Antioxidant Potential and Cytotoxic Effect of Isoflavones Extract from Thai Fermented Soybean (Thua-Nao)
Abstract
:1. Introduction
2. Results
2.1. Total Phenolic Content
2.2. Total Flavonoid Content
2.3. Antioxidant Activity
2.4. Isoflavone and Polyphenolic Compositions
2.5. Cytotoxicity in Various Cancer Cells
3. Discussion
4. Materials and Methods
4.1. Preparation of Isoflavone Extracts from Thua-Nao
4.2. Determination of Total Phenolic Content
4.3. Determination of Total Flavonoid Content
4.4. Determination of Antioxidant Activity
4.4.1. ABTS Radical Scavenging Assay
4.4.2. FRAP Assay
4.4.3. DPPH Radical Scavenging Assay
4.5. HPLC and LC-MS Analyses for Isoflavone Compositions
4.6. HPLC and LC-MS Analysis for Polyphenolic Compound Compositions
4.7. Cell Culture
4.8. Cytotoxic Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Chukeatirote, E. Thua nao: Thai fermented soybean. J. Ethn. Foods 2015, 2, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep. 2009, 26, 1001–1043. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.A. Phytoestrogen content of processed soybean products. Food Technol. 1982, 36, 60–64. [Google Scholar]
- Ohta, A.; Uehara, M.; Sakai, K.; Takasaki, M.; Adlercreutz, H.; Morahashi, T.; Ishimi, Y. A combination of dietary fructooligosaccharides and isoflavone conjugates increases femoral bone mineral density and equol production in ovariectomized mice. J. Nutr. 2002, 132, 2048–2054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khosravi, A.; Razavi, S.H. Therapeutic effects of polyphenols in fermented soybean and black. J. Funct. Foods 2021, 81, 104467. [Google Scholar] [CrossRef]
- Daud, A.; Sulistyarti, H.; Retnowati, R.; Ginting, E. High Performance Liquid Chromatography (HPLC) Method for Determination of Isoflavones Content in Shade-Tolerant Soybean Dena I. IOP Conf. Ser. Mater. Sci. Eng. 2019, 546, 032004. [Google Scholar] [CrossRef]
- Mi, J.; Li, Y.; Zeng, H.; Zhang, J. Determination of soybean isoflavones in foods by HPLC. Sichuan Da Xue Xue Bao 2003, 34, 151–154. [Google Scholar]
- Devi, M.A.; Kumar, S.S.; Giridhar, P. LC-ESI-MS based characterisation of isoflavones in soybean (Glycine max (L.) Merr.) from India. J. Food Sci. Technol. 2018, 55, 5045–5054. [Google Scholar] [CrossRef] [PubMed]
- Pruenglampoo, S.; Sukkorn, K.; Leelapat, P.; Phongphisutthinant, R.; Wiriyacharee, P. Food, culture and nutrition: Fermented soybean (Thua-nao). J. Nutr. Assoc. Thailand 2015, 50, 21–29. [Google Scholar]
- Phongphisutthinant, R.; Wiriyacharee, P.; Pruenglampoo, S.; Leelapat, P.; Kanjanakeereetumrong, P.; Lamyong, S. Selection of Bacillus spp. for Isoflavone Aglycones Enriched Thua-nao, A Traditional Thai Fermented Soybean. J. Pure Appl. Microbiol. 2015, 9, 59–68. [Google Scholar]
- Dajanta, K.; Apichartsrangkoon, A.; Chukeatirote, E. Antioxidant properties and total phenolics of thua nao (a Thai fermented soybean) as affected by Bacillus-fermentation. J. Microb. Biochem. Technol. 2011, 3, 56–59. [Google Scholar] [CrossRef] [Green Version]
- Sapbamrer, R.; Visavarungroj, N.; Suttajit, M. Effects of dietary traditional fermented soybean on reproductive hormones, lipids, and glucose among postmenopausal women in northern Thailand. Asia Pac. J. Clin. Nutr. 2013, 22, 222–228. [Google Scholar] [PubMed]
