Subjective Effects of Inhaling Kuromoji Tea Aroma
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Subjective Assessments
2.2. Heart Rate Variability Analysis
2.3. Analysis of Oxygenated Hemoglobin Changes
2.4. Core Body Temperature Analysis
2.5. Correlation between Subjective Assessments and Physiological Parameters
2.6. Constituent Analysis of Experiment Materials
3. Materials and Methods
3.1. Participants and Experimental Procedure
3.2. Subjective and Physiological Measurements
3.2.1. Subjective Assessments
3.2.2. Heart Rate Variability Analysis
3.2.3. Oxygenated-Hemoglobin Changes Recording
3.2.4. Core Body Temperature Analysis
3.3. HS-SPME/GC–MS Analysis
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Chacko, S.M.; Thambi, P.T.; Jeena, K.; Nishigaki, I. Beneficial effects of green tea: A literature review. Chin. Med. 2010, 5, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeed, M.; Naveed, M.; Arif, M.; Kakar, M.U.; Manzoor, R.; El-Hack, M.E.A.; Alagawany, M.; Tiwari, R.; Khandia, R.; Munjal, A.; et al. Green tea (Camellia sinensis) and l -theanine: Medicinal values and beneficial applications in humans—A comprehensive review. Biomed. Pharmacother. 2017, 95, 1260–1275. [Google Scholar] [CrossRef] [PubMed]
- Isemura, M. Catechin in Human Health and Disease. Molecules 2019, 24, 528. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.L.; Everett, J.M.; D’Cunha, N.M.; Sergi, D.; Georgousopoulou, E.N.; Keegan, R.J.; McKune, A.J.; Mellor, D.D.; Anstice, N.; Naumovski, N. The Effects of Green Tea Amino Acid L-Theanine Consumption on the Ability to Manage Stress and Anxiety Levels: A Systematic Review. Plant Foods Hum. Nutr. 2020, 75, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Camfield, D.A.; Stough, C.; Farrimond, J.; Scholey, A.B. Acute effects of tea constituents L-theamine, caffeine, and epigallo-catechin gallate on cognitive function and mood: A systematic review and meta-analysis. Nutr. Rev. 2014, 72, 507–522. [Google Scholar] [CrossRef]
- Mancini, E.; Beglinger, C.; Drewe, J.; Zanchi, D.; Lang, U.E.; Borgwardt, S. Green tea effects on cognition, mood and human brain function: A systematic review. Phytomedicine 2017, 34, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Murao, S.; Yoto, A.; Yokogoshi, H. Effect of Smelling Green Tea on Mental Status and EEG Activity. Int. J. Affect. Eng. 2013, 12, 37–43. [Google Scholar] [CrossRef]
- Yoto, A.; Moriyama, T.; Yokogoshi, H.; Nakamura, Y.; Katsuno, T.; Nakayama, T. Effect of Smelling Green Tea Rich in Aroma Components on EEG Activity and Memory Task Performance. Int. J. Affect. Eng. 2014, 13, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Yoto, A.; Fukui, N.; Kaneda, C.; Torita, S.; Goto, K.; Nanjo, F.; Yokogoshi, H. Black tea aroma inhibited increase of salivary chromogranin-A after arithmetic tasks. J. Physiol. Anthr. 2018, 37, 3. [Google Scholar] [CrossRef] [Green Version]
- Inoue, N.; Kuroda, K.; Sugimoto, A.; Kakuda, T.; Fushiki, T. Autonomic Nervous Responses According to Preference for the Odor of Jasmine Tea. Biosci. Biotechnol. Biochem. 2003, 67, 1206–1214. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, N.; Komae, H. Chemosystematic and ecology of Kuromoji. Koryo 1976, 115, 31–40. [Google Scholar]
