Botanical Origin Differentiation of Malaysian Stingless Bee Honey Produced by Heterotrigona itama and Geniotrigona thoracica Using Chemometrics
Abstract
:1. Introduction
2. Results
2.1. Physicochemical Properties
2.1.1. Major Sugar Composition
2.1.2. Maturity of Honey
2.1.3. Purity of Honey
2.1.4. Deterioration State of Honey
2.1.5. Mineral Profile
2.2. Antioxidant Properties
2.3. Chemometric Analysis
3. Discussion
4. Materials and Methods
4.1. Honey Samples
4.2. Physicochemical Properties
4.2.1. Color Intensity
4.2.2. Total Soluble Solid and Moisture Content
4.2.3. Water Activity
4.2.4. Proline
4.2.5. Electrical Conductivity
4.2.6. Ash Content
4.2.7. Diastase
4.2.8. Hydrogen Peroxide
4.2.9. pH
4.2.10. Free Acidity
4.2.11. d-gluconic Acid
4.2.12. Acetic Acid
4.2.13. Hydroxymethylfurfural (HMF)
4.2.14. Mineral Content
4.3. Antioxidant Properties
4.3.1. Total Phenolic Compounds
4.3.2. ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) Radical Scavenging Activity
4.3.3. DPPH (2,2-diphenyl-1-picrylhydrazyl) Radical Scavenging Activity
4.3.4. Superoxide Anion Radical Scavenging Activity
4.3.5. Peroxyl Radical Inhibitory Activity
4.3.6. Iron Chelating Activity
4.3.7. Ferric Reducing Activity
4.4. Chemometric Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Michener, C.D. The meliponini. In Pot-honey; Vit, P., Pedro, S.R.M., Roubik, D., Eds.; Springer: New York, NY, USA, 2013; pp. 3–17. [Google Scholar]
- Hrncir, M.; Jarau, S.; Barth, F.G. Stingless bees (Meliponini): Senses and behavior. J. Comp. Physiol. A 2016, 202, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Norowi, M.H.; Mohd, F.; Sajap, A.S.; Rosliza, J.; Suri, R. Conservation and sustainable utilization of stingless bees for pollination services in agricultural ecosystems in Malaysia. In Proceedings of the International Seminar on Enhancement of Functional Biodiversity Relevant to Sustainable Food Production in ASPAC, Tsukuba, Japan, 9–11 November 2010. [Google Scholar]
- González-Paramás, A.M.; García-Villanova, R.J.; Bárez, J.A.G.; Sánchez, J.S.; Albajar, R.A. Botanical origin of monovarietal dark honeys (from heather, holm oak, pyrenean oak and sweet chestnut) based on their chromatic characters and amino acid profiles. Eur. Food Res. Technol. 2007, 226, 87–92. [Google Scholar] [CrossRef]
- Seraglio, S.K.T.; Silva, B.; Bergamo, G.; Brugnerotto, P.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. An overview of physicochemical characteristics and health-promoting properties of honeydew honey. Int. Food Res. J. 2019, 119, 44–66. [Google Scholar] [CrossRef] [PubMed]
- Codex Alimentarius Commission. Standard for Honey. In International Food Standards; Codex Alimentarius Commission: Rome, Italy, 2019; pp. 1912–1981. [Google Scholar]
- Council Directive of the European Union. Council Directive 2001/110/EC of 20 December 2001 relating to honey. Off. J. Eur. Communities 2002, 10, 47–52. [Google Scholar]
- Bergamo, G.; Seraglio, S.K.T.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Physicochemical characteristics of bracatinga honeydew honey and blossom honey produced in the state of Santa Catarina: An approach to honey differentiation. Food Res. Int. 2019, 116, 745–754. [Google Scholar] [CrossRef]
- Department of Standards Malaysia. Kelulut (Stingless Bee) Honey-Specification: MS 2683: 2017. In Malaysian Standard; Department of Standards Malaysia: Shah Alam, Malaysia, 2017; pp. 1–33. [Google Scholar]
- Kazalaki, A.; Misiak, M.; Spyros, A.; Dais, P. Identification and quantitative determination of carbohydrate molecules in Greek honey by employing 13C NMR spectroscopy. Anal. Methods 2015, 7, 5962–5972. [Google Scholar] [CrossRef]
- Mazzoni, V.; Bradesi, P.; Tomi, F.; Casanova, J. Direct qualitative and quantitative analysis of carbohydrate mixtures using 13C NMR spectroscopy: Application to honey. Magn. Reson. Chem. 1997, 35, S81–S90. [Google Scholar] [CrossRef]
- Angyal, S.J. The composition of reducing sugars in solution. Adv. Carbohydr. Chem. Biochem. 1984, 42, 5–68. [Google Scholar]
- Angyal, S.J. The composition of reducing sugars in solution: Current aspects. Adv. Carbohydr. Chem. Biochem. 1991, 49, 19–35. [Google Scholar]
- Angyal, S.J. The composition of reducing sugars in dimethyl sulfoxide solution. Carbohydr. Res. 1994, 1, 1–11. [Google Scholar] [CrossRef]
