Chemical Composition of Essential Oils from Leaves and Fruits of Juniperus foetidissima and Their Attractancy and Toxicity to Two Economically Important Tephritid Fruit Fly Species, Ceratitis capitata and Anastrepha suspensa
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC–MS Analysis
2.2. Biological Activity of Juniperus foetidissima Essential Oils
2.2.1. Attraction of the Mediterranean Fruit Fly
2.2.2. Toxicity to the Caribbean Fruit Fly
3. Materials and Methods
3.1. Plant Material
3.2. Essential Oil Isolation
3.3. GC-MS Analysis
3.4. GC Analysis
3.5. Identification of the Compounds
3.6. Laboratory Bioassays
3.6.1. Short-Range Attraction Bioassays with Ceratitis capitata
3.6.2. Toxicity of JFEOs to Anastrepha suspensa
4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Isman, M.B. Plant essential oils for pest and disease management. In Crop Protection; Elsevier: Amsterdam, The Netherlands, 2000; Volume 19, pp. 603–608. [Google Scholar]
- Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Repellent, larvicidal and pupicidal properties of essential oils and their formulations against the housefly, Musca domestica. Med. Vet. Entomol. 2011, 25, 302–310. [Google Scholar] [CrossRef]
- Tabanca, N.; Bernier, U.R.; Tsikolia, M.; Becnel, J.J.; Sampson, B.; Werle, C.; Demirci, B.; Baser, K.H.C.; Blythe, E.K.; Pounders, C.; et al. Eupatorium capillifolium essential oil: Chemical composition, antifungal activity, and insecticidal activity. Nat. Prod. Commun. 2010, 5, 1409–1415. [Google Scholar] [CrossRef]
- Mann, R.S.; Kaufman, P.E. Natural product pesticides: Their development, delivery and use against insect vectors. Mini-Rev. Org. Chem. 2012, 9, 185–202. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Upadhyay, S.; Bhuiyan, M.; Bhattacharya, P.R. A review on prospects of essential oils as biopesticide in insect-pest management. J. Pharmacogn. Phyther. 2009, 1, 52–63. [Google Scholar] [CrossRef]
- Quilici, S.; Atiama-Nurbel, T.; Brévault, T. Plant odors as fruit fly attractants. In Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies; Shelly, T., Epsky, N., Jang, E.B., Reyes-Flores, J., Vargas, R., Eds.; Springer Publishing: Berlin/Heidelberg, Germany, 2014; pp. 119–144. [Google Scholar]
- Tan, K.H.; Nishida, R.; Jang, E.B.; Shelly, T.E. Pheromones, male lures and trapping of Tephritid fruit flies. In Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies; Shelly, T., Epsky, N., Jang, E.B., Reyes-Flores, J., Vargas, R., Eds.; Springer Publishing: Berlin/Heidelberg, Germany, 2014; pp. 15–74. [Google Scholar]
- Athanassiou, C.G.; Kavallieratos, N.G.; Evergetis, E.; Katsoula, A.-M.; Haroutounian, S.A. Insecticidal efficacy of silica gel with Juniperus oxycedrus ssp. oxycedrus (Pinales: Cupressaceae) essential oil against Sitophilus oryzae (Coleoptera: Curculionidae) and Tribolium confusum (Coleoptera: Tenebrionidae). J. Econ. Entomol. 2013, 106, 1902–1910. [Google Scholar] [CrossRef]
- Khani, A.; Rashid, B.; Mirshekar, A. Chemical composition and insecticidal efficacy of Juniperus polycarpus and Juniperus sabina essential oils against Tribolium confusum (Coleoptera: Tenebrionidae). Int. J. Food Prop. 2017, 20, 1221–1229. [Google Scholar] [CrossRef] [Green Version]
- Shafaie, F.; Aramideh, S.; Valizadegan, O.; Safaralizadeh, M.H.; Hosseini-Gharalari, A. Efficacy of herbal essential oils against Cowpea weevil. Orient. J. Chem. 2019, 35, 1174–1181. [Google Scholar] [CrossRef]
- Mahmoudvand, M.; Abbasipour, H.; Hosseinpour, M.H.; Rastegar, F.; Basij, M. Using some plant essential oils as natural fumigants against adults of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Munis Entomol. Zool. 2011, 6, 150–154. [Google Scholar]
