
9 | Infant formulae and follow on-formulae:
| 0.010 as from 01/01/2015 0.005 as from 01/01/2015 0.020 as from 01/01/2015 0.010 as from 01/01/2015 |
10 | Food supplements excluding food supplements consisting exclusively or mainly of dried seaweed, products derived from seaweed, or dried bivalve molluscks. | 1.000 |
Product | The Highest Level of Pb mg/kg of Wet Weight | |
---|---|---|
1 | Raw milk, heat-treated milk, and milk for the manufacture of milk-based products | 0.020 |
2 | Infant formulae and follow-on formulae:
| 0.050 0.010 |
3 | Meat of bovine animals, sheep, pig, and poultry | 0.100 |
4 | Muscle meat of fish | 0.300 |
5 | Cereals and pulses | 0.200 |
6 | Vegetables excluding leafy brassica, salsify, leaf vegetables and fresh herbs, fungi, seaweed, and fruiting vegetables | 0.100 |
7 | Leafy brassica, salsify, leaf vegetables excluding fresh herbs and the following fungi Agaricus bisporus (common mushroom), Pleurotus ostreatus (Oyster mushroom), and Lentinula edodes (Shiitake mushroom) | 0.300 |
8 | Fruit, excluding cranberries, currants, elderberries, and strawberry tree fruit | 0.100 |
9 | Fats and oils, including milk fat | 0.100 |
10 | Food supplements | 3.000 |
Heavy Metal | Calibration Curve Measuring Range (μg/mL) | Calibration Curve Equation | Regression Coefficient (R2) | |
---|---|---|---|---|
Cadmium | Cd | 0.02–0.2 | y = 0.3167x + 0.0003 | 0.9996 |
Lead | Pb | 0.002–0.008 | y = 16.446x + 0.0065 | 0.9997 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gałgowska, M.; Pietrzak-Fiećko, R. Cadmium and Lead Content in Selected Fungi from Poland and Their Edible Safety Assessment. Molecules 2021, 26, 7289. https://doi.org/10.3390/molecules26237289
Gałgowska M, Pietrzak-Fiećko R. Cadmium and Lead Content in Selected Fungi from Poland and Their Edible Safety Assessment. Molecules. 2021; 26(23):7289. https://doi.org/10.3390/molecules26237289
Chicago/Turabian StyleGałgowska, Michalina, and Renata Pietrzak-Fiećko. 2021. "Cadmium and Lead Content in Selected Fungi from Poland and Their Edible Safety Assessment" Molecules 26, no. 23: 7289. https://doi.org/10.3390/molecules26237289
APA StyleGałgowska, M., & Pietrzak-Fiećko, R. (2021). Cadmium and Lead Content in Selected Fungi from Poland and Their Edible Safety Assessment. Molecules, 26(23), 7289. https://doi.org/10.3390/molecules26237289