Hepatoprotective Effect of Supercritical Carbon Dioxide Extracted Dabai Pulp Oil and Its Defatted Pulp
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phenolic Characterization
2.2. Hypocholesterolemic Effect of DPO and DDP
2.3. Evaluation of Hepatic Steatosis
3. Materials and Methods
3.1. Sample Collection and Preparation
3.2. Supercritical Carbon Dioxide (SC-CO2) Extraction
3.3. DPO Extract Preparation and Phenolic Characterization
3.4. DDP Extract Preparation and Phenolic Characterization
3.5. Experimental Diets Extract Preparation and Phenolic Characterization
3.6. Experimental Diets
3.6.1. Normal Diet
3.6.2. High Cholesterol Diet
3.6.3. Treatment Diet
3.7. Animals Study Design
3.7.1. Acclimatization Period
3.7.2. Hypercholesterolemic Induction Period
3.7.3. DPO and DDP Treatment Period
3.8. Biochemistry Evaluation
3.9. Liver Histology Evaluation
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Azlan, A.; Prasad, K.N.; Khoo, H.E.; Abdul-Aziz, N.; Mohamad, A.; Ismail, A.; Amom, Z. Comparison of Fatty Acids, Vitamin E and Physicochemical Properties of Canarium odontophyllum Miq. (Dabai), Olive and Palm Oils. J. Food Compos. Anal. 2010, 23, 772–776. [Google Scholar] [CrossRef]
- Basri, D.F.; Ishak, S.F.; Zin, N.M. Shell Extract of Seed from Canarium odontophyllum Miq. (Dabai) Fruit as Potential Source of Antibacterial Agent. Int. J. Pharm. Sci. Rev. Res. 2014, 28, 257–262. [Google Scholar]
- Basri, D.F.; Saidi, N.; Mahari, H.; Saari, S.; Santhanam, J. Preliminary Screening for Antimicrobial Activity of the Pulp of Canarium odontophyllum Miq. (Dabai) Fruit. Glob. J. Pharmacol. 2014, 8, 213–220. [Google Scholar] [CrossRef]
- Ali-Hassan, S.-H.; Fry, J.; Bakar, M.F.A. Antioxidative Phytochemicals and Anti-Cholinesterase Activity of Native Kembayau (Canarium odontophyllum) Fruit of Sabah, Malaysian Borneo. J. Nutr. Food Sci. 2014, 04, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mokiran, N.N.; Ismail, A.; Azlan, A.; Hamid, M.; Hassan, F.A. Effect of Dabai (Canarium odontophyllum) Fruit Extract on Biochemical Parameters of Induced Obese-Diabetic Rats. J. Funct. Foods 2014, 8, 139–149. [Google Scholar] [CrossRef]
- Chew, L.Y.; Khoo, H.E.; Amin, I.; Azrina, A.; Lau, C.Y. Analysis of Phenolic Compounds of Dabai (Canarium odontophyllum Miq.) Fruits by High-Performance Liquid Chromatography. Food Anal. Methods 2012, 5, 126–137. [Google Scholar] [CrossRef]
- Prasad, K.N.; Chew, L.Y.; Khoo, H.E.; Yang, B.; Azlan, A.; Ismail, A. Carotenoids and Antioxidant Capacities from Canarium odontophyllum Miq. Fruit. Food Chem. 2011, 124, 1549–1555. [Google Scholar] [CrossRef]
- Shakirin, F.H.; Azlan, A.; Ismail, A.; Amom, Z.; Lau, C.Y. Protective Effect of Pulp Oil Extracted from Canarium odontophyllum Miq. Fruit on Blood Lipids, Lipid Peroxidation, and Antioxidant Status in Healthy Rabbits. Oxid. Med. Cell. Longev. 2012, 2012, 840973. [Google Scholar] [CrossRef] [Green Version]
- Shakirin, F.H.; Azlan, A.; Ismail, A.; Amom, Z.; Lau, C.Y. Antiatherosclerotic Effect of Canarium odontophyllum Miq. Fruit Parts in Rabbits Fed High Cholesterol Diet. Evid. Based Complement. Altern. Med. 2012, 2012, 838604. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Nurulhuda, M.H.; Ismail, A.; Abas, F.; Hamid, M.; Roowi, S. Antioxidative and Cardioprotective Properties of Anthocyanins from Defatted Dabai Extracts. Evid. Based Complement. Altern. Med. 2013, 2013. [Google Scholar] [CrossRef]
- Al-Muzafar, H.M.; Amin, K.A. Efficacy of Functional Foods Mixture in Improving Hypercholesterolemia, Inflammatory and Endothelial Dysfunction Biomarkers-Induced by High Cholesterol Diet. Lipids Health Dis. 2017, 16, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guimarães, C.M.; Gião, M.S.; Martinez, S.S.; Pintado, A.I.; Pintado, M.E.; Bento, L.S.; Malcata, F.X. Antioxidant Activity of Sugar Molasses, Including Protective Effect against DNA Oxidative Damage. J. Food Sci. 2007, 72, C039–C043. [Google Scholar] [CrossRef] [PubMed]
