The Adsorption Behavior of Gas Molecules on Co/N Co–Doped Graphene
Abstract
:1. Introduction
2. Computational Details and Methods
3. Results and Discussion
3.1. The Configuration and Stability of Co/N3–Gra
3.2. Electric and Magnetic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Novoselov, A.K.G. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar]
- Quintana, R.R.; Franco, G.C.; Chávez, H.R. DFT study of the H2 molecules adsorption on pristine and Ni doped graphite surfaces. Mater. Lett. 2021, 293, 6986–7002. [Google Scholar]
- Soldano, C.; Mahmood, A.; Dujardin, E. Production, properties and potential of graphene. Carbon 2010, 48, 2127–2150. [Google Scholar] [CrossRef] [Green Version]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Dong, S. Graphene and its derivative–based sensing materials for analytical devices. J. Mater. Chem. 2011, 21, 1710–1717. [Google Scholar] [CrossRef]
- Lu, C.; Yang, H.; Zhu, C.; Chen, X.; Chen, G. A graphene platform for sensing biomolecules. Angew. Chem. 2009, 121, 4879–4881. [Google Scholar] [CrossRef]
- Machado, B.F.; Serp, P. Graphene–based materials for catalysis. Catal. Sci. Technol. 2012, 2, 54–75. [Google Scholar] [CrossRef]
- Lipatov, A.; Varezhnikov, A.; Wilson, P.; Sysoev, V.; Kolmakov, A.; Sinitskii, A. Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale 2013, 5, 5426–5434. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Li, F.; Zhu, Z.H.; Zhao, M.W.; Xu, X.G.; Su, X.Y. An ab initio study on gas sensing properties of graphene and Si–doped graphene. Eur. Phys. J. B 2011, 81, 475–479. [Google Scholar] [CrossRef]
- Chu, M.; Liu, X.; Sui, Y.; Luo, J.; Meng, C. Unique reactivity of transition metal atoms embedded in graphene to CO, NO, O2 and O adsorption: A first–principles investigation. Molecules 2015, 20, 19540–19553. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Lu, Y.H.; Cai, Y.Q.; Zhang, C.; Feng, Y.P. Adsorption of gas molecules on transition metal embedded graphene: A search for high–performance graphene–based catalysts and gas sensors. Nanotechnology 2011, 22, 2739–2747. [Google Scholar] [CrossRef] [PubMed]
- Impeng, S.; Junkaew, A.; Maitarad, P.; Kungwan, N.; Zhang, D.; Shi, L.; Namuangruk, S. A MnN4 moiety embedded graphene as a magnetic gas sensor for CO detection: A first principle study. Appl. Surf. Sci. 2019, 473, 820–827. [Google Scholar] [CrossRef]
- Dai, J.; Yuan, J. Adsorption of molecular oxygen on doped graphene: Atomic, electronic, and magnetic properties. Phys. Rev. B 2010, 81, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.Y.; Li, L.L.; Huang, H.Y.; Xu, S.P.; Yan, G.; Zhao, M.L.; Ding, Z. Adsorption characteristics of acid gases (NO, NO2, SO2 and SO3) on different single–atom nickel adsorbent: A first–principles study. Appl. Surf. Sci. 2020, 527, 146939. [Google Scholar] [CrossRef]
- Zhang, X.L.; Lu, Z.S.; Yang, Z.X. Single non–noble–metal cobalt atom stabilized by pyridinic vacancygraphene: An efficient catalyst for CO oxidation. J. Mol. Catal. A Chem. 2016, 417, 28–35. [Google Scholar] [CrossRef]
- Martinez, H.C.; Chavez, H.R.; Alvaro, F.M.; Castaneda, Y.A.P.; Medina, D.I. Recent Developments in Graphene–Based Toxic Gas Sensors: A Theoretical Overview. Sensors 2021, 21, 1992. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Q.; Cheng, Y.; Li, K.; Yao, Y.; Zhang, Q.; Dong, C.; Wang, P.; Schwingenschlogl, U.; Yang, W.; et al. Doping monolayer graphene with single atom substitutions. Nano Lett. 2012, 12, 141–144. [Google Scholar] [CrossRef]
- Jannik, C.K.; Meyer, C.; Erni, R.; Rossell, M.D.; Crommie, M.F.; Zettl, A. Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 2008, 8, 3582–3586. [Google Scholar]
- Wang, Z.; Zhou, Y.G.; Bang, J.; Prange, M.P.; Zhang, S.B.; Gao, F. Modification of defect structures in graphene by electron irradiation: Ab initio molecular dynamics simulations. J. Phys. Chem. C 2012, 116, 16070–16079. [Google Scholar] [CrossRef]
- Higgins, D.; Zamani, P.Y.; Yu, A.P.; Chen, A.W. The application of graphene and its composites in oxygen reduction electrocatalysis: A perspective and review of recent progress. Energy Environ. Sci. 2016, 9, 357. [Google Scholar] [CrossRef]
- Kamedulski, P.; Skorupska, M.; Binkowski, P.; Arendarska, W.; Ilnicka, A.; Lukaszewicz, J.P. High surface area micro–mesoporous graphene. Sci. Rep. 2021, 11, 22054. [Google Scholar] [CrossRef]
- Ostovari, F.; Hasanpoori, M.; Abbasnejad, M.; Salehi, M.A. DFT calculations of graphene monolayer in presence of Fe dopant and vacancy. Phys. B Condens. Matter. 2018, 541, 6–13. [Google Scholar] [CrossRef]
