Croton lechleri Extracts as Green Corrosion Inhibitors of Admiralty Brass in Hydrochloric Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lyophilization of C. lechleri Latex (CL1)
2.2. Chloroform Extract from C. lechleri Latex (CL2)
2.3. Supercritical CO2 Antisolvent Extraction from C. lechleri Latex (CL3)
2.4. Quantitative Determination of Alkaloids in the Extracts from C. lechleri Latex
2.5. Determination of Total Phenols Content in the Extracts from C. lechleri Latex
2.6. Electrochemical Determination of the Corrosion Inhibition Efficiency for the Extracts from C. lechleri Latex
2.7. Superficial Characterization of AB Electrodes
3. Results and Discussion
3.1. Phytochemical Screening of the Extracts from C. lechleri Latex
3.2. Potentiodynamic Polarization Plots of AB in HCl Media with the Extracts from C. lechleri Latex
3.3. EIS of AB in HCl Media Inhibited with CL2
3.4. Investigation of the Morphology and Surperficial Composition of AB by SEM-EDS and XPS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Revie, R.W.; Uhlig, H.H. Corrosion and Corrosion Control; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; ISBN 9780470277270. [Google Scholar]
- Callister, W.D.; Rethwisch, D.G. Materials Science and Engineering an Introduction, 9th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; ISBN 9781118324578. [Google Scholar]
- Shah, R.K.; Sekuli, D.P. Fundamentals of Heat Exchanger Design; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; ISBN 9780470172605. [Google Scholar]
- Chung, D.D. Materials for thermal conduction. Appl. Therm. Eng. 2001, 21, 1593–1605. [Google Scholar] [CrossRef]
- Brass Alloy UNS C44300. Available online: https://www.azom.com/article.aspx?ArticleID=6371 (accessed on 17 November 2021).
- Sherif, E.-S.M.; Erasmus, R.M.; Comins, J.D. Inhibition of copper corrosion in acidic chloride pickling solutions by 5-(3-aminophenyl)-tetrazole as a corrosion inhibitor. Corros. Sci. 2008, 50, 3439–3445. [Google Scholar] [CrossRef]
- Meroufel, A.A. Corrosion Control during Acid Cleaning of Heat Exchangers. In Corrosion and Fouling Control in Desalination Industry; Springer International Publishing: Cham, Germany, 2020; pp. 209–224. [Google Scholar]
- Ramana Murthy, R.V.V.; Katari, N.K.; Satya Sree, N.; Jonnalagadda, S.B. A novel protocol for reviving of oil and natural gas wells. Pet. Res. 2019, 4, 276–281. [Google Scholar] [CrossRef]
- Zhu, M.-D.; Xing, N.; Ai, L.-S.; Wang, J.; Chen, X.-Y.; Jiao, Q.-Z.; Shi, L. Development of polyacid corrosion inhibitor with 2-vinylpyridine residue. Chem. Pap. 2021, 75, 6127–6135. [Google Scholar] [CrossRef]
- Taha, K.K.; Mohamed, M.E.; Khalil, S.A.; Talab, S.A. Inhibition of Brass Corrosion in Acid Medium Using Thiazoles. Int. Lett. Chem. Phys. Astron. 2013, 14, 87–102. [Google Scholar] [CrossRef] [Green Version]
- Benali, O.; Zebida, M.; Benhiba, F.; Zarrouk, A.; Maschke, U. Carbon steel corrosion inhibition in H2SO4 0.5 M medium by thiazole-based molecules: Weight loss, electrochemical, XPS and molecular modeling approaches. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 630, 127556. [Google Scholar] [CrossRef]
- Satpati, A.K.; Reddy, A.V.R. Electrochemical Study on Corrosion Inhibition of Copper in Hydrochloric Acid Medium and the Rotating Ring-Disc Voltammetry for Studying the Dissolution. Int. J. Electrochem. 2011, 2011, 173462. [Google Scholar] [CrossRef] [Green Version]