- Gao, C.; Zhang, X. Fumigant insecticidal action of the essential oil from the seeds of the savin juniper (Sabina vulgaris Ant.). Nanjing Nongye Daxue Xuebao 1997, 3, 50–53. [Google Scholar]
- Murcia-Meseguer, A.; Alves, T.J.S.; Budia, F.; Ortiz, A.; Medina, P. Insecticidal toxicity of thirteen commercial plant essential oils against Spodoptera exigua (Lepidoptera: Noctuidae). Phytoparasitica 2018, 46, 233–245. [Google Scholar] [CrossRef]
- Isik, M.; Gorur, G. Aphidicidial activity of seven essential oils against the cabbage aphid; Brevicoryne brassicae L: (Hemiptera: Aphididae). Mun. Ent. Zool. 2009, 4, 424–431. [Google Scholar]
- Barnard, D.R. Repellency of essential oils to mosquitoes (Diptera: Culicidae). J. Med. Entomol. 1999, 36, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, V.; Tripathi, A.K.; Aggarwal, K.K.; Khanuja, S.P.S. Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresour. Technol. 2005, 96, 1749–1757. [Google Scholar] [CrossRef] [PubMed]
- Giatropoulos, A.; Pitarokili, D.; Papaioannou, F.; Papachristos, D.P.; Koliopoulos, G.; Emmanouel, N.; Tzakou, O.; Michaelakis, A. Essential oil composition, adult repellency and larvicidal activity of eight Cupressaceae species from Greece against Aedes albopictus (Diptera: Culicidae). Parasitol. Res. 2013, 112, 1113–1123. [Google Scholar] [CrossRef]
- Trongtokit, Y.; Rongsriyam, Y.; Komalamisra, N.; Apiwathnasorn, C. Comparative repellency of 38 essential oils against mosquito bites. Phyther. Res. 2005, 19, 303–309. [Google Scholar] [CrossRef]
- El-Mustapha, L.; Abderrafea, E.; Ayoub, K.; Abdelaziz, A.; El Hassan, E.M. Toxicity of essential oils obtained from Juniperus thurifera var. africana and Mentha suaveolens subsp. timija chemotypes against pre-adult stages of Hyalomma aegyptium tick (Acari: Ixodidae). Nat. Prod. Res. 2019, 6419, 1–6. [Google Scholar] [CrossRef]
- Baytop, T. Türkiye’de Bitkiler ile Tedavi (Geçmişte ve Bugün); Ankara Nobel Tip Kitabevleri: Ankara, Turkey, 1984; Volume 3255, ISBN 0021-8561. [Google Scholar]
- Lesjak, M.M.; Beara, I.N.; Orčić, D.Z.; Anačkov, G.T.; Balog, K.J.; Francišković, M.M.; Mimica-Dukić, N.M. Juniperus sibirica Burgsdorf. As a novel source of antioxidant and anti-inflammatory agents. Food Chem. 2011, 124, 850–856. [Google Scholar] [CrossRef]
- Mrabet, A.; Rejili, M.; Lachiheb, B.; Toivonen, P.; Chaira, N.; Ferchichi, A. Microbiological and chemical characterizations of organic and conventional date pastes (Phoenix dactylifera L.) from Tunisia. Ann. Microbiol. 2008, 58, 453–459. [Google Scholar] [CrossRef]
- Tumen, I.; Suntar, I.; Keles, H.; Küpeli Akkol, E. A Therapeutic Approach for Wound Healing by Using Essential Oils of Cupressus and Juniperus Species Growing in Turkey. Evid. -Based Complement. Altern. Med. 2012, 7, 728281. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, I.; Mossa, J.S.; El-Feraly, F.S. Antibacterial diterpenes from the leaves and seeds of Juniperus excelsa M. Bieb. Phyther. Res. 1992, 6, 261–264. [Google Scholar] [CrossRef]
- Sezik, E.; Yeşilada, E. Turkish folk medicine containing volatile oils. In Essential Oils; Anadolu University Press: Eskisehir, Turkey, 1999; pp. 98–131. [Google Scholar]
- Öztürk, M.; Tümen, I.; Uǧur, A.; Aydoǧmuş-Öztürk, F.; Topçu, G. Evaluation of fruit extracts of six Turkish Juniperus species for their antioxidant, anticholinesterase and antimicrobial activities. J. Sci. Food Agric. 2011, 91, 867–876. [Google Scholar] [CrossRef]
- Baser, K.H.C. Flora of Turkey as a source of essential oils. In Proceedings of the 10th International Symposium on the Chemistry of Natural Compounds (10th SCNC), Tashkent, Uzbekistan, 25–29 November 2013. [Google Scholar]
- The Bloomberght Home Page. Available online: https://www.bloomberght.com/tibbi-ve-aromatik-bitki-ihracatimiz-404-milyon-dolara-ulasti-2270801 (accessed on 28 November 2021).
