4-Azidocinnoline—Cinnoline-4-amine Pair as a New Fluorogenic and Fluorochromic Environment-Sensitive Probe
Abstract
:1. Introduction
2. Results
2.1. Synthesis of Cinnoline-4-amines
2.2. Photophysical Properties of Cinnoline-Based Azide–Amine Pair
2.3. In Vitro Study of the Behavior of the 4-Azodicinnoline/Cinnoline-4-amine Pair
3. Discussion
4. Materials and Methods
4.1. Synthetic Procedures
4.2. Biological Studies
4.3. The HPLC Analysis of Cells Lysate
4.4. The Measurements of Absolute Fluorescence Quantum Yields of Azide 5 and Amine 6
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Huang, D.; Yan, G. Recent Advances in Reactions of Azides. Adv. Synth. Catal. 2017, 359, 1600–1619. [Google Scholar] [CrossRef]
- Stanovnik, B. Application of organic azides in the synthesis of heterocyclic systems. In Advances in Heterocyclic Chemistry; Elsevier Inc.: Cambridge, MA, USA, 2020; Volume 130, pp. 145–194. [Google Scholar]
- Brase, S.; Banert, K. (Eds.) Organic Azides: Syntheses and Applications; John Wiley & Sons, Ltd.: Chicheste, UK, 2010. [Google Scholar]
- Kenry; Liu, B. Bio-orthogonal Click Chemistry for In Vivo Bioimaging. Trends Chem. 2019, 1, 763–778. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Z. Development and Applications of the Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) as a Bioorthogonal Reaction. Molecules 2016, 21, 1393. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, L.; Yu, F.; Zhu, Z.; Shobaki, D.; Chen, H.; Wang, M.; Wang, J.; Qin, G.; Erasquin, U.J.; et al. Copper-catalyzed click reaction on/in live cells. Chem. Sci. 2017, 8, 2107–2114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.; Koo, H. Biomedical applications of copper-free click chemistry: In vitro, in vivo, and ex vivo. Chem. Sci. 2019, 10, 7835–7851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agard, N.J.; Prescher, J.A.; Bertozzi, C.R. A Strain-Promoted [3 + 2] Azide−Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems. J. Am. Chem. Soc. 2004, 126, 15046–15047. [Google Scholar] [CrossRef]
- Bednarek, C.; Wehl, I.; Jung, N.; Schepers, U.; Bräse, S. The Staudinger Ligation. Chem. Rev. 2020, 120, 4301–4354. [Google Scholar] [CrossRef]
- Vodovozova, E.L. Photoaffinity labeling and its application in structural biology. Biochemistry 2007, 72, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Forezi, L.d.S.M.; Lima, C.G.S.; Amaral, A.A.P.; Ferreira, P.G.; de Souza, M.C.B.V.; Cunha, A.C.; da Silva, F.d.C.; Ferreira, V.F. Bioactive 1,2,3-Triazoles: An Account on their Synthesis, Structural Diversity and Biological Applications. Chem. Rec. 2021, 21, 2782–2807. [Google Scholar] [CrossRef]
- Schock, M.; Bräse, S. Reactive & Efficient: Organic Azides as Cross-Linkers in Material Sciences. Molecules 2020, 25, 1009. [Google Scholar]
- Li, K.; Fong, D.; Meichsner, E.; Adronov, A. A Survey of Strain-Promoted Azide–Alkyne Cycloaddition in Polymer Chemistry. Chem. Eur. J. 2021, 27, 5057–5073. [Google Scholar] [CrossRef]
- Nadler, A.; Schultz, C. The Power of Fluorogenic Probes. Angew. Chem. Int. Ed. 2013, 52, 2408–2410. [Google Scholar] [CrossRef] [PubMed]
- Cserép, G.B.; Herner, A.; Kele, P. Bioorthogonal fluorescent labels: A review on combined forces. Methods Appl. Fluoresc. 2015, 3, 042001. [Google Scholar] [CrossRef] [PubMed]
- Shieh, P.; Bertozzi, C.R. Design strategies for bioorthogonal smart probes. Org. Biomol. Chem. 2014, 12, 9307–9320. [Google Scholar] [CrossRef] [PubMed]