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Nweze, J.A.; Okafor, J.I.; Nweze, E.I.; Nweze, J.E. Evaluation of physicochemical and antioxidant properties of two stingless bee honeys: A comparison with Apis mellifera honey from Nsukka, Nigeria. BMC Res. Notes 2017, 10, 566. [Google Scholar] [CrossRef] [Green Version]
- Shamsudin, S.; Selamat, J.; Sanny, M.; Abd. Razak, S.B.; Jambari, N.N.; Mian, Z.; Khatib, A. Influence of origins and bee species on physicochemical, antioxidant properties and botanical discrimination of stingless bee honey. Int. J. Food Prop. 2019, 22, 239–264. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, M.T.; Hungerford, N.L.; Webber, D.; de Jesus, M.C.; Zhang, J.; Stone, I.S.; Blanchfield, J.T.; Zawawi, N. Stingless bee honey, a novel source of trehalulose: A biologically active disaccharide with health benefits. Sci. Rep. 2020, 10, 12128. [Google Scholar] [CrossRef] [PubMed]
- Bates, R.B.; Byrne, D.N.; Kane, V.V.; Miller, W.B.; Taylor, S.R. NMR characterization of trehalulose from the excrement of the sweet potato whitefly, Bemisia tabaci. Carbohydr. Res. 1990, 201, 342–345. [Google Scholar] [CrossRef]
- Thompson, J.; Robrish, S.A.; Pikis, A.; Brust, A.; Lichtenthaler, F.W. Phosphorylation and metabolism of sucrose and its five linkage-isomeric α-D-glucosyl-D-fructoses by Klebsiella pneumoniae. Carbohydr. Res. 2001, 331, 149–161. [Google Scholar] [CrossRef]
- Manzanares, A.B.; García, Z.H.; Galdón, B.R.; Rodríguez, E.R.; Romero, C.D. Differentiation of blossom and honeydew honeys using multivariate analysis on the physicochemical parameters and sugar composition. Food Chem. 2011, 126, 664–672. [Google Scholar] [CrossRef]
- Pita-Calvo, C.; Vázquez, M. Differences between honeydew and blossom honeys: A review. Trends Food Sci. Technol. 2017, 59, 79–87. [Google Scholar] [CrossRef]
- Vela, L.; de Lorenzo, C.; Perez, R.A. Antioxidant capacity of Spanish honeys and its correlation with polyphenol content and other physicochemical properties. J. Sci. Food Agric. 2007, 87, 1069–1075. [Google Scholar] [CrossRef]
- Smanalieva, J.; Senge, B. Analytical and rheological investigations into selected unifloral German honey. Eur. Food Res. Technol. 2009, 229, 107–113. [Google Scholar] [CrossRef]
- Manikis, I.; Thrasivoulou, A. The relation of physicochemical characteristics of honey and the crystallization sensitive parameters. Apiacta 2001, 36, 106–112. [Google Scholar]
- Ramalhosa, E.; Gomes, T.; Pereira, A.P.; Dias, T.; Estevinho, L.M. Mead production: Tradition versus modernity. Adv. Food Nutr. Res. 2011, 63, 101–118. [Google Scholar] [PubMed]
- Souza, E.C.A.; Menezes, C.; Flach, A. Stingless bee honey (Hymenoptera, Apidae, Meliponini): A review of quality control, chemical profile, and biological potential. Apidologie 2021, 52, 113–132. [Google Scholar] [CrossRef]
- Suntiparapop, K.; Prapaipong, P.; Chantawannakul, P. Chemical and biological properties of honey from Thai stingless bee (Tetragonula leaviceps). J. Apic. Res. 2012, 51, 45–52. [Google Scholar] [CrossRef]
- Kek, S.P.; Chin, N.L.; Yusof, Y.A.; Tan, S.W.; Chua, L.S. Classification of entomological origin of honey based on its physicochemical and antioxidant properties. Int. J. Food Prop. 2017, 20 (Suppl. S3), S2723–S2738. [Google Scholar] [CrossRef]
- de Sousa, J.M.B.; de Souza, E.L.; Marques, G.; de Toledo Benassi, M.; Gullón, B.; Pintado, M.M.; Magnani, M. Sugar profile, physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region. LWT—Food Sci. Technol. 2016, 65, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Silvano, M.F.; Varela, M.S.; Palacio, M.A.; Ruffinengo, S.; Yamul, D.K. Physicochemical parameters and sensory properties of honeys from Buenos Aires region. Food Chem. 2014, 152, 500–507. [Google Scholar] [CrossRef]
- Biluca, F.C.; Braghini, F.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae). J. Food Compost. Anal. 2016, 50, 61–69. [Google Scholar] [CrossRef]
- Czipa, N.; Borbely, M.; Gyori, Z. Proline content of different honey types. Acta Aliment. 2012, 41, 26–32. [Google Scholar] [CrossRef]