- Qiang, Y.; Li, H.; Lan, X. Self-assembling anchored film basing on two tetrazole derivatives for application to protect copper in sulfuric acid environment. J. Mater. Sci. Technol. 2020, 52, 63–71. [Google Scholar] [CrossRef]
- Qiang, Y.; Guo, L.; Li, H.; Lan, X. Fabrication of environmentally friendly Losartan potassium film for corrosion inhibition of mild steel in HCl medium. Chem. Eng. J. 2021, 406, 126863. [Google Scholar] [CrossRef]
- Messina, E.; Giuliani, C.; Pascucci, M.; Riccucci, C.; Staccioli, M.P.; Albini, M.; Di Carlo, G. Synergistic Inhibition Effect of Chitosan and L-Cysteine for the Protection of Copper-Based Alloys against Atmospheric Chloride-Induced Indoor Corrosion. Int. J. Mol. Sci. 2021, 22, 10321. [Google Scholar] [CrossRef]
- Stupnišek-Lisac, E.; Gazivoda, A.; Madžarac, M. Evaluation of non-toxic corrosion inhibitors for copper in sulphuric acid. Electrochim. Acta 2002, 47, 4189–4194. [Google Scholar] [CrossRef]
- Yang, H.-M. Role of Organic and Eco-Friendly Inhibitors on the Corrosion Mitigation of Steel in Acidic Environments—A State-of-Art Review. Molecules 2021, 26, 3473. [Google Scholar] [CrossRef] [PubMed]
- Raja, P.B.; Sethuraman, M.G. Natural products as corrosion inhibitor for metals in corrosive media—A review. Mater. Lett. 2008, 62, 113–116. [Google Scholar] [CrossRef]
- Qiang, Y.; Zhang, S.; Tan, B.; Chen, S. Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution. Corros. Sci. 2018, 133, 6–16. [Google Scholar] [CrossRef]
- Davis, G.D.; Von Fraunhofer, J.A.; Krebs, L.A.; Dacres, C.M. The use of tobacco extracts as corrosion inhibitors. NACE-Int. Corros. Conf. Ser. 2001, 2001-March, NACE-01558. [Google Scholar]
- Ebenso, E.E.; Eddy, N.O.; Odiongenyi, A.O. Corrosion inhibitive properties and adsorption behaviour of ethanol extract of Piper guinensis as a green corrosion inhibitor for mild steel in H2SO4. Afr. J. Pure Appl. Chem. 2008, 2, 107–115. [Google Scholar]
- Okafor, P.C.; Ikpi, M.E.; Ekanem, U.I.; Ebenso, E. Effects of extracts from nauclea latifolia on the dissolution of carbon steel in H2SO4 solutions. Int. J. Electrochem. Sci. 2013, 8, 12278–12286. [Google Scholar]
- Kliskic, M.; Radosevic, J.; Gudic, S.; Katalinic, V. Aqueous extract of Rosmarinus officinalis L. as inhibitor of Al ± Mg alloy corrosion in chloride solution. J. Appl. Electrochem. 2000, 30, 823–830. [Google Scholar] [CrossRef]
- Berković, K.; Kovač, S.; Vorkapić-Furač, J. Natural compounds as environmentally friendly corrosion inhibitors of aluminium. Acta Aliment. 2004, 33, 237–247. [Google Scholar] [CrossRef]
- Ostovari, A.; Hoseinieh, S.M.; Peikari, M.; Shadizadeh, S.R.; Hashemi, S.J. Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: A comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, α-d-Glucose and Tannic acid). Corros. Sci. 2009, 51, 1935–1949. [Google Scholar] [CrossRef]
- Subramanyam, N.C.; Sheshadri, B.S.; Mayanna, S.M. Quinine and strychnine as corrosion inhibitors for copper in sulphuric acid. Br. Corros. J. 1984, 19, 177–180. [Google Scholar] [CrossRef] [Green Version]