- Soobrattee, M.A.; Neergheen, V.S.; Luximon-Ramma, A.; Aruoma, O.I.; Bahorun, T. Phenolics as Potential Antioxidant Therapeutic Agents: Mechanism and Actions. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2005, 579, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Jeong, T.S.; Lee, M.K.; Park, Y.B.; Choi, M.S. Lipid-Lowering Efficacy of Hesperetin Metabolites in High-Cholesterol Fed Rats. Clin. Chim. Acta 2003, 327, 129–137. [Google Scholar] [CrossRef]
- Cikman, O.; Soylemez, O.; Ozkan, O.F.; Kiraz, H.A.; Sayar, I.; Ademoglu, S.; Taysi, S.; Karaayvaz, M. Antioxidant Activity of Syringic Acid Prevents Oxidative Stress in L-Arginine-Induced Acute Pancreatitis: An Experimental Study on Rats. Int. Surg. 2015, 100, 891–896. [Google Scholar] [CrossRef]
- Shahzad, S.; Mateen, S.; Naeem, S.S.; Akhtar, K.; Rizvi, W.; Moin, S. Syringic Acid Protects from Isoproterenol Induced Cardiotoxicity in Rats. Eur. J. Pharmacol. 2019, 849, 135–145. [Google Scholar] [CrossRef]
- Kumar, S.; Prahalathan, P.; Raja, B. Syringic Acid Ameliorates L-NAME-Induced Hypertension by Reducing Oxidative Stress. Naunyn. Schmiedebergs. Arch. Pharmacol. 2012, 385, 1175–1184. [Google Scholar] [CrossRef]
- Ham, J.R.; Lee, H.I.; Choi, R.Y.; Sim, M.O.; Seo, K.I.; Lee, M.K. Anti-Steatotic and Anti-Inflammatory Roles of Syringic Acid in High-Fat Diet-Induced Obese Mice. Food Funct. 2016, 7, 689–697. [Google Scholar] [CrossRef]
- Gil-ch, G.J.; Villa, A.; Ayala-Zavala, J.F.; Heredia, J.B.; Sepulveda, D.; Yahia, E.M.; Gonz, G.A. Technologies for Extraction and Production of Bioactive Compounds to Be Used as Nutraceuticals and Food Ingredients: An Overview. Compr. Rev. Food Sci. Food Saf. 2013, 12, 5–23. [Google Scholar] [CrossRef]
- Quispe-Condori, S.; Sánchez, D.; Foglio, M.A.; Rosa, P.T.V.; Zetzl, C.; Brunner, G.; Meireles, M.A.A. Global Yield Isotherms and Kinetic of Artemisinin Extraction from Artemisia Annua L Leaves Using Supercritical Carbon Dioxide. J. Supercrit. Fluids 2005, 36, 40–48. [Google Scholar] [CrossRef]
- Herrero, M.; Cifuentes, A.; Ibanez, E. Food Chemistry Sub- and Supercritical Fluid Extraction of Functional Ingredients from Different Natural Sources: Plants, Food-by-Products, Algae and Microalgae A Review. Food Chem. 2006, 98, 136–148. [Google Scholar] [CrossRef] [Green Version]
- De Melo, M.M.R.; Silvestre, A.J.D.; Silva, C.M. Supercritical Fluid Extraction of Vegetable Matrices: Applications, Trends and Future Perspectives of a Convincing Green Technology. J. Supercrit. Fluids 2014, 92, 115–176. [Google Scholar] [CrossRef]
- Pereira, C.G.; Meireles, M.A.A. Economic Analysis of Rosemary, Fennel and Anise Essential Oils Obtained by Supercritical Fluid Extraction. Flavour Fragr. J. 2007, 22, 407–413. [Google Scholar] [CrossRef]
- Herrero, M.; Mendiola, J.A.; Cifuentes, A.; Ibáñez, E. Supercritical Fluid Extraction: Recent Advances and Applications. J. Chromatogr. A 2010, 1217, 2495–2511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itoh, A.; Isoda, K.; Kondoh, M.; Kawase, M.; Watari, A.; Kobayashi, M.; Tamesada, M.; Yagi, K. Hepatoprotective Effect of Syringic Acid and Vanillic Acid on CCl4-Induced Liver Injury. Biol. Pharm. Bull. 2010, 33, 983–987. [Google Scholar] [CrossRef] [Green Version]
- Itoh, A.; Isoda, K.; Kondoh, M.; Kawase, M.; Kobayashi, M.; Tamesada, M.; Yagi, K. Hepatoprotective Effect of Syringic Acid and Vanillic Acid on Concanavalin A-induced Liver Injury. Biol. Pharm. Bull. 2009, 32, 1215–1219. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, V. Preventive Effect of Syringic Acid on Hepatic Marker Enzymes and Lipid Profile against Acetaminophen-Induced Hepatotoxicity Rats. Int. J. Pharmaceut. Biol. Arch. 2010, 1, 393–398. [Google Scholar]