- Wen, Y.Q.; Zhang, J.; Li, Y.; Chen, L.; Zhao, W.; Zhou, J.; Jin, Y. Characterization of Chinese unifloral honeys based on proline and phenolic content as markers of botanical origin, using multivariate analysis. Molecules 2017, 22, 735. [Google Scholar] [CrossRef] [Green Version]
- Moniruzzaman, M.; Khalil, M.I.; Sulaiman, S.A.; Gan, S.H. Physicochemical and antioxidant properties of Malaysian honeys produced by Apis cerana, Apis dorsata and Apis mellifera. BMC Complement. Altern. Med. 2013, 13, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.; Djebli, N.; Aissat, S.; Bacha, S.; Meslem, A.; Khiati, B. Synergistic inhibition of natural honey and potato starch and their correlation with diastase number and sugar content against Klebsiella pneumoniae ATCC 27736. Nat. Prod. Chem. Res. 2012, 1, 102. [Google Scholar] [CrossRef] [Green Version]
- Machado De-Melo, A.A.; Almeida-Muradian, L.B.D.; Sancho, M.T.; Pascual-Maté, A. Composition and properties of Apis mellifera honey: A review. J. Apic. Res. 2018, 57, 5–37. [Google Scholar] [CrossRef]
- Souza, B.A.; Roubik, D.W.; Barth, O.M.; Heard, T.A.; Enríquez, E.; Carvalho, C.; Villas-Bôas, J.; Marchini, L.; Locatelli, J.; Persano-Oddo, L.; et al. Composition of stingless bee honey: Setting quality standards. Interciencia 2006, 31, 867–875. [Google Scholar]
- Babacan, S.; Rand, A.G. Characterization of honey amylase. J. Food Sci. 2007, 72, C050–C055. [Google Scholar] [CrossRef] [PubMed]
- Massaro, C.F.; Shelley, D.; Heard, T.A.; Brooks, P. In vitro antibacterial phenolic extracts from “sugarbag” pot-honeys of Australian stingless bees (Tetragonula carbonaria). J. Agric. Food Chem. 2014, 62, 12209–12217. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.J.; Sit, N.W.; Ooi, P.A.C.; Ee, K.Y.; Lim, T.M. The antibacterial potential of honeydew honey produced by stingless bee (Heterotrigona itama) against antibiotic resistant bacteria. Antibiotics 2020, 9, 871. [Google Scholar] [CrossRef]
- Chen, C.; Campbell, L.; Blair, S.E.; Carter, D.A. The effect of standard heat and filtration processing procedures on antimicrobial activity and hydrogen peroxide levels in honey. Front. Microbiol. 2012, 3, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brudzynski, K.; Abubaker, K.; Castle, A. Re-examining the role of hydrogen peroxide in bacteriostatic and bactericidal activities of honey. Front. Microbiol. 2011, 2, 213. [Google Scholar] [CrossRef] [Green Version]
- Bucekova, M.; Sojka, M.; Valachova, I.; Martinotti, S.; Ranzato, E.; Szep, Z.; Majtan, V.; Klaudiny, J.; Majtan, J. Bee-derived antibacterial peptide, defensin-1, promotes wound re-epithelialisation in vitro and in vivo. Sci. Rep. 2017, 7, 7340. [Google Scholar] [CrossRef] [Green Version]
- Chan, B.K.; Haron, H.; Talib, R.A.; Subramaniam, P. Physical properties, antioxidant content and anti-oxidative activities of Malaysian stingless kelulut (Trigona spp.) honey. J. Agric. Sci. 2017, 9, 32–40. [Google Scholar]
- Selvaraju, K.; Vikram, P.; Soon, J.M.; Krishnan, K.T.; Mohammed, A. Melissopalynological, physicochemical and antioxidant properties of honey from West Coast of Malaysia. J. Food Sci. Technol. 2019, 56, 2508–2521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dardon, M.J.; Maldonado-Aguilera, C.; Enríquez, E. The pot-honey of Guatemalan bees. In Pot-Honey; Vit, P., Pedro, S.R.M., Roubik, D., Eds.; Springer: New York, NY, USA, 2013; pp. 395–408. [Google Scholar]
- Olaitan, P.B.; Adeleke, O.E.; Iyabo, O.O. Honey: A reservoir for microorganisms and an inhibitory agent for microbes. Afr. Health Sci. 2007, 7, 159–165. [Google Scholar]
- Kretavičius, J.; Kurtinaitienė, B.; Račys, J.; Čeksterytė, V. Inactivation of glucose oxidase during heat-treatment de-crystallization of honey. Zemdirb. Agric. 2010, 97, 115–122. [Google Scholar]
- Mato, I.; Huidobro, J.F.; Simal-Lozano, J.; Sancho, M.T. Significance of nonaromatic organic acids in honey. J. Food Prot. 2003, 66, 2371–2376. [Google Scholar] [CrossRef]
- Tezcan, F.; Kolayli, S.; Sahin, H.; Ulusoy, E.; Erim, F.B. Evaluation of organic acid, saccharide composition and antioxidant properties of some authentic Turkish honeys. J. Food Nutr. Res. 2011, 50, 33–40. [Google Scholar]
- Cheng, M.Z.S.Z.; Ismail, M.; Chan, K.W.; Ooi, D.J.; Ismail, N.; Zawawi, N.; Mohd Esa, N. Comparison of sugar content, mineral elements and antioxidant properties of Heterotrigona itama honey from suburban and forest in Malaysia. Malays. J. Med. Health Sci. 2019, 15, 104–112. [Google Scholar]