- Akakabe, Y.; Kamikawa, T. The relaxation effect of the bark oil of Lindera umbellate. Jpn. J. Taste Smell Res. 2011, 18, 591–594. [Google Scholar]
- Yamagami, A.; Imura, H.; Shibuya, K.; Murakawa, T.; Kono, Y.; Sugimoto, K. Effects of aroma on saliva selection and activities of autonomic nerves and brain: Essential oil of kuromoji and bergamot. Jpn. J. Taste Smell Res. 2012, 19, 453–456. [Google Scholar]
- Katou, I.; Ohira, T.; Chiba, R. Effects of the fragrance of kuromoji herbal water produced in Akita Prefecture on human physiological and psychological responses. Aroma Res. 2016, 17, 69–75. [Google Scholar]
- Sugawara, Y.; Hara, C.; Tamura, K.; Fujii, T.; Nakamura, K.; Masujima, T.; Aoki, T. Sedative effect on humans of inhalation of essential oil of linalool; sensory evaluation and physiological measurements using optically active linalools. Anal. Chim. Acta. 1998, 365, 293–299. [Google Scholar] [CrossRef]
- Kuroda, K.; Inoue, N.; Ito, Y.; Kubota, K.; Sugimoto, A.; Kakuda, T.; Fushiki, T. Sedative effects of the jasmine tea odor and (R)-(-)-linalool, one of its major odor compounds, on autonomic nerve activity and mood states. Eur. J. Appl. Physiol. 2005, 95, 107–114. [Google Scholar] [CrossRef]
- Kojima, H.; Araki, S.; Maeda, K.; Nara, Y.; Ito, K.; Kudo, M.; Noda, M.; Kishimoto, M.; Fujioka, H. Relaxing effect of aromas in Muscat of Alexandria wine on human. Aroma Res. 2008, 9, 350–353. [Google Scholar]
- Sugawara, Y.; Shigetho, A.; Yoneda, M.; Tuchiya, T.; Matumura, T.; Hirano, M. Relationship between Mood Change, Odour and Its Physiological Effects in Humans While Inhaling the Fragrances of Essential Oils as well as Linalool and Its Enantiomers. Molecules 2013, 18, 3312–3338. [Google Scholar] [CrossRef] [Green Version]
- Adams, P. Identification of Essential oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy, 4th ed.; Allured Publisher: Carol Stream, IL, USA, 2007. [Google Scholar]
- Murphy, C.; Cain, W.S.; Bartoshuk, L.M. Mutual action of taste and olfaction. Sens. Process. 1977, 1, 204–211. [Google Scholar]
- Rozin, P. “Taste-smell confusions” and the duality of the olfactory sense. Percept Psychophys. 1982, 31, 397–401. [Google Scholar] [CrossRef] [Green Version]
- Small, D.M.; Gerber, J.C.; Mak, Y.E.; Hummel, T. Differential Neural Responses Evoked by Orthonasal versus Retronasal Odorant Perception in Humans. Neuron 2005, 47, 593–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rousmans, S.; Robin, O.; Dittmar, A.; Vernet-Maury, E. Autonomic nervous system responses associated with primary tastes. Chem. Senses 2000, 25, 709–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kono, Y.; Kubota, A.; Taira, M.; Katsuyama, N.; Sugimoto, K. Effects of oral stimulation with capsaicin on salivary secretion and neural activities in the autonomic system and the brain. J. Dent. Sci. 2018, 13, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, Y.; Kobayashi, N.; Tamura, M. Interpretation of near-infrared spectroscopy signals: A study with a newly developed perfused rat brain model. J. Appl. Physiol. 2001, 90, 1657–1662. [Google Scholar] [CrossRef] [Green Version]