- Davis, P. Flora of Turkey and the East Aegean Islands; Edinburgh University Press: Edinburgh, UK, 1965; Volume 1, ISBN 0852245599. [Google Scholar]
- Karamanoğlu, K. Türkiye Btikileri, 1st ed.; Ankara University Faculty of Pharmacy: Ankara, Turkey, 1974; pp. 40–42. [Google Scholar]
- Tunalier, Z.; Kirimer, N.; Baser, K.H.C. A potential new source of cedarwood oil: Juniperus foetidissima Willd. J. Essent. Oil Res. 2004, 16, 233–235. [Google Scholar] [CrossRef]
- Adams, R.P. Variation in the chemical composition of the leaf oil Juniperus foetidissima Willd. J. Essent. Oil Res. 1990, 2, 67–70. [Google Scholar] [CrossRef]
- Tunalier, Z.; Kirimer, N.; Baser, K.H.C. The composition of essential oils from various parts of Juniperus foetidissima. Chem. Nat. Compd. 2002, 38, 43–47. [Google Scholar] [CrossRef]
- Yaglioglu, A.S.; Eser, F.; Yaglioglu, M.S.; Demirtas, I. The antiproliferative and antioxidant activities of the essential oils of Juniperus species from Turkey. Flavour Fragr. J. 2020, 35, 1–13. [Google Scholar] [CrossRef]
- Tayoub, G.; Alorfi, M.; Ismall, H. Fumigate efficacy of Juniperus foetidissima essential oil and two terpenes against Phthorimaea operculella. Herba Polonica 2019, 65, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Asili, J.; Emami, S.A.; Rahimizadeh, M.; Fazly-Bazzaz, B.S.; Hassanzadeh, M.K. Chemical and antimicrobial studies of Juniperus sabina L. and Juniperus foetidissima Willd. essential oils. J. Essent. Oil-Bear. Plants 2010, 13, 25–36. [Google Scholar] [CrossRef]
- Lesjak, M.M.; Beara, I.N.; Orčić, D.Z.; Ristić, J.D.; Anačkov, G.T.; Božin, B.N.; Mimica-Dukić, N.M. Chemical characterization and biological effects of Juniperus foetidissima Willd. 1806. LWT Food Sci. Technol. 2013, 53, 530–539. [Google Scholar] [CrossRef]
- Vourlioti-Arapi, F.; Michaelakis, A.; Evergetis, E.; Koliopoulos, G.; Haroutounian, S.A. Essential oils of indigenous in Greece six Juniperus taxa. Parasitol. Res. 2012, 110, 1829–1839. [Google Scholar] [CrossRef]
- Emami, S.A.; Shahidi, N.H.; Hassanzadeh-Khayyat, M. Antioxidant activity of the essential oils of different parts of Juniperus sabina L. and Juniperus foetidissima Willd. (Cupressaceae). Int. J. Essent. Oil Ther. 2009, 3, 163–170. [Google Scholar]
- Selaa, F.; Karapandzovaa, M.; Stefkova, G.; Cvetkovikja, I.; Trajkovska-Dokikjb, E.; Kaftandzievab, A.; Kulevanovaa, S. Antimicrobial activity of berries and leaves essential oils of Macedonian Juniperus foetidissima Willd. (Cupressaceae). Maced. Pharm. Bull. 2015, 61, 3–11. [Google Scholar] [CrossRef]
- Salehi, S.P.; Mirza, M.; Calagari, M. Composition of the essential oils of Junipers (Juniperus foetidissima and J. oblonga) from Arasbaran Protected Area. J. Essent. Oil-Bear. Plants 2016, 19, 1261–1266. [Google Scholar] [CrossRef]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef] [Green Version]
- Abdelwahed, A.; Hayder, N.; Kilani, S.; Mahmoud, A.; Chibani, J.; Hammami, M.; Chekir-Ghedira, L.; Ghedira, K. Chemical composition and antimicrobial activity of essential oils from Tunisian Pituranthos tortuosus (Coss.) Maire. Flavour. Fragr. J. 2006, 21, 129–133. [Google Scholar] [CrossRef]
- The Pherobase Database and Semichemicals Home Page. Available online: http://www.pherobase.com/database/kovats/kovatsdetailsulcatone.php (accessed on 27 November 2021).
