Dynamics of Active Brownian Particles in Plasma
Abstract
:1. Introduction
2. Data Analysis and Discussion
2.1. Materials
2.2. Analysis of Particle Trajectories and Discussion
- Photophoresis due to a temperature gradient on the particle surface, which is an asymmetric neutral drag force caused by a temperature difference (for all particles);
- Photophoresis due to different accommodation coefficients, which is a neutral drag force caused by different accommodation coefficients of MF and iron (for Janus particles).
3. Experimental Setup
3.1. Janus Particle Synthesis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bechinger, C.; Di Leonardo, R.; Löwen, H.; Reichhardt, C.; Volpe, G. Active particles in complex and crowded environments. Rev. Mod. Phys. 2016, 88, 045006. [Google Scholar] [CrossRef]
- Du, C.R.; Nosenko, V.; Thomas, H.M.; Müller, A.; Lipaev, A.M.; Molotkov, V.I.; Fortov, V.E.; Ivlev, A.V. Photophoretic force on microparticles in complex plasmas. New J. Phys. 2017, 19, 073015. [Google Scholar] [CrossRef]
- Wieben, F.; Block, D. Photophoretic force measurement on microparticles in binary complex plasmas. Phys. Plasmas 2018, 25, 123705. [Google Scholar] [CrossRef]
- Nosenko, V.; Ivlev, A.V.; Morfill, G.E. Laser-induced rocket force on a microparticle in a complex (dusty) plasma. Phys. Plasmas 2010, 17, 123705. [Google Scholar] [CrossRef]
- Vladimirov, S.V.; Khrapak, S.A.; Chaudhuri, M.; Morfill, G.E. Superfluidlike motion of an absorbing body in a collisional plasma. Phys. Rev. Lett. 2008, 100, 055002. [Google Scholar] [CrossRef] [PubMed]
- Luoni, F. Single Janus Particles in a Complex Plasma Environment. Master’s Thesis, Politecnico di Milano, Milan, Italy, 2018. [Google Scholar]
- Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lamic, E.; Duguet, E. Design and synthesis of Janus micro- and nanoparticles. J. Mater. Chem. 2005, 15, 3745–3760. [Google Scholar] [CrossRef]
- Zhang, J.; Luijten, E.; Grzybowski, B.A.; Granick, S. Active colloids with collective mobility status and research opportunities. Chem. Soc. Rev. 2017, 46, 5551–5569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kümmel, F.; ten Hagen, B.; Wittkowski, R.; Buttinoni, I.; Eichhorn, R.; Volpe, G.; Löwen, H.; Bechinger, C. Circular motion of asymmetric self-propelling particles. Phys. Rev. Lett. 2013, 110, 198302. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.E. Probe theory—The orbital motion approach. Phys. Scr. 1992, 45, 497. [Google Scholar] [CrossRef]
- Lisin, E.A.; Vaulina, O.S.; Petrov, O.F.; Fortov, V.E. Dust-particle charge in weakly ionized gas-discharge plasma. EPL 2012, 97, 55003. [Google Scholar] [CrossRef]
- Jahanshahi, S.; Lowen, H.; Hagen, B. Brownian motion of a circle swimmer in a harmonic trap. Phys. Rev. E 2017, 95, 022606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koss, X.G.; Petrov, O.F.; Statsenko, K.B.; Vasiliev, M.M. Small systems of laser-driven active Brownian particles: Evolution and dynamic entropy. EPL 2018, 124, 45001. [Google Scholar] [CrossRef]
- Vasiliev, M.M.; Petrov, O.F.; Alekseevskaya, A.A.; Ivanov, A.S.; Vasilieva, E.V. Dynamic effects of laser action on quasi-twodimensional dusty plasma systems of charged particles. Molecules 2020, 25, 3375. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Sheetz, M.P.; Elson, E.L. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J. 1991, 60, 910. [Google Scholar] [CrossRef] [Green Version]
- Löwen, H. Twenty years of confined colloids: From confinement-induced freezing to giant breathing. J. Phys. Condens. Matter 2009, 21, 474203. [Google Scholar] [CrossRef] [PubMed]
- Petrov, O.F.; Vasiliev, M.M.; Vaulina, O.S.; Stacenko, K.B.; Vasilieva, E.V.; Lisin, E.A.; Tun, Y.; Fortov, V.E. Solid-hexatic-liquid transition in a two-dimensional system of charged dust particles. EPL 2015, 111, 45002. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arkar, K.; Vasiliev, M.M.; Petrov, O.F.; Kononov, E.A.; Trukhachev, F.M. Dynamics of Active Brownian Particles in Plasma. Molecules 2021, 26, 561. https://doi.org/10.3390/molecules26030561
Arkar K, Vasiliev MM, Petrov OF, Kononov EA, Trukhachev FM. Dynamics of Active Brownian Particles in Plasma. Molecules. 2021; 26(3):561. https://doi.org/10.3390/molecules26030561
Chicago/Turabian StyleArkar, Kyaw, Mikhail M. Vasiliev, Oleg F. Petrov, Evgenii A. Kononov, and Fedor M. Trukhachev. 2021. "Dynamics of Active Brownian Particles in Plasma" Molecules 26, no. 3: 561. https://doi.org/10.3390/molecules26030561
APA StyleArkar, K., Vasiliev, M. M., Petrov, O. F., Kononov, E. A., & Trukhachev, F. M. (2021). Dynamics of Active Brownian Particles in Plasma. Molecules, 26(3), 561. https://doi.org/10.3390/molecules26030561