- Kleindl, P.A.; Xiong, J.; Hewarathna, A.; Mozziconacci, O.; Nariya, M.K.; Fisher, A.C.; Deeds, E.J.; Joshi, S.B.; Middaugh, C.R.; Schöneich, C.; et al. The Botanical Drug Substance Crofelemer as a Model System for Comparative Characterization of Complex Mixture Drugs. J. Pharm. Sci. 2017, 106, 3242–3256. [Google Scholar] [CrossRef]
- De Marino, S.; Gala, F.; Zollo, F.; Vitalini, S.; Fico, G.; Visioli, F.; Iorizzi, M. Identification of minor secondary metabolites from the latex of Croton lechleri (Muell-Arg) and evaluation of their antioxidant activity. Molecules 2008, 13, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
- Milanowski, D.J.; Winter, R.E.K.; Elvin-Lewis, M.P.F.; Lewis, W.H. Geographic distribution of three alkaloid chemotypes of Croton lechleri. J. Nat. Prod. 2002, 65, 814–819. [Google Scholar] [CrossRef] [PubMed]
- Jones, K. Review of Sangre de Drago (Croton lechleri)—A South American Tree Sap in the Treatment of Diarrhea, Inflammation, Insect Bites, Viral Infections, and Wounds: Traditional Uses to Clinical Research. J. Altern. Complement. Med. 2003, 9, 877–896. [Google Scholar] [CrossRef] [PubMed]
- Felipe, M.B.M.C.; Silva, D.R.; Martinez-Huitle, C.A.; Medeiros, S.R.B.; Maciel, M.A.M. Effectiveness of Croton cajucara Benth on corrosion inhibition of carbon steel in saline medium. Mater. Corros. 2013, 64, 530–534. [Google Scholar] [CrossRef]
- Rajeswari, V.; Kesavan, D.; Gopiraman, M.; Viswanathamurthi, P.; Poonkuzhali, K.; Palvannan, T. Corrosion inhibition of Eleusine aegyptiaca and Croton rottleri leaf extracts on cast iron surface in 1 M HCl medium. Appl. Surf. Sci. 2014, 314, 537–545. [Google Scholar] [CrossRef]
- Geethamani, P.; Kasthuri, P.K.; Aejitha, S.; Geethamani, P. Mitigation of mild steel corrosion in 1M sulphuric acid medium by Croton Sparciflorus A green inhibitor. Chem. Sci. Rev. Lett. 2014, 2, 507–516. [Google Scholar]
- Sarker, S.D.; Nahar, L. (Eds.) Natural Products Isolation, 3rd ed.; Humana Press: London, UK, 2012; Volume 1, ISBN 9781627032384. [Google Scholar]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Valorisation of food agro-industrial by-products: From the past to the present and perspectives. J. Environ. Manag. 2021, 299, 113571. [Google Scholar] [CrossRef]
- Lampakis, D.; Skenderidis, P.; Leontopoulos, S. Technologies and Extraction Methods of Polyphenolic Compounds Derived from Pomegranate (Punica granatum) Peels. A Mini Review. Processes 2021, 9, 236. [Google Scholar] [CrossRef]
- Kawasaki, H.; Shimanouchi, T.; Kimura, Y. Recent Development of Optimization of Lyophilization Process. J. Chem. 2019, 2019, 9502856. [Google Scholar] [CrossRef]
- Reverchon, E.; De Marco, I. Supercritical fluid extraction and fractionation of natural matter. J. Supercrit. Fluids 2006, 38, 146–166. [Google Scholar] [CrossRef]
- Meneses, M.A.; Caputo, G.; Scognamiglio, M.; Reverchon, E.; Adami, R. Antioxidant phenolic compounds recovery from Mangifera indica L. by-products by supercritical antisolvent extraction. J. Food Eng. 2015, 163, 45–53. [Google Scholar] [CrossRef]
- Guamán-Balcázar, M.C.; Montes, A.; Fernández-Ponce, M.T.; Casas, L.; Mantell, C.; Pereyra, C.; Martínez de la Ossa, E. Generation of potent antioxidant nanoparticles from mango leaves by supercritical antisolvent extraction. J. Supercrit. Fluids 2018, 138, 92–101. [Google Scholar] [CrossRef]