- Starangman, G.; Culver, J.P.; Thompson, J.H.; Boas, D.A. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage 2002, 17, 719–731. [Google Scholar] [CrossRef]
- Sato, H.; Obata, A.N.; Moda, I.; Ozaki, K.; Yasuhara, T.; Yamamoto, Y.; Kiguchi, M.; Maki, A.; Kubota, K.; Koizumi, H. Ap-plication of near-infrared spectroscopy to measurement of hemodynamic signals accompanying stimulated saliva secretion. J. Biomed. Opt. 2011, 16, 047002. [Google Scholar] [CrossRef]
- Saito-Iizumi, K.; Nakamura, A.; Matsumoto, T.; Fujiki, A.; Yamamoto, N.; Saito, T.; Nammoku, T.; Mori, K. Ethylmaltol Odor Enhances Salivary Hemodynamic Responses to Sucrose Taste as Detected by Near-Infrared Spectroscopy. Chemosens. Percept. 2013, 6, 92–100. [Google Scholar] [CrossRef]
- Matsumoto, T.; Saito, K.; Nakamura, A.; Saito, T.; Nammoku, T.; Ishikawa, M.; Mori, K. Dried-Bonito Aroma Components Enhance Salivary Hemodynamic Responses to Broth Tastes Detected by Near-Infrared Spectroscopy. J. Agric. Food Chem. 2012, 60, 805–811. [Google Scholar] [CrossRef]
- Takagi, A.; Takeda, K.; Midoh, N.; Komai, N.; Yamaguchi, M.; Nagai, N. Time Course of Thermal Sensations, and Core and Peripheral Temperatures after Ingestion of Hot Soup. Jpn. J. Nutr. Diet. 2013, 71, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Koda, H.; Awaji, Y.; Uchida, M.; Nagai, N. Changes in Body Temperature and Sleepiness after Stimulation with the Aroma of Whiskey: A Preliminary Study. Nippon. Eiyo Shokuryo Gakkaishi 2018, 71, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Haze, S.; Sakai, K.; Gozu, Y. Effects of Fragrance Inhalation on Sympathetic Activity in Normal Adults. Jpn. J. Pharmacol. 2002, 90, 247–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanida, M.; Niijima, A.; Shen, J.; Nakamura, T.; Nagai, K. Olfactory stimulation with scent of essential oil of grapefruit affects autonomic neurotransmission and blood pressure. Brain Res. 2005, 1058, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Rodiek, S.; Fujii, E.; Miyazaki, Y.; Park, B.-J.; Ann, S.-W. Physiological and Psychological Response to Floral Scent. HortScience 2013, 48, 82–88. [Google Scholar] [CrossRef]
- Watanabe, E.; Kuchta, K.; Kimura, M.; Rauwald, H.W.; Kamei, T.; Imanishi, J. Effects of Bergamot (Citrus bergamia (Risso) Wright & Arn.) Essential Oil Aromatherapy on Mood States, Parasympathetic Nervous System Activity, and Salivary Cortisol Levels in 41 Healthy Females. Complement. Med. Res. 2015, 22, 43–49. [Google Scholar] [CrossRef]
- Hayashi, N.; Komae, H. Geographical variation in terpenes from Lindera umbellata and Lindera sericea. Phytochemistry 1974, 13, 2171–2174. [Google Scholar] [CrossRef]
- Rafieiolhossaini, M.; Adams, A.; Sodaeizadeh, H.; Van Damme, P.; De Kimpe, N. Fast Quality Assessment of German Chamomile (Matricaria chamomilla L.) by Headspace Solid-Phase Microextraction: Influence of Flower Development Stage. Nat. Prod. Commun. 2012, 7, 97–100. [Google Scholar] [CrossRef]