- Joucken, F.; Tison, Y.; Lagoute, J.; Dumont, J.; Cabosart, D.; Zheng, B.; Repain, V.; Chacon, C.; Girard, Y.; Botello–Méndez, A.R.; et al. Localized state and charge transfer in nitrogen–doped graphene. Phys. Rev. B 2012, 85, 1895–1898. [Google Scholar] [CrossRef] [Green Version]
- Tison, J.L.; Repain, V.; Chacon, C.; Girard, Y.; Rousset, S.; Sharma, D.; Henrard, L.; Amara, H.; Ghedjatti, A.; Ducastelle, F. Electronic interaction between nitrogen atoms in doped graphene. ACS Nano 2015, 9, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Chen, W.; Li, C.; Pan, L.; Dai, X.; Ma, D. Adsorption behavior of Co anchored on graphene sheets toward NO, SO2, NH3, CO and HCN molecules. Appl. Surf. Sci. 2015, 342, 191–199. [Google Scholar] [CrossRef]
- Shi, L.B.; Wang, Y.P.; Dong, H.K. First–principle study of structural, electronic, vibrational and magnetic properties of HCN adsorbed graphene doped with Cr, Mn and Fe. Appl. Surf. Sci. 2015, 329, 330–336. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, S.; Hwang, Y.; Chung, Y.C. Modulating magnetic characteristics of Pt embedded graphene by gas adsorption (N2, O2, NO2, SO2). Appl. Surf. Sci. 2014, 289, 445–449. [Google Scholar] [CrossRef]
- Tang, Y.; Dai, X.; Yang, Z.; Pan, L.; Chen, W.; Ma, D.; Lu, Z. Formation and catalytic activity of Pt supported on oxidized graphene for the CO oxidation reaction. Phys. Chem. Chem. Phys. 2014, 16, 7887–7895. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Yang, Z.; Dai, X.; Ma, D.; Fu, Z. Formation, stabilities, and electronic and catalytic performance of platinum catalyst supported on non–metal–doped graphene. J. Phys. Chem. C 2013, 117, 5258–5268. [Google Scholar] [CrossRef]
- Furthmuller, G.K.J. Efficient iterative schemes for ab initio total–energy calculations using a plane–wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar]
- Kresse, J.F.G. Efficiency of ab–initio total energy calculations for metals and semiconductors using a plane–wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Joubert, G.K.D. From ultrasoft pseudopotentials to the projector augmented–wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar]
- John, K.B.; Perdew, P.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT–D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Gao, Z.; Xu, S.; Li, L.; Yan, G.; Yang, W.; Wu, C.; Gates, I.D. On the adsorption of elemental mercury on single–atom TM (TM = V, Cr, Mn, Co) decorated graphene substrates. Appl. Surf. Sci. 2020, 516, 628–632. [Google Scholar] [CrossRef]
- Chan, K.T.; Neaton, J.B.; Cohen, M.L. First–principles study of metal adatom adsorption on graphene. Phys. Rev. B 2008, 77, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Momma, K.; Izumi, F. VESTA3 for three–dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystal. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Janthon, P.; Kozlov, S.M.; Vines, F.; Limtrakul, J.; Illas, F. Establishing the accuracy of broadly used density functionals in describing bulk properties of transition metals. J. Chem. Theory Comput. 2013, 9, 1631–1640. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, J.M.; Xu, K.W.; Ji, V. A first–principles study on gas sensing properties of graphene and Pd–doped graphene. Appl. Surf. Sci. 2015, 343, 121–127. [Google Scholar] [CrossRef]
- Santos, E.J.G.; Sánchez–Portal, D.; Ayuela, A. Magnetism of substitutional Co impurities in graphene: Realization of single π vacancies. Phys. Rev. B 2010, 81, 134–144. [Google Scholar] [CrossRef] [Green Version]
- Leenaerts, O.; Partoens, B.; Peeters, F.M. Paramagnetic adsorbates on graphene: A charge transfer analysis. Appl. Phys. Lett. 2008, 92, 1895–1898. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, T.; Wang, P.; Tian, C.; Zhao, G.; Jia, J.; Zhao, C.; Wu, H. The Adsorption Behavior of Gas Molecules on Co/N Co–Doped Graphene. Molecules 2021, 26, 7700. https://doi.org/10.3390/molecules26247700
Xie T, Wang P, Tian C, Zhao G, Jia J, Zhao C, Wu H. The Adsorption Behavior of Gas Molecules on Co/N Co–Doped Graphene. Molecules. 2021; 26(24):7700. https://doi.org/10.3390/molecules26247700
Chicago/Turabian StyleXie, Tingyue, Ping Wang, Cuifeng Tian, Guozheng Zhao, Jianfeng Jia, Chenxu Zhao, and Haishun Wu. 2021. "The Adsorption Behavior of Gas Molecules on Co/N Co–Doped Graphene" Molecules 26, no. 24: 7700. https://doi.org/10.3390/molecules26247700
APA StyleXie, T., Wang, P., Tian, C., Zhao, G., Jia, J., Zhao, C., & Wu, H. (2021). The Adsorption Behavior of Gas Molecules on Co/N Co–Doped Graphene. Molecules, 26(24), 7700. https://doi.org/10.3390/molecules26247700