- Kek, S.P.; Chin, N.L.; Tan, S.W.; Yusof, Y.A.; Chua, L.S. Classification of honey from its bee origin via chemical profiles and mineral content. Food Anal. Methods 2017, 10, 19–30. [Google Scholar] [CrossRef]
- Olga, E.; María, F.G.; Carmen, S.M. Differentiation of blossom honey and honeydew honey from Northwest Spain. Agriculture 2012, 2, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Truchado, P.; Vit, P.; Heard, T.A.; Tomás-Barberán, F.A.; Ferreres, F. Determination of interglycosidic linkages in O-glycosyl flavones by high-performance liquid chromatography/photodiode-array detection coupled to electrospray ionization ion trap mass spectrometry. Its application to Tetragonula carbonaria honey from Australia. Rapid Commun. Mass Spectrum. 2015, 29, 948–954. [Google Scholar]
- Beretta, G.; Granata, P.; Ferrero, M.; Orioli, M.; Facino, R.M. Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal. Chim. Acta 2005, 533, 185–191. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of the Association of Official Analytical Chemists. J. AOAC Int. 1990, 934, 1–2. [Google Scholar]
- Bogdanov, S.; Martin, P.; Lullmann, C. Harmonised Methods of the International Honey Commission; Swiss Bee Research Centre, FAM: Liebefeld, Switzerland, 2002; pp. 1–63. [Google Scholar]
- Khalil, M.I.; Sulaiman, S.A.; Gan, S.H. High 5-hydroxymethylfurfural concentrations are found in Malaysian honey samples stored for more than one year. Food Chem. Toxicol. 2010, 48, 2388–2392. [Google Scholar] [CrossRef]
- Vanhanen, L.P.; Emmertz, A.; Savage, G.P. Mineral analysis of mono-floral New Zealand honey. Food Chem. 2011, 128, 236–240. [Google Scholar] [CrossRef]
- Khalil, M.; Moniruzzaman, M.; Boukraa, L.; Benhanifia, M.; Islam, M.; Sulaiman, S.A.; Gan, S.H. Physicochemical and antioxidant properties of Algerian honey. Molecules 2012, 17, 11199–11215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, I.C.; Aires, E.; Barreira, J.C.; Estevinho, L.M. Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract. Food Chem. 2009, 114, 1438–1443. [Google Scholar] [CrossRef]
- Chai, T.; Mohan, M.; Ong, H.; Wong, F. Antioxidant, iron-chelating and anti-glucosidase activities of Typha domingensis Pers (Typhaceae). Trop. J. Pharm. Res. 2014, 13, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Meth. Enzymol. 1999, 299, 15–27. [Google Scholar]
Sugar | Honeydew Honey | Blossom Honey | ||||
---|---|---|---|---|---|---|
Tautomer % | Average Integration Value | g/100 g | Tautomer % | Average Integration Value | g/100 g | |
α-d-glucopyranose (α-GP) | 41.70 | 0.2825 | 14.41 ± 0.42 | 40.50 | 0.2475 | 14.45 ± 0.31 |
β-d-glucopyranose (β-GP) | 58.30 | 0.3950 | 20.99 ± 0.62 | 59.50 | 0.3688 | 20.96 ± 0.52 |
Total glucose | 35.39 ± 0.20 | 35.36 ± 0.76 | ||||
α-d-fructopyranose (α-FP) | 2.59 | 0.0188 | 1.02 ± 0.05 | 4.17 | 0.0278 | 1.60 ± 0.01 |
β-d-fructopyranose (β-FP) | 69.59 | 0.5050 | 25.99 ± 0.40 | 68.99 | 0.4600 | 26.19 ± 0.14 |
α-d-fructofuranose (α-FF) | 6.01 | 0.0436 | 2.29 ± 0.02 | 6.20 | 0.0414 | 2.39 ± 0.01 |
β-d-fructofuranose (β-FF) | 21.81 | 0.1583 | 8.32 ± 0.12 | 20.65 | 0.1378 | 8.08 ± 0.04 |
Total fructose | 37.61 ± 0.20 | 38.25 ± 0.21 | ||||
Total sucrose | - | - | - | - | 0.0038 | 0.40 ± 0.57 |
Fructose-to-glucose ratio (F/G) | 1.06 ± 0.01 | 1.08 ± 0.03 | ||||
Glucose-to-moisture ratio (G/M) | 1.31 ± 0.01 | 1.38 ± 0.03 |
Honey Sample | Color Intensity (mAU) | Moisture (%, g/100 g) | Water Activity | Total Soluble Solid (°Brix) | Proline (mg/kg) |
---|---|---|---|---|---|
S1 | 180 ± 0 | 27.30 ± 0 | 0.62 ± 0 | 72.70 ± 0 | 537.13 ± 6.86 |
S2 | 190 ± 0 | 27.13 ± 0.06 | 0.60 ± 0 | 72.87 ± 0.06 | 513.13 ± 5.00 |
S3 | 200 ± 0 | 26.40 ± 0 | 0.62 ± 0 | 73.60 ± 0 | 522.93 ± 20.01 |
S4 | 190 ± 0 | 26.37 ± 0.06 | 0.63 ± 0 | 73.63 ± 0.06 | 542.37 ± 37.50 |
S5 | 190 ± 0 | 26.33 ± 0.06 | 0.63 ± 0 | 73.67 ± 0.06 | 547.43 ± 16.01 |
S6 | 150 ± 0 | 27.87 ± 0.06 | 0.62 ± 0 | 72.13 ± 0.06 | 514.50 ± 3.90 |
S7 | 140 ± 0 | 27.40 ± 0 | 0.65 ± 0 | 72.60 ± 0 | 454.80 ± 11.39 |
S8 | 150 ± 0 | 27.43 ± 0.06 | 0.65 ± 0 | 72.57 ± 0.06 | 546.73 ± 10.83 |
S9 | 60 ± 0 | 23.50 ± 0.10 | 0.54 ± 0 | 76.50 ± 0.10 | 577.00 ± 2.00 |