- NIST Webbook Home Page. Available online: http://webbook.nist.gov/cgi/cbook.cgi?ID=C34995772&Units=SI&Mask=2680 (accessed on 27 November 2021).
- Adams, R.P. Systematics of multi-seeded eastern hemisphere Juniperus based on leaf essential oils and RAPD DNA fingerprinting. Biochem. Pharmacol. 1999, 27, 709–725. [Google Scholar] [CrossRef]
- Emami, S.A.; Asgary, S.; Naderi, G.A.; Shams Ardekani, M.R.; Kasher, T.; Aslani, S.; Airin, A.; Sahebkar, A. Antioxidant activities of Juniperus foetidissima essential oils against several oxidative systems. Braz. J. Pharmacogn. 2011, 21, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Ucar, G.; Balaban, M. The composition of volatile extractives from the wood of Juniperus excelsa, Juniperus foetidissima and Juniperus oxycedrus. Holz als Roh Werkstoff 2002, 60, 356–362. [Google Scholar] [CrossRef]
- Tabanca, N.; Niogret, J.; Kendra, P.E.; Epsky, N.D. TLC-based bioassay to isolate kairomones from tea tree essential oil that attract male Mediterranean fruit flies, Ceratitis capitata (Wiedemann). Biomolecules 2020, 10, 683. [Google Scholar] [CrossRef]
- Blythe, E.K.; Tabanca, N.; Demirci, B.; Kendra, P.E. Chemical composition of essential oil from Tetradenia riparia and its attractant activity for Mediterranean fruit fly, Ceratitis capitata. Nat. Prod. Commun. 2020, 15, 1–6. [Google Scholar] [CrossRef]
- Stappen, I.; Wanner, J.; Tabanca, N.; Bernier, U.R.; Kendra, P.E. Blue tansy essential oil: Chemical composition, repellent activity against Aedes aegypti and attractant activity for Ceratitis capitata. Nat. Prod. Comm. 2021, 16, 1–8. [Google Scholar] [CrossRef]
- Tabanca, N.; Nalbantsoy, A.; Kendra, P.E.; Demirci, F.; Demirci, B. Chemical characterization and biological activity of mastic gum essential oils of Pistacia lentiscus var. chia from Turkey. Molecules 2020, 25, 2136. [Google Scholar] [CrossRef]
- Nemeth, E.Z.; Nguyen, H.T. Thujone, a widely debated volatile compound: What do we know about it? Phytochem. Rev. 2020, 19, 405–423. [Google Scholar] [CrossRef]
- Hendriks, H.; van der Elst, D.J.D.; van Putten, F.M.S.; Bos, R. The essential oil of Dutch Tansy (Tanacetum vulgare L.). J. Essent. Oil Res. 1990, 2, 155–162. [Google Scholar] [CrossRef]
- Wedge, D.E.; Tabanca, N.; Sampson, B.J.; Werle, C.; Demirci, B.; Baser, K.H.C.; Nan, P.; Duan, J.; Liu, Z. Antifungal and insecticidal activity of two Juniperus essential oils. Nat. Prod. Commun. 2009, 4, 123–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, J.F.; Tabanca, N.; Kramer, M.; Elejalde, N.M.; Wedge, D.E.; Bernier, U.R.; Coy, M.; Becnerl, J.J.; Demirci, B.; Baser, K.H.C.; et al. Essential oils of Cupressus funebris, Juniperus communis, and J. chinensis (Cupressaceae) as repellents against ticks (Acari: Ixodidae) and mosquitoes (Diptera: Culicidae) and as toxicants against mosquitoes. J. Vector Ecol. 2011, 36, 258–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stappen, I.; Tabanca, N.; Ali, A.; Wedge, D.E.; Wanner, J.; Kaul, V.K.; Lal, B.; Jaitak, V.; Gochev, V.K.; Schmidt, E.; et al. Chemical composition and biological activity of essential oils from wild growing aromatic plant species of Skimmia laureola and Juniperus macropoda from western Himalaya. Nat. Prod. Commun. 