- Rohloff, J. Monoterpene Composition of Essential Oil from Peppermint (Mentha × piperita L.) with Regard to Leaf Position Using Solid-Phase Microextraction and Gas Chromatography/Mass Spectrometry Analysis. J. Agric. Food Chem. 1999, 47, 3782–3786. [Google Scholar] [CrossRef]
- Yamanishi, T.; Nose, M.; Nakatani, Y. Studies on the flavor of green tea: Part VIII. Further investigation of flavor constituents in manufactured green tea. Agr. Biol. Chem. 1970, 34, 599–608. [Google Scholar] [CrossRef]
- Moss, M.; Cook, J.; Wesnes, K.; Duckett, P. Aromas of Rosemary and Lavender Essential Oils Differentially Affect Cognition and Mood In Healthy Adults. Int. J. Neurosci. 2003, 113, 15–38. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.-J.; Yeo, J.-S.; Hong, S.-J.; Lee, J.-M.; Jeon, Y. The Effect of Lavender Oil on Stress, Bispectral Index Values, and Needle Insertion Pain in Volunteers. J. Altern. Complement. Med. 2011, 17, 823–826. [Google Scholar] [CrossRef] [Green Version]
- Goes, T.C.; Antunes, F.D.; Alves, P.B.; Teixeira-Silva, F. Effect of Sweet Orange Aroma on Experimental Anxiety in Humans. J. Altern. Complement. Med. 2012, 18, 798–804. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, M.; Ikei, H.; Song, C.; Miyazaki, Y. Effects of olfactory stimulation with rose and orange oil on prefrontal cortex activity. Complement. Ther. Med. 2014, 22, 1027–1031. [Google Scholar] [CrossRef]
- De Sousa, D.P.; Quintans-Júnior, L.; De Almeida, R.N. Evolution of the Anticonvulsant Activity of α-Terpineol. Pharm. Biol. 2007, 45, 69–70. [Google Scholar] [CrossRef] [Green Version]
- Nóbrega, F.F.F.; Salvadori, M.G.S.S.; Masson, C.J.; Mello, C.F.; Nascimento, T.S.; Leal-Cardoso, J.H.; De Sousa, D.P.; De Almeida, R.N. Monoterpenoid Terpinen-4-ol Exhibits Anticonvulsant Activity in Behavioural and Electrophysiological Studies. Oxidative Med. Cell. Longev. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, K.A.A.; dos Santos, J.R.; Melo, T.C.D.S.; de Souza, M.F.; Santos, L.D.G.; de Gois, A.M.; Cintra, R.R.; Lins, L.C.R.; Ribeiro, A.M.; Marchioro, M. Depressant effect of geraniol on central nervous system of rats: Behavior and ECoG power spectra. Biomed. J. 2018, 41, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Hase, H.; Mitsuda, M. Effects of room temperature and relative humidity conditions on olfactory threshold, odor intensity and Hedonics. J. Jurnan Liv. Environ. 2012, 19, 35–43. [Google Scholar]
Peak | Compound | RIref a | RI b | SI c |
---|---|---|---|---|
1 | Yomogi alchool | 999 | 994 | 95 |
2 | 1,8-Cineole | 1026 | 1027 | 92 |
3 | Artemisia ketone | 1056 | 1055 | 99 |
4 | Linalool | 1095 | 1098 | 96 |
5 | Camphor | 1141 | 1140 | 96 |
6 | l-Menthone | 1148 | 1150 | 97 |
7 | Isomenthone | 1158 | 1160 | 98 |
8 | Neomenthol | 1161 | 1166 | 95 |
9 | Menthol | 1167 | 1173 | 97 |
10 | Terpinen-4-ol | 1174 | 1175 | 91 |
11 | α-Terpineol | 1186 | 1190 | 95 |
12 | cis-Dihydrocarvone | 1191 | 1192 | 97 |
13 | trans-Dihydrocarvone | 1200 | 1198 | 97 |
14 | Carvone | 1239 | 1239 | 97 |
15 | Geraniol | 1249 | 1247 | 94 |
16 | Indole | 1290 | 1285 | 81 |
17 | 1-Dodecanol | 1469 | 1471 | 95 |