S10 | 80 ± 0 | 22.57 ± 0.06 | 0.54 ± 0 | 77.43 ± 0.06 | 546.00 ± 2.69 |
S11 | 60 ± 0 | 22.50 ± 0 | 0.55 ± 0 | 77.50 ± 0 | 578.37 ± 4.47 |
S12 | 70 ± 0 | 26.60 ± 0 | 0.54 ± 0 | 73.40 ± 0 | 588.80 ± 35.76 |
S13 | 60 ± 0 | 26.73 ± 0.06 | 0.57 ± 0 | 73.27 ± 0.06 | 514.23 ± 14.70 |
S14 | 50 ± 0 | 24.57 ± 0.06 | 0.64 ± 0 | 75.43 ± 0.06 | 525.27 ± 7.28 |
S15 | 50 ± 0 | 24.30 ± 0 | 0.63 ± 0 | 75.70 ± 0 | 525.70 ± 4.62 |
S16 | 70 ± 0 | 24.20 ± 0 | 0.63 ± 0 | 75.80 ± 0 | 525.10 ± 7.82 |
S17 | 250 ± 0 | 26.20 ± 0 | 0.64 ± 0 | 73.80 ± 0 | 670.27 ± 6.78 |
S18 | 250 ± 0 | 27.20 ± 0 | 0.67 ± 0 | 72.80 ± 0 | 598.50 ± 3.50 |
S19 | 240 ± 0 | 27.10 ± 0 | 0.67 ± 0 | 72.87 ± 0.06 | 612.40 ± 4.25 |
S20 | 280 ± 0 | 27.30 ± 0 | 0.67 ± 0 | 72.70 ± 0 | 627.57 ± 7.10 |
S21 | 220 ± 0 | 27.37 ± 0.06 | 0.67 ± 0 | 72.63 ± 0.06 | 510.67 ± 5.86 |
S22 | 250 ± 0 | 28.00 ± 0 | 0.69 ± 0 | 72.00 ± 0 | 510.47 ± 1.50 |
S23 | 210 ± 0 | 26.97 ± 0.06 | 0.67 ± 0 | 73.03 ± 0.06 | 535.70 ± 4.96 |
Average | 156.09 ± 76.59 | 26.14 ± 1.64 | 0.62 ± 0.05 | 73.85 ± 1.64 | 548.94 ± 47.74 |
Honeydew | 173.75 ± 22.23 | 27.03 ± 0.56 * | 0.63 ± 0.02 | 72.97 ± 0.56 * | 522.38 ± 32.61 * |
Blossom | 146.67 ± 92.44 | 25.67 ± 1.83 | 0.62 ± 0.06 | 74.32 ± 1.83 | 563.11 ± 48.74 |
Honey Sample | Electrical Conductivity (mS/cm) | Ash Content (%, g/100 g) | Diastase (Schade Unit/g) | Hydrogen Peroxide (µmol/L) |
---|---|---|---|---|
S1 | 0.36 ± 0 | 0.18 ± 0.01 | 3.04 ± 0.08 | 177.58 ± 19.80 |
S2 | 0.39 ± 0 | 0.16 ± 0.01 | 2.98 ± 0.05 | 185.43 ± 7.29 |
S3 | 0.42 ± 0 | 0.15 ± 0 | 2.45 ± 0.03 | 187.05 ± 20.39 |
S4 | 0.45 ± 0 | 0.13 ± 0.01 | 2.51 ± 0.09 | 177.19 ± 18.63 |
S5 | 0.41 ± 0 | 0.13 ± 0.01 | 2.71 ± 0.04 | 189.77 ± 18.09 |
S6 | 0.52 ± 0 | 0.13 ± 0 | 2.22 ± 0.08 | 184.07 ± 13.14 |
S7 | 0.51 ± 0 | 0.13 ± 0.01 | 2.05 ± 0.02 | 192.82 ± 20.58 |
S8 | 0.52 ± 0 | 0.14 ± 0.01 | 2.34 ± 0.07 | 174.18 ± 6.22 |
S9 | 0.38 ± 0 | 0.04 ± 0 | 2.63 ± 0.59 | 111.40 ± 1.77 |
S10 | 0.35 ± 0 | 0.04 ± 0 | 2.09 ± 0.02 | 111.97 ± 1.82 |
S11 | 0.29 ± 0 | 0.04 ± 0.01 | 2.25 ± 0.03 | 118.20 ± 10.78 |
S12 | 0.29 ± 0 | 0.04 ± 0.01 | 2.15 ± 0.04 | 112.40 ± 2.50 |
S13 | 0.41 ± 0 | 0.04 ± 0.01 | 2.30 ± 0.04 | 112.95 ± 3.49 |
S14 | 0.42 ± 0 | 0.04 ± 0.01 | 2.17 ± 0.18 | 119.53 ± 8.88 |
S15 | 0.45 ± 0 | 0.04 ± 0.01 | 2.39 ± 0.02 | 114.15 ± 9.31 |
S16 | 0.45 ± 0 | 0.04 ± 0 | 2.38 ± 0.03 | 111.07 ± 11.28 |
S17 | 0.38 ± 0 | 0.05 ± 0.01 | 1.83 ± 0.15 | 168.37 ± 21.51 |
S18 | 0.35 ± 0 | 0.05 ± 0.01 | 2.23 ± 0.35 | 146.17 ± 30.41 |
S19 | 0.30 ± 0 | 0.05 ± 0.01 | 2.18 ± 0.14 | 166.73 ± 12.74 |
S20 | 0.28 ± 0 | 0.05 ± 0.01 | 2.16 ± 0.14 | 160.17 ± 17.36 |
S21 | 0.36 ± 0 | 0.05 ± 0.01 | 2.43 ± 0.02 | 169.63 ± 4.57 |
S22 | 0.38 ± 0 | 0.05 ± 0.01 | 2.36 ± 0.03 | 178.61 ± 2.01 |
S23 | 0.38 ± 0 | 0.05 ± 0 | 2.29 ± 0.08 | 162.77 ± 21.68 |
Average | 0.39 ± 0.07 | 0.08 ± 0.05 | 2.35 ± 0.31 | 153.57 ± 33.12 |
Honeydew | 0.45 ± 0.06 * | 0.14 ± 0.02* | 2.54 ± 0.34 * | 183.51 ± 15.11 * |
Blossom | 0.36 ± 0.05 | 0.04 ± 0.01 | 2.26 ± 0.24 | 137.61 ± 28.74 |
Honey Sample | pH | Free Acidity (meq/kg) | Gluconic Acid (g/kg) | Acetic Acid (g/kg) | Hydroxymethylfurfural (mg/kg) |
---|---|---|---|---|---|
S1 | 3.26 ± 0.02 | 89.33 ± 0.58 | 0.34 ± 0.01 | 0.09 ± 0.01 | 19.69 ± 0.04 |
S2 | 3.26 ± 0.01 | 87.33 ± 0.58 | 0.31 ± 0.01 | 0.11 ± 0.02 | 19.41 ± 0.56 |
S3 | 3.18 ± 0.02 | 85.00 ± 1.00 | 0.38 ± 0.06 | 0.13 ± 0.03 | 19.48 ± 0.36 |
S4 | 3.16 ± 0.02 | 93.00 ± 2.00 | 0.34 ± 0.01 | 0.12 ± 0.04 | 17.31 ± 0.81 |
S5 | 3.21 ± 0.02 | 90.33 ± 0.58 | 0.37 ± 0.03 | 0.09 ± 0.03 | 16.62 ± 0.22 |
S6 | 3.54 ± 0.01 | 94.67 ± 0.58 | 0.71 ± 0.06 | 0.09 ± 0.03 | 11.45 ± 0.37 |
S7 | 3.54 ± 0.01 | 92.67 ± 0.58 | 0.62 ± 0.03 | 0.08 ± 0.02 | 14.85 ± 0.32 |
S8 | 3.51 ± 0.01 | 95.33 ± 0.58 | 0.62 ± 0.04 | 0.09 ± 0.03 | 15.64 ± 0.11 |
S9 | 3.46 ± 0.01 | 72.00 ± 1.00 | 0.57 ± 0.01 | 0.09 ± 0.03 | 19.87 ± 0.46 |
S10 | 3.51 ± 0.01 | 70.67 ± 0.58 | 0.54 ± 0.05 | 0.16 ± 0.05 | 19.17 ± 0.38 |
S11 | 3.28 ± 0.01 | 72.00 ± 0 | 0.58 ± 0.03 | 0.12 ± 0.02 | 17.22 ± 0.72 |
S12 | 3.27 ± 0.01 | 78.00 ± 0 | 0.45 ± 0 | 0.09 ± 0.02 | 27.10 ± 0.92 |
S13 | 3.22 ± 0.01 | 75.00 ± 0 | 0.35 ± 0.01 | 0.08 ± 0.01 | 13.13 ± 1.51 |
S14 | 3.25 ± 0.02 | 62.00 ± 2.00 | 0.56 ± 0.05 | 0.10 ± 0.02 | 13.54 ± 0.44 |
S15 | 3.17 ± 0.02 | 60.67 ± 0.58 | 0.67 ± 0.02 | 0.10 ± 0.02 | 14.22 ± 0.41 |