- Fukushima, D. Recent progress in research and technology on soybean. Food Sci. Technol. Res. 2001, 7, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Finkeldey, L.; Schmitz, E.; Ellinger, S. Effect of the Intake of Isoflavones on Risk Factors of Breast Cancer—A Systematic Review of Randomized Controlled Intervention Studies. Nutrients 2021, 13, 2309. [Google Scholar] [CrossRef]
- Hattori, T.; Ohishi, H.; Yokota, T.; Ohoami, H.; Watanabe, K. Antioxidative effect on crude antioxidant preparation from soybean fermented by Bacillus natto. LWT-Food Sci. Technol. 1995, 28, 135–138. [Google Scholar] [CrossRef]
- Kwak, C.S.; Lee, M.S.; Park, S.C. Higher antioxidant properties of Chung kookjang, a fermented soybean paste, may be due to increase aglycone and malonylglycoside isoflavone during fermentation. Nutr. Res. 2007, 27, 719–727. [Google Scholar] [CrossRef]
- Moktan, B.; Saha, J.; Sarkar, K. Antioxidant activities of soybean as affected by Bacillus-fermentation of kinema. Food Res. Int. 2008, 41, 586–593. [Google Scholar] [CrossRef]
- Dajanta, K.; Chukeatirote, E.; Apichartsrangkoon, A. Nutritional and physicochemical qualities of thua nao (thai traditional fermented soybean). Chiang Mai J. Sci. 2012, 39, 562–574. [Google Scholar]
- Haron, H.; Ismail, A.; Azlan, A.; Shahar, S.; Peng, L.S. Daidzein and genestein contents in tempeh and selected soy products. Food Chem. 2009, 115, 1350–1356. [Google Scholar] [CrossRef]
- Chaiyasut, C.; Kumar, T.; Tipduangta, P.; Rungseevijitprapa, W. Isoflavone content and antioxidant activity of Thai fermented soybean and its capsule formulation. Afr. J. Biotechnol. 2010, 9, 4120–4126. [Google Scholar]
- Dajanta, K.; Chukeatirote, E.; Apichartsrangkoon, A.; Frazier, R.A. Enhanced aglycone production of fermented soybean products by Bacillus species. Acta Biol. Szeged. 2009, 53, 93–98. [Google Scholar]
- Ahmad, A.; Hayat, I.; Arif, S.; Masud, T.; Khalid, N.; Ahmed, A. Mechanisms Involved in the Therapeutic Effects of Soybean (Glycine max). Int. J. Food Prop. 2014, 17, 1332–1354. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.G.; Feitelson, A.K.; Taylor, D.D. Inhibitory Effect of Genistein and Daidzein on Ovarian Cancer Cell Growth. Anticancer Res. 2004, 24, 795–800. [Google Scholar]
- Tuli, H.S.; Tuorkey, M.J.; Thakral, F.; Sak, K.; Kumar, M.; Sharma, A.K.; Sharma, U.; Jain, A.; Aggarwal, V.; Bishayee, A. Molecular Mechanisms of Action of Genistein in Cancer: Recent Advances. Front. Pharmacol. 2019, 10, 1336. [Google Scholar] [CrossRef] [Green Version]
- Kulprachakarn, K.; Pangjit, K.; Paradee, N.; Srichairatanakool, S.; Rerkasem, K.; Ounjaijean, S. Antioxidant Properties and Cytotoxicity of White Mugwort (Artemisia lactiflora) Leaf Extract in Human Hepatocellular Carcinoma Cell Line. Walailak J. Sci. Tech. 2019, 16, 185–192. [Google Scholar] [CrossRef]
- Sembiring, E.N.; Elya, B.; Sauriasari, R. Phytochemical Screening, Total Flavonoid and Total Phenolic Content, and Antioxidant Activity of Different Parts of Caesalpinia bonduc (L.) Roxb. Pharmacog. J. 2018, 10, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Paradee, N.; Howes, M.J.R.; Utama-Ang, N.; Chaikitwattna, A.; Hider, R.C.; Srichairatanakool, S. A chemically characterized ethanolic extract of Thai Perilla frutescens (L.) Britton fruits (nutlets) reduces oxidative stress and lipid peroxidation in human hepatoma (HuH7) cells. Phytother. Res. 2019, 33, 2064–2074. [Google Scholar] [CrossRef] [PubMed]