- Vaisberg, A.J.; Milla, M.; Planas, M.C.; Cordova, J.L.; de Agusti, E.R.; Ferreyra, R.; Mustiga, M.C.; Carlin, L.; Hammond, G.B. Taspine is the cicatrizant principle in Sangre de Grado extracted from Croton lechleri. Planta Med. 1989, 55, 140–143. [Google Scholar] [CrossRef]
- Palanisamy, G. Corrosion Inhibitors. In Corrosion Inhibitors; IntechOpen: London, UK, 2019. [Google Scholar]
- Fateh, A.; Aliofkhazraei, M.; Rezvanian, A.R. Review of corrosive environments for copper and its corrosion inhibitors. Arab. J. Chem. 2020, 13, 481–544. [Google Scholar] [CrossRef]
- Baldino, L.; Della Porta, G.; Osseo, L.S.; Reverchon, E.; Adami, R. Concentrated oleuropein powder from olive leaves using alcoholic extraction and supercritical CO2 assisted extraction. J. Supercrit. Fluids 2018, 133, 65–69. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Liu, D.; Gao, Y.; Qian, S. Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement. Eur. J. Pharm. Sci. 2013, 48, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Sun, J.; Wang, F.; Sui, Y.; She, Z.; Zhai, W. Effect of particle size on solubility, dissolution rate, and oral bioavailability: Evaluation using coenzyme Q10 as naked nanocrystals. Int. J. Nanomed. 2012, 7, 5733–5744. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.-J.; Kim, M.-S.; Kim, J.-S.; Park, H.J.; Cho, W.K.; Cha, K.-H. Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process. Int. J. Nanomed. 2011, 6, 2997–3009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quraishi, M.A.; Chauhan, D.S.; Saji, V.S. Heterocyclic biomolecules as green corrosion inhibitors. J. Mol. Liq. 2021, 341, 117265. [Google Scholar] [CrossRef]
- Jüttner, K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces. Electrochim. Acta 1990, 35, 1501–1508. [Google Scholar] [CrossRef]
- Yang, L.; Tian, J.; Meng, J.; Zhao, R.; Li, C.; Ma, J.; Jin, T. Modification and Characterization of Fe3O4 Nanoparticles for Use in Adsorption of Alkaloids. Molecules 2018, 23, 562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.; Srivastava, V.; Quraishi, M.A. Novel quinoline derivatives as green corrosion inhibitors for mild steel in acidic medium: Electrochemical, SEM, AFM, and XPS studies. J. Mol. Liq. 2016, 216, 164–173. [Google Scholar] [CrossRef]
- Lebrini, M.; Suedile, F.; Salvin, P.; Roos, C.; Zarrouk, A.; Jama, C.; Bentiss, F. Bagassa guianensis ethanol extract used as sustainable eco-friendly inhibitor for zinc corrosion in 3% NaCl: Electrochemical and XPS studies. Surf. Interfaces 2020, 20, 100588. [Google Scholar] [CrossRef]
- Yang, D.; Liu, S.H.; Shao, Y.P.; Di Xu, S.; Zhao, L.L.; Liao, Q.Q.; Ge, H.H. Electrochemical and XPS studies of alkyl imidazoline on the corrosion inhibition of carbon steel in citric acid solution. Corros. Rev. 2016, 34, 295–304. [Google Scholar] [CrossRef]
- Tan, B.; Xiang, B.; Zhang, S.; Qiang, Y.; Xu, L.; Chen, S.; He, J. Papaya leaves extract as a novel eco-friendly corrosion inhibitor for Cu in H2SO4 medium. J. Colloid Interface Sci. 2021, 582, 918–931. [Google Scholar] [CrossRef]
- Polunin, A.V.; Pchelnikov, A.P.; Losev, V.V.; Marshakov, I.K. Electrochemical studies of the kinetics and mechanism of brass dezincification. Electrochim. Acta 1982, 27, 467–475. [Google Scholar] [CrossRef]