S16 | 3.22 ± 0.03 | 61.67 ± 0.58 | 0.72 ± 0.06 | 0.13 ± 0.02 | 12.71 ± 0.55 |
S17 | 3.21 ± 0 | 80.67 ± 0.58 | 0.34 ± 0.01 | 0.02 ± 0.01 | 20.24 ± 0.46 |
S18 | 3.25 ± 0.01 | 81.67 ± 0.58 | 0.35 ± 0.03 | 0.05 ± 0.02 | 20.39 ± 0.46 |
S19 | 3.21 ± 0.01 | 81.67 ± 0.58 | 0.43 ± 0.04 | 0.03 ± 0.01 | 19.53 ± 0.27 |
S20 | 3.28 ± 0.01 | 85.00 ± 0 | 0.25 ± 0.01 | 0.03 ± 0.02 | 21.10 ± 1.28 |
S21 | 3.51 ± 0 | 86.67 ± 0.58 | 0.34 ± 0.02 | 0.04 ± 0.01 | 24.54 ± 0.04 |
S22 | 3.51 ± 0 | 91.00 ± 1.00 | 0.30 ± 0.03 | 0.03 ± 0.02 | 19.69 ± 0.19 |
S23 | 3.50 ± 0 | 91.00 ± 0 | 0.65 ± 0.05 | 0.04 ± 0.01 | 18.88 ± 1.04 |
Average | 3.33 ± 0.14 | 81.62 ± 10.70 | 0.47 ± 0.15 | 0.08 ± 0.04 | 18.08 ± 3.74 |
Honeydew | 3.33 ± 0.16 | 90.96 ± 3.54 * | 0.46 ± 0.15 | 0.10 ± 0.03 * | 16.81 ± 2.74 * |
Blossom | 3.32 ± 0.13 | 76.64 ± 9.88 | 0.47 ± 0.15 | 0.07 ± 0.05 | 18.76 ± 4.05 |
(1) | |||||
Honey Sample | Na (mg/kg) | K (mg/kg) | Mg (mg/kg) | Ca (mg/kg) | Fe (mg/kg) |
S1 | 283.40 ± 6.01 | 298.27 ± 11.06 | 50.51 ± 0.64 | 67.27 ± 2.85 | 12.17 ± 1.13 |
S2 | 295.42 ± 1.95 | 285.92 ± 7.17 | 55.39 ± 1.29 | 70.24 ± 2.89 | 11.82 ± 1.51 |
S3 | 326.75 ± 22.74 | 269.35 ± 40.91 | 58.19 ± 0.42 | 69.76 ± 2.96 | 12.86 ± 0.35 |
S4 | 305.63 ± 14.03 | 296.93 ± 6.39 | 59.95 ± 0.38 | 65.54 ± 3.05 | 14.29 ± 0.89 |
S5 | 312.14 ± 25.09 | 274.47 ± 28.46 | 54.54 ± 0.49 | 70.73 ± 0.96 | 12.77 ± 1.22 |
S6 | 300.13 ± 9.81 | 302.40 ± 4.27 | 52.64 ± 0.86 | 66.43 ± 3.83 | 13.77 ± 1.97 |
S7 | 308.57 ± 10.66 | 285.60 ± 14.20 | 52.99 ± 0.44 | 69.03 ± 2.43 | 12.26 ± 0.86 |
S8 | 316.87 ± 32.21 | 273.73 ± 59.26 | 54.29 ± 1.46 | 69.77 ± 2.36 | 12.50 ± 0.56 |
S9 | 256.60 ± 27.52 | 190.69 ± 11.00 | 42.02 ± 1.89 | 47.23 ± 5.72 | 12.34 ± 0.80 |
S10 | 242.68 ± 12.61 | 178.61 ± 14.91 | 35.95 ± 3.03 | 37.72 ± 0.79 | 10.41 ± 0.74 |
S11 | 223.87 ± 16.54 | 167.20 ± 11.02 | 32.77 ± 1.04 | 38.24 ± 2.70 | 10.73 ± 1.50 |
S12 | 263.65 ± 11.12 | 166.67 ± 9.62 | 34.57 ± 3.59 | 47.45 ± 2.12 | 10.68 ± 1.21 |
S13 | 243.53 ± 48.50 | 165.27 ± 14.55 | 42.09 ± 5.21 | 45.45 ± 4.39 | 10.90 ± 1.57 |
S14 | 286.20 ± 6.91 | 191.37 ± 6.25 | 42.53 ± 5.12 | 53.90 ± 7.37 | 12.73 ± 0.81 |
S15 | 277.03 ± 23.49 | 204.00 ± 16.52 | 47.41 ± 4.04 | 58.13 ± 2.75 | 12.50 ± 0.66 |
S16 | 283.70 ± 5.79 | 179.83 ± 17.82 | 44.78 ± 2.69 | 63.27 ± 5.16 | 11.87 ± 0.61 |
S17 | 278.83 ± 12.71 | 223.65 ± 14.98 | 44.58 ± 1.51 | 61.75 ± 2.08 | 11.26 ± 0.92 |
S18 | 278.59 ± 28.74 | 232.70 ± 16.22 | 46.36 ± 1.35 | 63.73 ± 0.50 | 11.38 ± 0.78 |
S19 | 260.30 ± 43.61 | 209.05 ± 18.20 | 44.82 ± 2.06 | 63.39 ± 1.17 | 10.71 ± 0.93 |
S20 | 263.88 ± 28.77 | 224.23 ± 13.89 | 40.25 ± 1.85 | 63.99 ± 2.93 | 12.09 ± 0.70 |
S21 | 275.60 ± 25.84 | 189.27 ± 12.66 | 46.13 ± 5.16 | 70.30 ± 2.09 | 12.33 ± 1.46 |
S22 | 274.60 ± 7.45 | 184.07 ± 11.60 | 50.83 ± 4.49 | 69.33 ± 0.90 | 10.57 ± 1.10 |
S23 | 292.27 ± 6.55 | 179.93 ± 1.15 | 47.02 ± 2.34 | 63.77 ± 6.77 | 11.57 ± 0.80 |
Average | 280.45 ± 31.09 | 224.92 ± 51.17 | 46.98 ± 7.56 | 60.71 ± 10.70 | 11.94 ± 1.34 |
Honeydew | 306.11 ± 19.79 * | 285.83 ± 26.51 * | 54.81 ± 3.00 * | 68.60 ± 2.96 * | 12.80 ± 1.26 * |
Blossom | 266.76 ± 27.16 | 192.44 ± 24.00 | 42.81 ± 5.68 | 56.51 ± 10.98 | 11.47 ± 1.14 |
(2) | |||||
Honey Sample | Zn (mg/kg) | Mn (mg/kg) | Cr (mg/kg) | Cu + Al (mg/kg) | Total Mineral Elements (mg/kg) |
S1 | 3.40 ± 0.26 | 0.44 ± 0.14 | 0.42 ± 0.08 | <LOQ | 715.88 ± 7.39 |
S2 | 3.74 ± 0.32 | 0.29 ± 0.21 | 0.66 ± 0.38 | <LOQ | 723.47 ± 5.73 |
S3 | 3.78 ± 0.38 | 0.59 ± 0.25 | 0.27 ± 0.20 | <LOQ | 741.56 ± 38.62 |
S4 | 3.63 ± 1.10 | 0.75 ± 0.16 | 0.44 ± 0.10 | <LOQ | 747.15 ± 16.63 |
S5 | 2.66 ± 0.58 | 0.63 ± 0.04 | 0.27 ± 0.20 | <LOQ | 728.21 ± 54.06 |
S6 | 3.88 ± 0.30 | 0.63 ± 0.06 | 0.63 ± 0.32 | <LOQ | 740.52 ± 3.59 |
S7 | 4.25 ± 0.28 | 0.72 ± 0.28 | 0.53 ± 0.40 | <LOQ | 733.95 ± 2.96 |
S8 | 4.14 ± 0.46 | 0.67 ± 0.15 | 0.60 ± 0.26 | <LOQ | 732.56 ± 26.36 |
S9 | 3.47 ± 0.65 | 0.62 ± 0.13 | 0.61 ± 0.11 | <LOQ | 553.58 ± 13.19 |
S10 | 3.41 ± 0.19 | 0.54 ± 0.07 | 0.56 ± 0.12 | <LOQ | 509.88 ± 9.36 |
S11 | 2.27 ± 0.85 | 0.42 ± 0.14 | 0.45 ± 0.06 | <LOQ | 475.94 ± 24.77 |
S12 | 2.98 ± 0.11 | 0.40 ± 0.13 | 0.51 ± 0.07 | <LOQ | 526.91 ± 15.85 |
S13 | 2.60 ± 0.38 | 0.52 ± 0.06 | 0.67 ± 0.11 | <LOQ | 511.02 ± 44.73 |