- Klymchenko, A.S. Solvatochromic and Fluorogenic Dyes as Environment-Sensitive Probes: Design and Biological Applications. Acc. Chem. Res. 2017, 50, 366–375. [Google Scholar] [CrossRef] [Green Version]
- Beatty, K.E.; Liu, J.C.; Xie, F.; Dieterich, D.C.; Schuman, E.M.; Wang, Q.; Tirrell, D.A. Fluorescence visualization of newly synthesized proteins in mammalian cells. Angew. Chem. Int. Ed. 2006, 45, 7364–7367. [Google Scholar] [CrossRef] [Green Version]
- Sivakumar, K.; Xie, F.; Cash, B.M.; Long, S.; Barnhill, H.N.; Wang, Q. A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. Org. Lett. 2004, 6, 4603–4606. [Google Scholar] [CrossRef]
- Herner, A.; Estrada Girona, G.; Nikić, I.; Kállay, M.; Lemke, E.A.; Kele, P. New generation of bioorthogonally applicable fluorogenic dyes with visible excitations and large stokes shifts. Bioconjug. Chem. 2014, 25, 1370–1374. [Google Scholar] [CrossRef]
- Neef, A.B.; Schultz, C. Selective fluorescence labeling of lipids in living cells. Angew. Chem. Int. Ed. 2009, 48, 1498–1500. [Google Scholar] [CrossRef]
- Zayas, J.; Annoual, M.; Das, J.K.; Felty, Q.; Gonzalez, W.G.; Miksovska, J.; Sharifai, N.; Chiba, A.; Wnuk, S.F. Strain promoted click chemistry of 2- or 8-azidopurine and 5-azidopyrimidine nucleosides and 8-azidoadenosine triphosphate with cyclooctynes. Application to living cell fluorescent imaging. Bioconjug. Chem. 2015, 26, 1519–1532. [Google Scholar] [CrossRef] [Green Version]
- Noda, H.; Asada, Y.; Shibasaki, M.; Kumagai, N. A fluorogenic C4N4 probe for azide-based labelling. Org. Biomol. Chem. 2019, 17, 1813–1816. [Google Scholar] [CrossRef] [PubMed]
- Demeter, O.; Fodor, E.A.; Kállay, M.; Mező, G.; Németh, K.; Szabó, P.T.; Kele, P. A Double-Clicking Bis-Azide Fluorogenic Dye for Bioorthogonal Self-Labeling Peptide Tags. Chem. Eur. J. 2016, 22, 6382–6388. [Google Scholar] [CrossRef] [PubMed]
- Sasmal, P.K.; Carregal-Romero, S.; Han, A.A.; Streu, C.N.; Lin, Z.; Namikawa, K.; Elliott, S.L.; Köster, R.W.; Parak, W.J.; Meggers, E. Catalytic Azide Reduction in Biological Environments. ChemBioChem 2012, 13, 1116–1120. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Lin, J.; Li, Z.; Lin, L.; Shen, Y.; Zhu, H.; Qian, Y. Imaging of living cells and zebrafish in vivo using a ratiometric fluorescent probe for hydrogen sulfide. Analyst 2015, 140, 7165–7169. [Google Scholar] [CrossRef]
- Meka, R.K.; Heagy, M.D. Selective Modulation of Internal Charge Transfer and Photoinduced Electron Transfer Processes in N-Aryl-1,8-Naphthalimide Derivatives: Applications in Reaction-Based Fluorogenic Sensing of Sulfide. J. Org. Chem. 2017, 82, 12153–12161. [Google Scholar] [CrossRef]
- Qiao, Z.; Zhang, H.; Wang, K.; Zhang, Y. A highly sensitive and responsive fluorescent probe based on 6-azide-chroman dye for detection and imaging of hydrogen sulfide in cells. Talanta 2019, 195, 850–856. [Google Scholar] [CrossRef]
- Chalansonnet, V.; Lowe, J.; Orenga, S.; Perry, J.D.; Robinson, S.N.; Stanforth, S.P.; Sykes, H.E.; Truong, T.V. Fluorogenic 7-azidocoumarin and 3/4-azidophthalimide derivatives as indicators of reductase activity in microorganisms. Bioorg. Med. Chem. Lett. 2019, 29, 2354–2357. [Google Scholar] [CrossRef]