2015, 10, 1071–1074. [Google Scholar] [CrossRef] [PubMed]
- Zheljazkov, V.D.; Cantrell, C.L.; Semerdjieva, I.; Radoukova, T.; Stoyanova, A.; Maneva, V.; Kacˇániová, M.; Astatkie, T.; Borisova, D.; Dincheva, I.; et al. Essential oil composition and bioactivity of two Juniper species from Bulgaria and Slovakia. Molecules 2021, 26, 3659. [Google Scholar] [CrossRef] [PubMed]
- Bonnot, N.C.; Morellet, N.; Hewison, A.J.M.; Martin, J.L.; Benhamou, S.; Simon Chamaillé-Jammes, S. Sitka black-tailed deer (Odocoileus hemionus sitkensis) adjust habitat selection and activity rhythm to the absence of predators. Can. J. Zool. 2016, 94, 385–394. [Google Scholar] [CrossRef]
- Rojht, H.; Mesko, A.; Vidrih, M.; Trdan, S. Insecticidal activity of four different substances against larvae and adults of sycamore lace bug (Corythucha ciliata [Say], Heteroptera, Tingidae). Acta Agric. Slov. 2009, 93, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Tsao, R.; Peterson, C.; Coats, J.R. Insecticidal activity of monoterpenoids to western corn rootworm (Coleoptera: Chrysomelidae), two spotted spider mite (Acari: Tetranychidae), and house fly (Diptera: Muscidae). J. Econ. Entomol. 1997, 90, 883–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wróblewska-Kurdyk, A.; Gniłka, R.; Dancewicz, K.; Grudniewska, A.; Wawrzeńczyk, V.; Gabryś, B. β-Thujone and its derivatives modify the probing behavior of the peach potato aphid. Molecules 2019, 24, 1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flath, R.A.; Cunningham, R.T.; Mon, T.R.; John, J.O. Additional male Mediterranean fruit fly (Ceratitis capitata Wied.) attractants from Angelica seed oil (Angelica archangelica L.). J. Chem. Ecol. 1994, 20, 1969–1984. [Google Scholar] [CrossRef] [PubMed]
- Kendra, P.E.; Owens, D.R.; Montgomery, W.S.; Narvaez, T.I.; Bauchan, G.R.; Schnell, E.Q.; Tabanca, N.; Carrillo, D. α-Copaene is an attractant, synergistic with quercivorol, for improved detection of Euwallacea nr. fornicatus (Coleoptera: Curculionidae: Scolytinae). PLoS ONE 2017, 12, e0179416. [Google Scholar]
- Dambolena, J.S.; Zunino, M.P.; Herrera, J.M.; Pizzolitto, R.P.; Areco, V.A.; Zygadlo, J.A. Terpenes: Natural products for controlling insects of importance to human health—A structure-activity relationship study. Psyche 2016, 17, 4595823. [Google Scholar] [CrossRef] [Green Version]
- Langsi, J.D.; Nukenine, E.N.; Oumarou, K.M.; Moktar, H.; Fokunang, C.N.; Mbata, G.N. Evaluation of the insecticidal activities of α-pinene and 3-carene on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Insects 2020, 11, 540. [Google Scholar] [CrossRef]