S14 | 3.03 ± 0.39 | 0.68 ± 0.10 | 0.82 ± 0.07 | <LOQ | 591.27 ± 13.90 |
S15 | 2.71 ± 0.33 | 0.69 ± 0.12 | 0.42 ± 0.12 | <LOQ | 602.90 ± 42.12 |
S16 | 3.31 ± 0.44 | 0.67 ± 0.12 | 0.61 ± 0.36 | <LOQ | 588.03 ± 20.94 |
S17 | 2.39 ± 0.78 | 0.45 ± 0.19 | 0.53 ± 0.25 | <LOQ | 623.44 ± 17.96 |
S18 | 2.00 ± 0.92 | 0.37 ± 0.05 | 0.63 ± 0.12 | <LOQ | 635.77 ± 31.56 |
S19 | 1.81 ± 0.19 | 0.39 ± 0.18 | 0.48 ± 0.09 | <LOQ | 590.96 ± 54.17 |
S20 | 1.76 ± 0.24 | 0.42 ± 0.27 | 0.54 ± 0.04 | <LOQ | 607.17 ± 19.59 |
S21 | 2.94 ± 0.24 | 0.60 ± 0.17 | 0.73 ± 0.16 | <LOQ | 597.89 ± 46.93 |
S22 | 3.32 ± 0.49 | 0.65 ± 0.05 | 0.59 ± 0.08 | <LOQ | 593.96 ± 9.66 |
S23 | 3.09 ± 0.17 | 0.80 ± 0 | 0.79 ± 0.17 | <LOQ | 599.24 ± 8.09 |
Average | 3.07 ± 0.81 | 0.56 ± 0.19 | 0.55 ± 0.21 | - | 629.19 ± 88.03 |
Honeydew | 3.68 ± 0.65 * | 0.59 ± 0.21 | 0.48 ± 0.27 | - | 732.91 ± 23.96 * |
Blossom | 2.74 ± 0.70 | 0.55 ± 0.17 | 0.60 ± 0.17 | - | 573.86 ± 51.74 |
Honey Sample | Total Phenolic Compounds (mg GAE/kg) | ABTS Radical Scavenging Activity (%) | DPPH Radical Scavenging Activity (%) | Superoxide Radical Scavenging Activity (%) | Peroxyl Radical Inhibition (µmol TE/g) | Iron Chelation (%) | Ferric Reducing Power (mmol Fe(II)/kg) |
---|---|---|---|---|---|---|---|
S1 | 105.60 ± 1.63 | 59.13 ± 1.87 | 34.83 ± 0.56 | 76.60 ± 0.36 | 5.47 ± 0.04 | 17.38 ± 1.53 | 3.20 ± 0.02 |
S2 | 105.60 ± 4.37 | 63.28 ± 0.41 | 36.03 ± 0.33 | 77.51 ± 0.34 | 5.61 ± 0.30 | 14.29 ± 0.44 | 3.18 ± 0.03 |
S3 | 120.06 ± 1.29 | 70.90 ± 0.36 | 36.26 ± 0.25 | 76.00 ± 0.10 | 5.81 ± 0.16 | 16.02 ± 0.81 | 3.31 ± 0.02 |
S4 | 109.74 ± 1.03 | 68.17 ± 0.82 | 34.52 ± 1.27 | 75.30 ± 0.26 | 5.61 ± 0.12 | 16.08 ± 0.47 | 3.29 ± 0.02 |
S5 | 113.59 ± 1.69 | 68.69 ± 0.66 | 37.37 ± 1.50 | 76.50 ± 0.40 | 6.12 ± 0.33 | 16.18 ± 0.70 | 3.58 ± 0.31 |
S6 | 95.39 ± 2.63 | 55.68 ± 0.70 | 35.44 ± 0.40 | 73.98 ± 0.03 | 5.88 ± 0.32 | 22.51 ± 0.93 | 3.06 ± 0.04 |
S7 | 83.28 ± 16.36 | 58.00 ± 0.70 | 35.25 ± 0.69 | 76.02 ± 0.79 | 5.48 ± 0.24 | 21.74 ± 1.87 | 2.96 ± 0.05 |
S8 | 99.51 ± 1.62 | 61.33 ± 0.58 | 35.49 ± 0.93 | 76.92 ± 0.24 | 5.70 ± 0.33 | 27.29 ± 1.52 | 2.87 ± 0.05 |
S9 | 65.58 ± 2.03 | 53.89 ± 0.45 | 36.14 ± 0.42 | 70.80 ± 0.80 | 4.58 ± 0.18 | 16.43 ± 1.56 | 1.33 ± 0.01 |
S10 | 73.54 ± 2.11 | 62.07 ± 0.53 | 32.62 ± 2.17 | 71.07 ± 0.67 | 4.90 ± 0.17 | 13.08 ± 0.91 | 1.71 ± 0.01 |
S11 | 62.25 ± 0.94 | 53.44 ± 0.68 | 35.48 ± 2.20 | 69.73 ± 0.70 | 5.19 ± 0.27 | 10.83 ± 0.26 | 1.64 ± 0.03 |
S12 | 75.51 ± 2.25 | 54.33 ± 0.31 | 34.33 ± 0.31 | 74.13 ± 2.80 | 5.18 ± 0.20 | 8.26 ± 1.23 | 1.63 ± 0.04 |
S13 | 61.01 ± 2.22 | 44.77 ± 0.66 | 34.67 ± 0.51 | 73.87 ± 2.34 | 5.97 ± 0.20 | 10.54 ± 0.56 | 1.56 ± 0.04 |
S14 | 57.35 ± 0.98 | 51.28 ± 0.24 | 33.38 ± 0.72 | 74.06 ± 1.43 | 5.60 ± 0.17 | 12.91 ± 1.67 | 1.57 ± 0.05 |
S15 | 56.78 ± 2.24 | 56.38 ± 0.70 | 32.84 ± 1.74 | 75.03 ± 0.45 | 4.85 ± 0.27 | 10.18 ± 1.02 | 1.83 ± 0.01 |
S16 | 59.32 ± 0.85 | 51.82 ± 0.35 | 33.09 ± 0.51 | 72.45 ± 1.33 | 4.44 ± 0.10 | 11.62 ± 0.69 | 1.56 ± 0.04 |
S17 | 97.04 ± 1.45 | 58.37 ± 0.47 | 31.59 ± 0.80 | 71.13 ± 0.81 | 5.61 ± 0.24 | 12.37 ± 0.68 | 1.62 ± 0.08 |
S18 | 99.94 ± 2.69 | 60.44 ± 0.87 | 33.44 ± 1.55 | 75.07 ± 0.50 | 5.60 ± 0.18 | 14.79 ± 0.26 | 2.25 ± 0.05 |
S19 | 94.67 ± 2.05 | 56.01 ± 0.22 | 31.56 ± 0.69 | 79.36 ± 0.55 | 5.65 ± 0.11 | 19.15 ± 0.48 | 1.90 ± 0.07 |
S20 | 101.13 ± 1.21 | 62.00 ± 0.26 | 32.83 ± 1.80 | 73.73 ± 1.42 | 5.66 ± 0.06 | 11.78 ± 0.38 | 2.20 ± 0.02 |
S21 | 78.22 ± 0.59 | 66.28 ± 0.48 | 33.16 ± 0.69 | 77.22 ± 0.70 | 5.64 ± 0.20 | 12.89 ± 0.25 | 2.00 ± 0.01 |
S22 | 88.14 ± 0.85 | 66.74 ± 0.82 | 32.17 ± 0.69 | 78.89 ± 1.40 | 5.51 ± 0.11 | 15.07 ± 0.61 | 2.29 ± 0.08 |
S23 | 77.11 ± 2.68 | 56.92 ± 0.58 | 31.90 ± 1.63 | 78.90 ± 1.50 | 5.47 ± 0.22 | 14.85 ± 1.57 | 2.25 ± 0.34 |
Average | 86.10 ± 19.69 | 59.13 ± 6.33 | 34.10 ± 1.89 | 74.97 ± 2.80 | 5.46 ± 0.45 | 15.05 ± 4.43 | 2.29 ± 0.71 |
Honeydew | 104.09 ± 12.06 * | 63.15 ± 5.38 * | 35.65 ± 1.12 * | 76.10 ± 1.08 * | 5.71 ± 0.30 * | 18.94 ± 4.36 * | 3.18 ± 0.23 * |
Blossom | 76.51 ± 15.89 | 56.98 ± 5.77 | 33.28 ± 1.69 | 74.36 ± 3.23 | 5.32 ± 0.47 | 12.98 ± 2.79 | 1.82 ± 0.30 |
Data Related to Figure 1a | Data Related to Figure 1b | |||
---|---|---|---|---|
Principal Component (PC) Number | 1 | 2 | 1 | 2 |
Eigenvalue | 11.693 | 5.220 | 6.952 | 0.666 |
