Crystallographic and Computational Electron Density of dx2-y2 Orbitals of Azo-Schiff Base Metal Complexes Using Conventional Programs
Abstract
:1. Introduction
2. Materials and Methods
2.1. X-ray Crystallography
2.2. Calculations
3. Results and Discussion
3.1. Brief Description of Crystal Structures
3.2. Computational Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jelsch, C.; Teeter, M.M.; Lamzin, V.; Pichon-Pesme, V.; Blessing, R.H.; Lecomte, C. Accurate protein crystallography at ultra-high resolution: Valence electron distribution in crambin. Proc. Natl Acad. Sci. USA 2000, 97, 3171–3176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirano, Y.; Takeda, K.; Miki, K. Charge-density analysis of an iron–sulfur proteinat an ultra-high resolution of 0.48 Å. Nature 2016, 534, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Kihara, T.; Kasai, K. Self-crystallizing molecular models. V. Molecular charge density contours. Acta Cryst. A 1978, 34, 326–329. [Google Scholar] [CrossRef] [Green Version]
- Kalaiarasi, C.; Pavanb, M.S.; Kumaradhasa, P. Topological characterization of electron density, electrostatic potential and intermolecular interactions of 2-nitroimidazole: An experimental and theoretical study. Acta Cryst. B 2016, 72, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Katsuumi, N.; Onami, Y.; Pradhan, S.; Haraguchi, T.; Akitsu, T. Crystal structure and Hirshfeld surface analysis of (aqua-kO)(methanol-kO)[N-(2-oxidobenzylidene)-threoninato-k3O,N,O′]copper(II). Acta Cryst. E 2020, 76, 1539–1542. [Google Scholar] [CrossRef]
- Hansen, N.K.; Coppens, P. Testing aspherical atom refinements on small-molecule data sets. Acta Cryst. A 1978, 34, 909–921. [Google Scholar] [CrossRef]
- Tanaka, K.; Takenaka, Y. Recent Advances in Crystallography; Benedict, J.B., Ed.; IntechOpen: Rijeka, Croatia, 2012; Chapter 11. [Google Scholar]
- Craven, M.; Nygaard, M.H.; Zadrozny, J.M.; Long, J.R.; Overgaard, J. Determination of d-orbital populations in a cobalt(II) single-molecule magnet using single-crystal X-ray diffraction. Inorg. Chem. 2018, 57, 6913–6920. [Google Scholar] [CrossRef]
- Grabowsky, S.; Genoni, A.; Burgide, H.-B. Quantum crystallography. Chem. Sci. 2017, 8, 4159–4176. [Google Scholar]
- Genoni, A.; Bučinský, L.; Claiser, N.; Contreras-García, J.; Dittrich, B.; Dominiak, P.M.; Espinosa, E.; Gatti, C.; Giannozzi, P.; Gillet, J.-M.; et al. Quantum crystallography: Current developments and future perspectives. Chem. Eur. J. 2018, 24, 10881–10905. [Google Scholar] [CrossRef] [Green Version]
- Neese, F. A critical evaluation of DFT, including time-dependent DFT, applied to bioinorganic chemistry. J. Biol. Inorg. Chem. 2006, 11, 702–711. [Google Scholar] [CrossRef]
- Akitsu, T. Photofunctional supramolecular solution systems of chiral Schiff base nickel(II), copper(II), and zinc(II) complexes and photochromic azobenzenes. Polyhedron 2007, 26, 2527–2535. [Google Scholar] [CrossRef]
- Sano, A.; Yagi, S.; Haraguchi, T.; Akitsu, T. Synthesis of MnII and CuII complexes including azobenzene and its application to mediators of laccase for biofuel cells. J. Indian Chem. Soc. 2018, 95, 487–494. [Google Scholar]
- Aritake, Y.; Takanashi, T.; Yamazaki, A.; Akitsu, T. Polarized spectroscopy and hybrid materials of chiral Schiff base Ni(II), Cu(II), Zn(II) complexes with included or separated azo-groups. Polyhedron 2011, 30, 886–894. [Google Scholar] [CrossRef]
- Kunitake, F.; Kim, J.-Y.; Yagi, S.; Yamazaki, S.; Haraguchi, T.; Akitsu, T. Chiral recognition of azo-Schiff base ligands, their Cu(II) complexes and their docking to laccase as mediators. Symmetry 2019, 11, 666. [Google Scholar] [CrossRef] [Green Version]