- Xie, F.; Rizvi, S.A.H. Fumigant toxicity and biochemical properties of (α + β) thujone and 1,8-cineole derived from Seriphidium brevifolium volatile oil against the red imported fire ant Solenopsis invicta (Hymenoptera: Formicidae). Rev. Bras. Farmacogn. 2019, 29, 720–727. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia, 5th ed.; Council of Europe: Strasbourg, France, 2005; Volume 1, p. 217. [Google Scholar]
- Tumen, I.; Hafizoglu, H.; Pranovich, A.; Reunanen, M. Chemical constituents of cones and leaves of Cypress (Cupressus sempervirens L.) grown in Turkey. Fresenius Environ. Bull. 2010, 19, 2268–2276. [Google Scholar]
- Tumen, I.; Reunanen, M. A Comparative study on turpentine oils of oleoresins of Pinus sylvestris L. from three districts of Denizli. Rec. Nat. Prod. 2010, 4, 224–229. [Google Scholar]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Joulain, D.; Koenig, W.A. The Atlas of Spectra Data of Sesquiterpene Hydrocarbons; Verlag: Hamburg, Germany, 1998. [Google Scholar]
- McLafferty, F.W.; Stauffer, D.B. The Wiley/NBS Registry of Mass Spectral Data; Wiley and Sons: New York, NY, USA, 1989. [Google Scholar]
- Hochmuth, D.H. MassFinder 4.0; Hochmuth Scientific Consulting: Hamburg, Germany, 2008. [Google Scholar]
- Systat Software. SigmaPlot for Windows, 14.0; Systat Software, Inc.: San Jose, CA, USA, 2017. [Google Scholar]
- Abbott, A.F. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT, 9.4; SAS Institute: Cary, NC, USA, 2020. [Google Scholar]
Part of J. foetidissima | % | References |
---|---|---|
Leaves (needles) | 0.30 | [33] |
1.03 | [34] | |
1.40 | [35] | |
2.26 | [32] | |
3.00 | [36] | |
0.68 | [37] | |
0.60 | [38] | |
0.50 | [39] | |
1.38 | [40] | |
Fruits | 0.90 | [33] |
0.64 | [34] | |
2.03 | [37] | |
1.70 | [41] | |
2.30 | [38] | |
0.30 | [39] |
Nr | KI a | RRI b | Compound | JFLEO % | JFFEO % | IM | |
---|---|---|---|---|---|---|---|
Monoterpene hydrocarbons (MH) | 1 | 1012 c | 1014 | Tricyclene | 0.2 | 0.2 | MS |
2 | 1025 d | 1032 | α-pinene | 45.2 | 41.9 | RRI, MS | |
3 | 1026 c | 1035 | α-thujene | 0.5 | 0.2 | MS | |
4 | 1061 c | 1072 | α-fenchene | 0.3 | tr | MS | |
5 | 1077 e | 1076 | Camphene | 0.4 | 0.1 | RRI, MS | |
6 | 1117 d | 1118 | β-pinene | 0.5 | 0.7 | RRI, MS | |
7 | 1122 c | 1132 | Sabinene | 1.1 | 1.2 | MS | |
8 | 1122 c | 1135 | Thuja-2,4(10)-diene | 0.1 | 0.1 | MS | |
9 | 1122–1169 c | 1159 | δ-3-carene | 1.1 | 0.2 | MS | |
10 | 1160 c | 1174 | Myrcene | 0.8 | 0.9 | RRI, MS | |
11 | 1248 c | 1187 | o-cymene | 0.1 | tr | MS | |
12 | 1212 e | 1203 | Limonene | 3.0 | 1.0 | RRI, MS | |
13 | 1188–1233 c | 1218 | β-phellandrene | 0.1 | tr | MS | |
14 | 1282 e | 1280 | p-cymene | 3.6 | 1.7 | RRI, MS | |
Oxygenated monoterpenes (OM) | 15 | 1331–1384 c | 1384 | α-pinene oxide | 0.5 | 1.4 | MS |