% variance | 39.00% | 17.40% | 77.20% | 7.40% |
Component score correlation | ||||
Color intensity | −0.634 | −0.698 | ||
Moisture content | −0.764 | −0.407 | ||
Water activity | −0.560 | −0.390 | ||
Total soluble solid | 0.763 | 0.408 | ||
Proline | 0.285 | −0.608 | ||
Electrical conductivity | −0.465 | 0.720 | ||
Ash content | −0.822 | 0.334 | −0.891 | 0.310 |
Diastase | −0.330 | 0.206 | ||
Hydrogen peroxide | −0.886 | −0.147 | −0.878 | −0.324 |
pH | −0.107 | 0.179 | ||
Free acidity | −0.842 | −0.201 | −0.811 | −0.438 |
Gluconic acid | 0.288 | 0.686 | ||
Acetic acid | 0.164 | 0.715 | ||
HMF | −0.040 | −0.666 | ||
Na | −0.710 | 0.268 | ||
K | −0.817 | 0.235 | −0.892 | 0.307 |
Mg | −0.876 | 0.245 | −0.876 | 0.158 |
Ca | −0.863 | −0.127 | −0.810 | −0.229 |
Fe | −0.452 | 0.413 | ||
Zn | −0.375 | 0.654 | ||
Mn | −0.137 | 0.450 | ||
Cr | 0.159 | 0.005 | ||
Total mineral elements | −0.916 | 0.250 | −0.945 | 0.219 |
Total phenolic compounds | −0.817 | −0.285 | −0.851 | −0.204 |
ABTS radical scavenging activity | −0.653 | −0.196 | ||
DPPH radical scavenging activity | −0.300 | 0.478 | ||
Superoxide radical scavenging activity | −0.632 | −0.259 | ||
Peroxyl radical inhibition | −0.598 | −0.302 | ||
Iron chelation | −0.658 | 0.290 | ||
Ferric reducing power | −0.907 | 0.178 | −0.945 | 0.110 |
Sample | Bee Species | Nectar Source | Botanical Origin | Harvest Time |
---|---|---|---|---|
S1 | Heterotrigona itama | Acacia tree (Acacia mangium) | Honeydew | August 2016 |
S2 | Heterotrigona itama | Acacia tree (Acacia mangium) | Honeydew | November 2016 |
S3 | Heterotrigona itama | Acacia tree (Acacia mangium) | Honeydew | April 2017 |
S4 | Heterotrigona itama | Acacia tree (Acacia mangium) | Honeydew | July 2017 |
S5 | Heterotrigona itama | Acacia tree (Acacia mangium) | Honeydew | September 2017 |
S6 | Heterotrigona itama | Acacia tree (Acacia mangium) | Honeydew | April 2018 |
S7 | Heterotrigona itama | Acacia tree (Acacia mangium) | Honeydew | July 2018 |
S8 | Heterotrigona itama | Acacia tree (Acacia mangium) | Honeydew | September 2018 |
S9 | Heterotrigona itama | Multifloral | Blossom | August 2016 |
S10 | Heterotrigona itama | Multifloral | Blossom | November 2016 |
S11 | Heterotrigona itama | Multifloral | Blossom | May 2017 |
S12 | Heterotrigona itama | Multifloral | Blossom | July 2017 |
S13 | Heterotrigona itama | Multifloral | Blossom | September 2017 |
S14 | Heterotrigona itama | Multifloral | Blossom | April 2018 |
S15 | Heterotrigona itama | Multifloral | Blossom | May 2018 |
S16 | Heterotrigona itama | Multifloral | Blossom | July 2018 |
S17 | Geniotrigona thoracica | Multifloral | Blossom | October 2016 |
S18 | Geniotrigona thoracica | Multifloral | Blossom | December 2016 |
S19 | Geniotrigona thoracica | Multifloral | Blossom | April 2017 |
S20 | Geniotrigona thoracica | Multifloral | Blossom | July 2017 |
S21 | Geniotrigona thoracica | Multifloral | Blossom | March 2018 |
S22 | Geniotrigona thoracica | Multifloral | Blossom | June 2018 |
S23 | Geniotrigona thoracica | Multifloral | Blossom | October 2018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, W.-J.; Sit, N.-W.; Ooi, P.A.-C.; Ee, K.-Y.; Lim, T.-M. Botanical Origin Differentiation of Malaysian Stingless Bee Honey Produced by Heterotrigona itama and Geniotrigona thoracica Using Chemometrics. Molecules 2021, 26, 7628. https://doi.org/10.3390/molecules26247628
Ng W-J, Sit N-W, Ooi PA-C, Ee K-Y, Lim T-M. Botanical Origin Differentiation of Malaysian Stingless Bee Honey Produced by Heterotrigona itama and Geniotrigona thoracica Using Chemometrics. Molecules. 2021; 26(24):7628. https://doi.org/10.3390/molecules26247628
Chicago/Turabian StyleNg, Wen-Jie, Nam-Weng Sit, Peter Aun-Chuan Ooi, Kah-Yaw Ee, and Tuck-Meng Lim. 2021. "Botanical Origin Differentiation of Malaysian Stingless Bee Honey Produced by Heterotrigona itama and Geniotrigona thoracica Using Chemometrics" Molecules 26, no. 24: 7628. https://doi.org/10.3390/molecules26247628
APA StyleNg, W. -J., Sit, N. -W., Ooi, P. A. -C., Ee, K. -Y., & Lim, T. -M. (2021). Botanical Origin Differentiation of Malaysian Stingless Bee Honey Produced by Heterotrigona itama and Geniotrigona thoracica Using Chemometrics. Molecules, 26(24), 7628. https://doi.org/10.3390/molecules26247628