- Mitsumoto, Y.; Sunaga, N.; Akitsu, T. Polarized light induced molecular orientation in laccase for chiral azosalen Mn(II), Co(II), Ni(II), Cu(II), Zn(II) mediators toward application for biofuel cell. SciFed J. Chem. Res. 2017, 1, 1. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Yamaguchi, M.; Takahashi, K.; Akitsu, T. Molecular design through TD-DFT calculation of chiral salen CuII complexes toward NIR absorption for DSSC. J. Indian Chem. Soc. 2016, 93, 921–927. [Google Scholar]
- Sunaga, N. Orientation of chiral schiif base metal complexes involving azo-groups for induced CD on gold nanoparticles by polarized UV light irradiation. Symmetry 2019, 11, 1094. [Google Scholar] [CrossRef] [Green Version]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Crystal Explorer 3.1; University of Western Australia: Perth, Australia, 2007. [Google Scholar]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Spackmana, M.A.; Mitchellb, A.S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Cryst. 2004, 60, 627–668. [Google Scholar] [CrossRef]
- Tsuzuki, S.; Honda, K.; Uchimaru, T.; Mikami, M.; Tanabe, K. Origin of attraction and directionality of the π/π interaction: Model chemistry calculations of benzene dimer interaction. J. Am. Chem. Soc. 2002, 124, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Burrow, C.E.; Burchell, T.J.; Lin, P.-H.; Habib, F.; Wernsdorfer, W.; Clérac, R.; Murugesu, M. Salen-based [Zn2Ln3] complexes with fluorescence and single-molecule-magnet properties. Inorg. Chem. 2009, 48, 8051–8053. [Google Scholar] [CrossRef] [PubMed]
- Costes, J.-P.; Mallet-Ladeira, S.; Vendier, L.; Maurice, R. Influence of ancillary ligands and solventson the nuclearity of Ni–Ln complexes. Dalton Trans. 2019, 48, 3404–3414. [Google Scholar] [CrossRef] [PubMed]
α-HOMO | β-HOMO | α-LUMO | β-LUMO | ||
---|---|---|---|---|---|
Cu | −0.19582 | −0.19432 | −0.06215 | −0.08883 | |
Mn | −0.14569 | −0.08506 | −0.14512 | −0.08739 |
M | L1 | L2 | L3 | L4 | L5 | L6 | ||
---|---|---|---|---|---|---|---|---|
Cu | (1) | 0.645 | −0.469 | −0.635 | −0.469 | −0.635 | - | - |
(2) | 0.558 | 0.102 | 0.110 | 0.102 | 0.110 | - | - | |
Mn | (1) | 0.932 | −0.609 | −0.560 | −0.523 | −0.629 | −0.491 | −0.767 |
(2) | 3.75 | 0.0307 | −0.0357 | −0.0327 | 0.0352 | 0.121 | 0.0161 |
L1 | L2 | L3 | L4 | L5 | L6 | |
---|---|---|---|---|---|---|
Cu | 0.1158 | 0.1340 | 0.1159 | 0.1340 | - | - |
Mn | 0.1830 | 0.1239 | 0.1217 | 0.1943 | 0.1762 | 0.0616 |
Sample Availability: Samples of the compounds are not available from the authors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takiguchi, Y.; Onami, Y.; Haraguchi, T.; Akitsu, T. Crystallographic and Computational Electron Density of dx2-y2 Orbitals of Azo-Schiff Base Metal Complexes Using Conventional Programs. Molecules 2021, 26, 551. https://doi.org/10.3390/molecules26030551
Takiguchi Y, Onami Y, Haraguchi T, Akitsu T. Crystallographic and Computational Electron Density of dx2-y2 Orbitals of Azo-Schiff Base Metal Complexes Using Conventional Programs. Molecules. 2021; 26(3):551. https://doi.org/10.3390/molecules26030551
Chicago/Turabian StyleTakiguchi, Yuji, Yuika Onami, Tomoyuki Haraguchi, and Takashiro Akitsu. 2021. "Crystallographic and Computational Electron Density of dx2-y2 Orbitals of Azo-Schiff Base Metal Complexes Using Conventional Programs" Molecules 26, no. 3: 551. https://doi.org/10.3390/molecules26030551
APA StyleTakiguchi, Y., Onami, Y., Haraguchi, T., & Akitsu, T. (2021). Crystallographic and Computational Electron Density of dx2-y2 Orbitals of Azo-Schiff Base Metal Complexes Using Conventional Programs. Molecules, 26(3), 551. https://doi.org/10.3390/molecules26030551