- Burzyńska, L. Comparison of the spontaneous and anodic processes during dissolution of brass. Corros. Sci. 2001, 43, 1053–1069. [Google Scholar] [CrossRef]
- Zhou, P.; Ogle, K. The Corrosion of Copper and Copper Alloys. In Encyclopedia of Interfacial Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 478–489. [Google Scholar]
- Rani, B.E.A.; Basu, B.B.J. Green Inhibitors for Corrosion Protection of Metals and Alloys: An Overview. Int. J. Corros. 2012, 2012, 1–15. [Google Scholar] [CrossRef]
- Xu, Q.-M.; Wang, D.; Han, M.-J.; Wan, L.-J.; Bai, C.-L. Direct STM Investigation of Cinchona Alkaloid Adsorption on Cu(111). Langmuir 2004, 20, 3006–3010. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Fu, Q.; Shi, R.; Tang, Y.; Long, Y.-T.; He, X.-P.; Jin, Y.; Liu, G.; Chen, G.-R.; Chen, K. ‘Pungent’ Copper Surface Resists Acid Corrosion in Strong HCl Solutions. Ind. Eng. Chem. Res. 2014, 53, 64–69. [Google Scholar] [CrossRef]
- Singh, M.M.; Rastogi, R.B.; Upadhyay, B.N. Inhibition of Copper Corrosion in Aqueous Sodium Chloride Solution by Various Forms of the Piperidine Moiety. Corrosion 1994, 50, 620–625. [Google Scholar] [CrossRef]
- Li, H.-J.; Zhang, W.; Wu, Y.-C. Anti-Corrosive Properties of Alkaloids on Metals. In Alkaloids—Their Importance in Nature and Human Life; IntechOpen: London, UK, 2019. [Google Scholar]
Entry | Alkaloid Content (wt. %) | Phenolic Compound Content (wt. %) |
---|---|---|
CL1 | 2.1 ± 0.1 | 46.5 ± 1.9 |
CL2 | 51.9 ± 1.2 | 3.7 ± 0.2 |
CL3 | 0.7 ± 0.4 | 52.2 ± 0.4 |
Entry | Ecorr (V) | βc (mV/dec) | βa (mV/dec) | jcorr (μA/cm2) | IE% |
---|---|---|---|---|---|
HCl 0.5 M | −0.193 | 281.6 | 53.8 | 14.84 | - |
HCl 0.5 M + CL1 | −0.210 | 261.5 | 62.9 | 10.32 | 30.48 |
HCl 0.5 M + CL2 | −0.211 | 241.5 | 57.5 | 7.19 | 51.57 |
HCl 0.5 M + CL3 | −0.214 | 238.0 | 47.5 | 7.58 | 48.93 |
Entry | Rs | Rct | R1 | Sum of Squares | IE% |
---|---|---|---|---|---|
HCl 0.5 M | 3.049 | 1221 | - | 0.03649 | - |
HCl 0.5 M + CL2 | 3.602 | 2850 | 19.83 | 0.24907 | 57.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cevallos-Morillo, C.; Cisneros-Pérez, P.; Llive, R.; Ricaurte, M.; Reinoso, C.; Meneses, M.A.; Guamán, M.d.C.; Palma-Cando, A. Croton lechleri Extracts as Green Corrosion Inhibitors of Admiralty Brass in Hydrochloric Acid. Molecules 2021, 26, 7417. https://doi.org/10.3390/molecules26247417
Cevallos-Morillo C, Cisneros-Pérez P, Llive R, Ricaurte M, Reinoso C, Meneses MA, Guamán MdC, Palma-Cando A. Croton lechleri Extracts as Green Corrosion Inhibitors of Admiralty Brass in Hydrochloric Acid. Molecules. 2021; 26(24):7417. https://doi.org/10.3390/molecules26247417
Chicago/Turabian StyleCevallos-Morillo, Carlos, Pablo Cisneros-Pérez, Roxana Llive, Marvin Ricaurte, Carlos Reinoso, Miguel Angel Meneses, Maria del Cisne Guamán, and Alex Palma-Cando. 2021. "Croton lechleri Extracts as Green Corrosion Inhibitors of Admiralty Brass in Hydrochloric Acid" Molecules 26, no. 24: 7417. https://doi.org/10.3390/molecules26247417
APA StyleCevallos-Morillo, C., Cisneros-Pérez, P., Llive, R., Ricaurte, M., Reinoso, C., Meneses, M. A., Guamán, M. d. C., & Palma-Cando, A. (2021). Croton lechleri Extracts as Green Corrosion Inhibitors of Admiralty Brass in Hydrochloric Acid. Molecules, 26(24), 7417. https://doi.org/10.3390/molecules26247417