- Shieh, P.; Siegrist, M.S.; Cullen, A.J.; Bertozzi, C.R. Imaging bacterial peptidoglycan with near-infrared fluorogenic azide probes. Proc. Natl. Acad. Sci. USA 2014, 111, 5456–5461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, Y.; Huo, F.; Yin, C. The chronological evolution of small organic molecular fluorescent probes for thiols. Chem. Sci. 2021, 12, 1220–1226. [Google Scholar] [CrossRef]
- Levinn, C.M.; Pluth, M.D. Direct comparison of triggering motifs on chemiluminescent probes for hydrogen sulfide detection in water. Sens. Actuators B Chem. 2021, 329, 129235. [Google Scholar] [CrossRef]
- O’Connor, L.J.; Mistry, I.N.; Collins, S.L.; Folkes, L.K.; Brown, G.; Conway, S.J.; Hammond, E.M. CYP450 Enzymes Effect Oxygen-Dependent Reduction of Azide-Based Fluorogenic Dyes. ACS Cent. Sci. 2017, 3, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Chao, W.; Yang, Y.; Wu, C.; Li, Z.; Chen, H.; Chou, Y.; Annie Ho, J.; Li, X.; Peng, Y.; et al. Cyano Derivatives of 7-Aminoquinoline That Are Highly Emissive in Water: Potential for Sensing Applications. Chem. Eur. J. 2021, 27, 8040–8047. [Google Scholar] [CrossRef]
- Danilkina, N.A.; Bukhtiiarova, N.S.; Govdi, A.I.; Vasileva, A.A.; Rumyantsev, A.M.; Volkov, A.A.; Sharaev, N.I.; Povolotskiy, A.V.; Boyarskaya, I.A.; Kornyakov, I.V.; et al. Synthesis and Properties of 6-Aryl-4-azidocinnolines and 6-Aryl-4-(1,2,3-1H-triazol-1-yl)cinnolines. Molecules 2019, 24, 2386. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Liu, Y.; Han, H.; Zhang, X.; Zhang, M.; Liao, Y.; Han, T. A donor-π-acceptor aggregation-induced emission compound serving as a portable fluorescent sensor for detection and differentiation of methanol and ethanol in the gas phase. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 252, 119515. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-H.; Karas, L.J.; Ottosson, H.; Wu, J.I.C. Excited-state proton transfer relieves antiaromaticity in molecules. Proc. Natl. Acad. Sci. USA 2019, 116, 20303–20308. [Google Scholar] [CrossRef] [Green Version]
- Daengngern, R.; Kungwan, N.; Wolschann, P.; Aquino, A.J.A.; Lischka, H.; Barbatti, M. Excited-State Intermolecular Proton Transfer Reactions of 7-Azaindole(MeOH)n (n = 1–3) Clusters in the Gas phase: On-the-Fly Dynamics Simulation. J. Phys. Chem. A 2011, 115, 14129–14136. [Google Scholar] [CrossRef] [PubMed]
- Kungwan, N.; Daengngern, R.; Piansawan, T.; Hannongbua, S.; Barbatti, M. Theoretical study on excited-state intermolecular proton transfer reactions of 1H-pyrrolo[3,2-h]quinoline with water and methanol. Theor. Chem. Acc. 2013, 132, 1397. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.; Liu, Y.; Liu, J.; Peng, Y.; Yang, Y.; Li, Z.; Jheng, R.; Chao, C.; Liu, K.; Chou, P. Catalytic-Type Excited-State N−H Proton-Transfer Reaction in 7-Aminoquinoline and Its Derivatives. Chem. Eur. J. 2019, 25, 14972–14982. [Google Scholar] [CrossRef]
- Hong, D.; Luo, Y.; He, X.; Zheng, Z.; Su, S.; Wang, J.; Wang, C.; Chen, C.; Sun, B. Unraveling the Mechanisms of the Excited-State Intermolecular Proton Transfer (ESPT) for a D-π-A Molecular Architecture. Chem. Eur. J. 2019, 25, 8805–8812. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Wu, Q.; Wang, D.; Tang, B.Z. Innovative Synthetic Procedures for Luminogens Showing Aggregation-Induced Emission. Angew. Chem. Int. Ed. 2021, 60, 15724–15742. [Google Scholar] [CrossRef] [PubMed]