- Saeio, K.; Chaiyana, W.; Okonogi, S. Antityrosinase and antioxidant activities of essential oils of edible Thai plants. Drug Discov. Ther 2011, 5, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Punjaisee, C.; Chaiyasut, C.; Chansakaow, S.; Tharata, S.; Visessanguan, W.; Punjaisee, S. 8-Hydroxygenistein formation of soybean fermented with Aspergillus oryzae BCC 3088. Afr. J. Agric. Res. 2011, 6, 785–789. [Google Scholar]
- Peñarrieta, J.M.; Alvarado, J.A.; Kesson, B.; Bergenståhl, B. Separation of Phenolic Compounds from Foods by Reversed-Phase High Performance Liquid Chromatography. Rev. Bol. Quim. 2007, 24, 1–4. [Google Scholar]
- Kulprachakarn, K.; Ounjaijean, S.; Srichairatanakool, S.; Kanjanapothi, D. Evaluation of cytotoxicity and antioxidant potential of bael leaf (Aegle marmelos) on human hepatocellular carcinoma cell line. Phcog. Res. 2020, 12, 267–271. [Google Scholar]
Ethanolic Isoflavones Extract | |
---|---|
Total phenolic content (mg GAE/g of dry extract) | 49.00 ± 0.51 |
Total flavonoid content (mg QE/g of dry extract) | 10.76 ± 0.82 |
Antioxidant Activities | |
ABTS (μmol Trolox/g of dry extract) | 61.03 ± 0.97 |
FRAP (μM FeSO4/g of dry extract) | 66.54 ± 3.97 |
DPPH (% inhibition) | 22.47 ± 1.92 |
Amount (mg/kg of Dry Extract) | |
---|---|
Isoflavones | |
Genistein | 616.80 ± 1.06 |
Daidzein | 632.27 ± 1.11 |
Genistin | 332.33 ± 1.53 |
Daidzin | 251.39 ± 1.51 |
Polyphenolic compounds | |
Gallic acid | 65.84 ± 1.04 |
Eriodictyol | 34.10 ± 1.02 |
Apigenin | <10.00 |
Isoquercetin | 311.56 ± 1.50 |
Kaempferol | ND |
Quercetin | 98.89 ± 1.02 |
Hydroquinone | ND |
Rutin | 448.46 ± 1.50 |
Catechin | 165.46 ± 1.50 |
Tannic acid | 124.11 ± 1.02 |
Types of Cancer Cell Line | IC50 (µg/mL) | |
---|---|---|
24 h | 48 h | |
HepG2 | 722 | 762 |
HEK293 | 716 | 392 |
MCF-7 | 698 | >800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulprachakarn, K.; Chaipoot, S.; Phongphisutthinant, R.; Paradee, N.; Prommaban, A.; Ounjaijean, S.; Rerkasem, K.; Parklak, W.; Prakit, K.; Saengsitthisak, B.; et al. Antioxidant Potential and Cytotoxic Effect of Isoflavones Extract from Thai Fermented Soybean (Thua-Nao). Molecules 2021, 26, 7432. https://doi.org/10.3390/molecules26247432
Kulprachakarn K, Chaipoot S, Phongphisutthinant R, Paradee N, Prommaban A, Ounjaijean S, Rerkasem K, Parklak W, Prakit K, Saengsitthisak B, et al. Antioxidant Potential and Cytotoxic Effect of Isoflavones Extract from Thai Fermented Soybean (Thua-Nao). Molecules. 2021; 26(24):7432. https://doi.org/10.3390/molecules26247432
Chicago/Turabian StyleKulprachakarn, Kanokwan, Supakit Chaipoot, Rewat Phongphisutthinant, Narisara Paradee, Adchara Prommaban, Sakaewan Ounjaijean, Kittipan Rerkasem, Wason Parklak, Kanittha Prakit, Banthita Saengsitthisak, and et al. 2021. "Antioxidant Potential and Cytotoxic Effect of Isoflavones Extract from Thai Fermented Soybean (Thua-Nao)" Molecules 26, no. 24: 7432. https://doi.org/10.3390/molecules26247432
APA StyleKulprachakarn, K., Chaipoot, S., Phongphisutthinant, R., Paradee, N., Prommaban, A., Ounjaijean, S., Rerkasem, K., Parklak, W., Prakit, K., Saengsitthisak, B., Chansiw, N., Pangjit, K., & Boonyapranai, K. (2021). Antioxidant Potential and Cytotoxic Effect of Isoflavones Extract from Thai Fermented Soybean (Thua-Nao). Molecules, 26(24), 7432. https://doi.org/10.3390/molecules26247432