18 | α-Bisabolol oxide B | 1656 | 1649 | 94 |
19 | α-Bisabolone oxide A | 1684 | 1675 | 94 |
20 | α-Bisabolol oxide A | 1748 | 1741 | 87 |
Items | Experimental Materials | Expt.1 | Expt.2 | p Value |
---|---|---|---|---|
LF norm | Kuromoji L | 104.1 ± 5.7 | 132.7 ± 8.5 | 0.011 |
Kuromoji B | 110.3 ± 7.5 | 125.1 ± 12.1 | 0.315 | |
Chamomile | 106.6 ± 6.0 | 126.8 ± 10.0 | 0.101 | |
Peppermint | 99.3 ± 4.4 | 120.6 ± 6.8 | 0.016 | |
Green Tea | 104.0 ± 7.2 | 142.9 ± 12.5 | 0.013 | |
Hot water | 110.4 ± 6.3 | 125.8 ± 11.2 | 0.250 | |
HF norm | Kuromoji L | 93.4 ± 5.2 | 85.3 ± 7.2 | 0.378 |
Kuromoji B | 103.4 ± 9.5 | 92.3 ± 7.2 | 0.362 | |
Chamomile | 93.8 ± 5.1 | 85.8 ± 13.1 | 0.583 | |
Peppermint | 101.8 ± 6.9 | 92.0 ± 10.3 | 0.440 | |
Green Tea | 92.1 ± 8.1 | 82.8 ± 10.0 | 0.486 | |
Hot water | 97.8 ± 5.4 | 106.1 ± 10.5 | 0.499 |
Items | Experimental Materials | Expt.1 | Expt.2 | p Value |
---|---|---|---|---|
OxyHb at right side | Kuromoji L | 3.7 ± 0.8 | 2.5 ± 0.6 | 0.275 |
Kuromoji B | 2.2 ± 0.5 | 2.7 ± 0.8 | 0.648 | |
Chamomile | 2.4 ± 0.5 | 2.1 ± 0.7 | 0.702 | |
Peppermint | 2.3 ± 0.4 | 2.0 ± 0.5 | 0.694 | |
Green Tea | 2.7 ± 0.5 | 1.8 ± 0.5 | 0.254 | |
Hot water | 3.0 ± 0.6 | 2.6 ± 0.7 | 0.653 | |
OxyHb at left side | Kuromoji L | 4.3 ± 0.7 | 3.4 ± 0.7 | 0.396 |
Kuromoji B | 2.2 ± 0.6 | 3.0 ± 0.9 | 0.535 | |
Chamomile | 3.4 ± 0.6 | 3.6 ± 0.8 | 0.782 | |
Peppermint | 3.1 ± 0.5 | 3.1 ± 0.6 | 0.995 | |
Green Tea | 3.3 ± 0.4 | 2.8 ± 0.6 | 0.496 | |
Hot water | 3.9 ± 0.6 | 4.0 ± 0.7 | 0.920 |
Items | Experimental Materials | Expt.1 | Expt.2 | p Value |
---|---|---|---|---|
Core body temperature | Kuromoji L | 100.0 ± 0.05 | 100.0 ± 0.02 | 0.646 |
Kuromoji B | 99.9 ± 0.05 | 100.0 ± 0.01 | 0.291 | |
Chamomile | 100.0 ± 0.04 | 99.9 ± 0.05 | 0.317 | |
Peppermint | 100.0 ± 0.05 | 100.0 ± 0.02 | 0.935 | |
Green Tea | 99.9 ± 0.05 | 100.0 ± 0.01 | 0.509 | |
Hot water | 99.9 ± 0.04 | 100.0 ± 0.02 | 0.078 |
Experimental Materials | Sites | Weight/Bag |
---|---|---|
Kuromoji (Lindera umbellata) tea | Leaves | 2 g |
Kuromoji (Lindera umbellata) tea | Branches | 5 g |
Chamomile (Matricaria chamomilla) tea | Flowers | 2 g |
Peppermint (Mentha x piperita) tea | Leaves | 2 g |
Green tea | Leaves | 2 g |
Hot water | ― | ― |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsubara, E.; Morikawa, T.; Kusumoto, N.; Hashida, K.; Matsui, N.; Ohira, T. Subjective Effects of Inhaling Kuromoji Tea Aroma. Molecules 2021, 26, 575. https://doi.org/10.3390/molecules26030575
Matsubara E, Morikawa T, Kusumoto N, Hashida K, Matsui N, Ohira T. Subjective Effects of Inhaling Kuromoji Tea Aroma. Molecules. 2021; 26(3):575. https://doi.org/10.3390/molecules26030575
Chicago/Turabian StyleMatsubara, Eri, Takeshi Morikawa, Norihisa Kusumoto, Koh Hashida, Naoyuki Matsui, and Tatsuro Ohira. 2021. "Subjective Effects of Inhaling Kuromoji Tea Aroma" Molecules 26, no. 3: 575. https://doi.org/10.3390/molecules26030575
APA StyleMatsubara, E., Morikawa, T., Kusumoto, N., Hashida, K., Matsui, N., & Ohira, T. (2021). Subjective Effects of Inhaling Kuromoji Tea Aroma. Molecules, 26(3), 575. https://doi.org/10.3390/molecules26030575