- Kwok, R.T.K.; Leung, C.W.T.; Lam, J.W.Y.; Tang, B.Z. Biosensing by luminogens with aggregation-induced emission characteristics. Chem. Soc. Rev. 2015, 44, 4228–4238. [Google Scholar] [CrossRef] [PubMed]
- Göbel, D.; Duvinage, D.; Stauch, T.; Nachtsheim, B.J. Nitrile-substituted 2-(oxazolinyl)-phenols: Minimalistic excited-state intramolecular proton transfer (ESIPT)-based fluorophores. J. Mater. Chem. C 2020, 8, 9213–9225. [Google Scholar] [CrossRef]
- Niu, G.; Zheng, X.; Zhao, Z.; Zhang, H.; Wang, J.; He, X.; Chen, Y.; Shi, X.; Ma, C.; Kwok, R.T.K.; et al. Functionalized Acrylonitriles with Aggregation-Induced Emission: Structure Tuning by Simple Reaction-Condition Variation, Efficient Red Emission, and Two-Photon Bioimaging. J. Am. Chem. Soc. 2019, 141, 15111–15120. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Fan, X.; Liu, X.; Chu, Y.; Zhang, Z.; Hu, Y.; Lin, H.; Qian, J.; Hua, J. Aggregation-induced emission fluorophores based on strong electron-acceptor 2,2′-(anthracene-9,10-diylidene) dimalononitrile for biological imaging in the NIR-II window. Chem. Commun. 2021, 57, 3099–3102. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Fan, J.; Hu, C.; Cao, J.; Zhang, H.; Xiong, X.; Wang, J.; Cui, S.; Sun, S.; Peng, X. A two-photon fluorescent probe with near-infrared emission for hydrogen sulfide imaging in biosystems. Chem. Commun. 2013, 49, 3890. [Google Scholar] [CrossRef]
- Adepu, R.; Rajitha, A.; Ahuja, D.; Sharma, A.K.; Ramudu, B.; Kapavarapu, R.; Parsa, K.V.L.; Pal, M. A direct access to bioactive fused N-heterocyclic acetic acid derivatives. Org. Biomol. Chem. 2014, 12, 2514. [Google Scholar] [CrossRef]
- Danilkina, N.A.; Vlasov, P.S.; Vodianik, S.M.; Kruchinin, A.A.; Vlasov, Y.G.; Balova, I.A. Synthesis and chemosensing properties of cinnoline-containing poly(arylene ethynylene)s. Beilstein J. Org. Chem. 2015, 11, 373–384. [Google Scholar] [CrossRef] [Green Version]
Solvent | QY of Azide 5 | QY of Amine 6 |
---|---|---|
Tetrahydrofuran | 0.2% | 0.2% |
Acetonitrile | n. a. a | 0.0% |
Isopropyl alcohol | n. a. | 1.0% |
Water | 0.0% | 11.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danilkina, N.A.; Andrievskaya, E.V.; Vasileva, A.V.; Lyapunova, A.G.; Rumyantsev, A.M.; Kuzmin, A.A.; Bessonova, E.A.; Balova, I.A. 4-Azidocinnoline—Cinnoline-4-amine Pair as a New Fluorogenic and Fluorochromic Environment-Sensitive Probe. Molecules 2021, 26, 7460. https://doi.org/10.3390/molecules26247460
Danilkina NA, Andrievskaya EV, Vasileva AV, Lyapunova AG, Rumyantsev AM, Kuzmin AA, Bessonova EA, Balova IA. 4-Azidocinnoline—Cinnoline-4-amine Pair as a New Fluorogenic and Fluorochromic Environment-Sensitive Probe. Molecules. 2021; 26(24):7460. https://doi.org/10.3390/molecules26247460
Chicago/Turabian StyleDanilkina, Natalia A., Ekaterina V. Andrievskaya, Anna V. Vasileva, Anna G. Lyapunova, Andrey M. Rumyantsev, Andrey A. Kuzmin, Elena A. Bessonova, and Irina A. Balova. 2021. "4-Azidocinnoline—Cinnoline-4-amine Pair as a New Fluorogenic and Fluorochromic Environment-Sensitive Probe" Molecules 26, no. 24: 7460. https://doi.org/10.3390/molecules26247460
APA StyleDanilkina, N. A., Andrievskaya, E. V., Vasileva, A. V., Lyapunova, A. G., Rumyantsev, A. M., Kuzmin, A. A., Bessonova, E. A., & Balova, I. A. (2021). 4-Azidocinnoline—Cinnoline-4-amine Pair as a New Fluorogenic and Fluorochromic Environment-Sensitive Probe. Molecules, 26(24), 7460. https://doi.org/10.3390/molecules26247460