16 | 1399 c | 1406 | α-fenchone | tr | - | RRI, MS | |
17 | 1423 c | 1437 | α-thujone | 0.2 | 12.2 | MS | |
18 | 1439 c | 1451 | β-thujone | 6.7 | 25.1 | MS | |
19 | 1458 | cis-1,2-limonene epoxide | 0.7 | - | MS | ||
20 | 1459 e | 1474 | trans-sabinene hydrate | - | 0.2 | MS | |
21 | 1473 e | 1481 | Fencyl acetate | 0.1 | - | MS | |
22 | 1486 f | 1499 | α-campholene aldehyde | 0.1 | 0.1 | MS | |
23 | 1515 c | 1532 | Camphor | tr | tr | RRI, MS | |
24 | 1543 c | 1553 | Linalool | 0.1 | - | RRI, MS | |
25 | 1556 | cis-sabinene hydrate | - | 0.1 | MS | ||
26 | 1584 c | 1571 | trans-p-Menth-2-en-1-ol | 0.1 | 0.1 | MS | |
27 | 1575 c | 1586 | Pinocarvone | - | 0.1 | RRI, MS | |
28 | 1568 f | 1591 | Fenchyl alcohol | 0.7 | - | RRI, MS | |
29 | 1579 c | 1591 | Bornyl acetate | 1.2 | 0.5 | RRI, MS | |
30 | 1601 c | 1611 | Terpinen-4-ol | 3.1 | 2.7 | RRI, MS | |
31 | 1614 c | 1638 | cis-p-menth-2-en-1-ol | 0.2 | 0.1 | MS | |
32 | 1631 c | 1648 | Myrtenal | 0.3 | 0.3 | MS | |
33 | 1658 | Sabinyl acetate | 0.8 | 0.9 | MS | ||
34 | 1661 c | 1670 | trans-pinocarveol | 0.3 | 0.3 | RRI, MS | |
35 | 1680 c | 1683 | trans-verbenol | 0.9 | 0.9 | RRI, MS | |
36 | 1694 c | 1706 | α-terpineol | 0.7 | 0.3 | RRI, MS | |
37 | 1699 c | 1719 | Borneol | 0.2 | 0.1 | RRI, MS | |
38 | 1720 c | 1725 | Verbenone | 0.4 | 0.4 | RRI, MS | |
39 | 1743–1808 c | 1804 | Myrtenol | 0.2 | 0.2 | MS | |
40 | 1836 c | 1845 | trans-carveol | 0.3 | 0.1 | RRI, MS | |
41 | 1813–1865 c | 1864 | p-Cymen-8-ol | 0.3 | 0.2 | RRI, MS | |
Sesquiterpene hydrocarbons (SH) | 42 | 1519 | 1,7-diepi-α-cedrene (=α-funebrene) | 0.1 | tr | MS | |
43 | 1563–1608 c | 1577 | α-cedrene | 0.6 | - | MS | |
44 | 1594 | 1,7-diepi-β-cedrene (=β-funebrene) | 0.9 | tr | MS | ||
45 | 1574–1647 c | 1613 | β-cedrene | 0.5 | - | MS | |
46 | 1597–1648 c | 1644 | Widdrene (=Thujopsene) | 0.2 | - | MS | |
47 | 1649 c | 1661 | Alloaromadendrene | 0.4 | - | MS | |
48 | 1747 | α-alaskene | 0.2 | - | MS | ||
49 | 1766–1849 c | 1849 | Cuparene | 0.2 | tr | MS | |
50 | 2146–2256 c | 2256 | Cadalene | 0.1 | - | MS | |
Oxygenated sesquiterpenes (OS) | 51 | 2088 c | 2088 | 1-epi-cubenol | 0.2 | - | MS |
52 | 2100 | allo-cedrol | 1.0 | 0.2 | MS | ||
53 | 2093–2149 c | 2143 | cedrol | 18.2 | 2.1 | RRI, MS | |
54 | 2170 | epi-cedrol | 0.2 | - | MS | ||
55 | 2165 e | 2187 | τ-cadinol | 0.1 | - | MS | |
56 | 2135–2219 c | 2219 | δ-cadinol (=α-muurolol) | 0.1 | - | MS | |
57 | 2255 | α-cadinol | 0.2 | - | MS | ||
Others | 58 | 1056–1106c | 1093 | Hexanal | tr | 0.2 | RRI, MS |
59 | 1379 | 3-methyl-3-butenyl isovalerate | 0.1 | - | MS | ||
60 | 1452 | α,p-dimethylstyrene | 0.1 | tr | MS | ||
61 | 1617 | Hexyl hexanoate | 0.1 | - | RRI, MS | ||
62 | 1797 | p-methyl acetophenone | tr | tr | MS | ||
Total | 98.6 | 97.0 |
Part of J. foetidissima | Main Components | % | References |
---|---|---|---|
Leaves (needles) | sabinene | 39.9 | [37] |
15.9 | [46] | ||
19.9 | [36] | ||
cedrol | 11.4 | [33] | |
25.5 | [34] | ||
α-pinene | 56.1 | [34] | |
22.2 | [36] | ||
α-thujone | 18.6 | [46] | |
β-thujone | 26.5 | [33] | |
terpinen-4-ol | 17.0 | [37] | |
17.6 | [46] | ||
limonene | 20.9 | [36] | |
Fruit | sabinene | 23.7 | [33] |
29.9 | [37] | ||
27.1 | [47] | ||
37.1 | [36] | ||
α-pinene | 90.2 | [34] | |
19.8 | [47] | ||
29.9 | [36] | ||
limonene | 13.1 | [33] | |
25.5 | [47] | ||
11.8 | [36] | ||
22.29 | [41] | ||
α-thujone | 13.46 | [41] | |
β-thujone | 22.32 | [41] | |
terpinen-4-ol | 15.4 | [41] | |
Branches | sabinene | 19.1 (male) 34.3 (female) | [47] |
α-pinene | 17.4 (male) 8.7 (female) | ||
limonene | 36.3 (male) 5.8 (female) | ||
Wood | thujopsene | 19.82 (sapwood) 23.78 (heartwood) | [48] |
widdrol | 3.0 (sapwood) 15.83 (heartwood) | ||
cedrol | 18.8 (sapwood) 10.0 (heartwood) | ||
caryophyllene alcohol | 25.0 (sapwood) 8.9 (heartwood) |
J. foetidissima EO | n | Slope (±SE) | LD50 (95% FL) | χ2 | df | p |
---|---|---|---|---|---|---|
JFLEO | 240 | 1.34 ± 0.12 | 22.07 (17.56–29.34) | 7.2320 | 4 | 0.1241 |
JFFEO | 240 | 2.10 ± 0.15 | 10.45 (9.13–12.08) | 6.6917 | 4 | 0.1531 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurtca, M.; Tumen, I.; Keskin, H.; Tabanca, N.; Yang, X.; Demirci, B.; Kendra, P.E. Chemical Composition of Essential Oils from Leaves and Fruits of Juniperus foetidissima and Their Attractancy and Toxicity to Two Economically Important Tephritid Fruit Fly Species, Ceratitis capitata and Anastrepha suspensa. Molecules 2021, 26, 7504. https://doi.org/10.3390/molecules26247504
Kurtca M, Tumen I, Keskin H, Tabanca N, Yang X, Demirci B, Kendra PE. Chemical Composition of Essential Oils from Leaves and Fruits of Juniperus foetidissima and Their Attractancy and Toxicity to Two Economically Important Tephritid Fruit Fly Species, Ceratitis capitata and Anastrepha suspensa. Molecules. 2021; 26(24):7504. https://doi.org/10.3390/molecules26247504
Chicago/Turabian StyleKurtca, Mehmet, Ibrahim Tumen, Hasan Keskin, Nurhayat Tabanca, Xiangbing Yang, Betul Demirci, and Paul E. Kendra. 2021. "Chemical Composition of Essential Oils from Leaves and Fruits of Juniperus foetidissima and Their Attractancy and Toxicity to Two Economically Important Tephritid Fruit Fly Species, Ceratitis capitata and Anastrepha suspensa" Molecules 26, no. 24: 7504. https://doi.org/10.3390/molecules26247504
APA StyleKurtca, M., Tumen, I., Keskin, H., Tabanca, N., Yang, X., Demirci, B., & Kendra, P. E. (2021). Chemical Composition of Essential Oils from Leaves and Fruits of Juniperus foetidissima and Their Attractancy and Toxicity to Two Economically Important Tephritid Fruit Fly Species, Ceratitis capitata and Anastrepha suspensa. Molecules, 26(24), 7504. https://doi.org/10.3390/molecules26247504