- Liu, G.L.; Guo, H.H.; Sun, Y.M. Optimization of the Extraction of Anthocyanins from the Fruit Skin of Rhodomyrtus Tomentosa (Ait.) Hassk and Identification of Anthocyanins in the Extract Using High-Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-MS). Int. J. Mol. Sci. 2012, 13, 6292–6302. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Ismail, A.; Abas, F. Antioxidative Properties of Defatted Dabai Pulp and Peel Prepared by Solid Phase Extraction. Molecules 2012, 17, 9754–9773. [Google Scholar] [CrossRef]
- Bouras, M.; Chadni, M.; Barba, F.J.; Grimi, N.; Bals, O.; Vorobiev, E. Optimization of Microwave-Assisted Extraction of Polyphenols from Quercus Bark. Ind. Crop. Prod. 2015, 77, 590–601. [Google Scholar] [CrossRef]
- Azrina, A.; Nurul Nadiah, M.N.; Amin, I. Antioxidant Properties of Methanolic Extract of Canarium odontophyllum Fruit. Int. Food Res. J. 2010, 17, 319–326. [Google Scholar] [CrossRef]
- Takikawa, M.; Inoue, S.; Horio, F.; Tsuda, T. Dietary Anthocyanin-Rich Bilberry Extract Ameliorates Hyperglycemia and Insulin Sensitivity via Activation of AMP-Activated Protein Kinase in Diabetic Mice. J. Nutr. 2010, 140, 527–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Liu, G.; Zhong, R.; Wang, Y.; Wang, D.; Xia, M. Cyanidin-3-O-β-Glucoside Regulates Fatty Acid Metabolism via an AMP-Activated Protein kinase-dependent Signaling Pathway in Human HepG2 Cells. Lipids Health Dis. 2012, 11, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, T.C.; Slavin, M.; Frankenfeld, C.L. Systematic Review of Anthocyanins and Markers of Cardiovascular Disease. Nutrients 2016, 8, 32. [Google Scholar] [CrossRef]
- Bailey, S.A.; Zidell, R.H.; Perry, R.W. Relationships Between Organ Weight and Body/Brain Weight in the Rat: What Is the Best Analytical Endpoint? Toxicol. Pathol. 2004, 32, 448–466. [Google Scholar] [CrossRef] [PubMed]
- Leite Matos, S.; de Paula, H.; Lúcia Pedrosa, M.; Cardoso dos Santos, R.; Luiz de Oliveira, E.; Alves Chianca Júnior, D.; Eustáquio Silva, M. Dietary Models for Inducing Hypercholesterolemia in Rats. Braz. Arch. Biol. Technol. 2005, 48, 203–209. [Google Scholar] [CrossRef] [Green Version]
- McGill, M.R. The Past and Present of Serum Aminotransferases and the Future of Liver Injury Biomarkers. EXCLI J. 2016, 15, 817–828. [Google Scholar] [CrossRef]
- Agarwal, M.; Cottam, S. Laboratory Tests in Hepatic Failure. Anaesth. Intensive Care Med. 2009, 10, 326–327. [Google Scholar] [CrossRef]
- Kim, W.R.; Flamm, S.L.; Di Bisceglie, A.M.; Bodenheimer, H.C. Serum Activity of Alanine Aminotransferase (ALT) as an Indicator of Health and Disease. Hepatology 2008, 47, 1363–1370. [Google Scholar] [CrossRef]
- De Souza, M.O.; Silva, M.; Silva, M.E.; de Paula Oliveira, R.; Pedrosa, M.L. Diet Supplementation with Acai (Euterpe Oleracea Mart.) Pulp Improves Biomarkers of Oxidative Stress and the Serum Lipid Profile in Rats. Nutrition 2010, 26, 804–810. [Google Scholar] [CrossRef]
- Mahmoud, M.R.; El-Abhar, H.S.; Saleh, S. The Effect of Nigella Sativa Oil against the Liver Damage Induced by Schistosoma Mansoni Infection in Mice. J. Ethnopharmacol. 2002, 79, 1–11. [Google Scholar] [CrossRef]
- Shin, M.J.; Chung, N.; Lee, J.H.; Jang, Y.; Park, E.; Jeon, K.I.; Chung, J.H.; Seo, B.Y. Effects of Simvastatin on Plasma Antioxidant Status and Vitamins in Hypercholesterolemic Patients. Int. J. Cardiol. 2007, 118, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Bellosta, S.; Paoletti, R.; Corsini, A. Safety of Statins: Focus on Clinical Pharmacokinetics and Drug Interactions. Circulation 2004, 109, III50-7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.M.; Goh, Y.M.; Mohtarrudin, N.; Loh, S.P. Germinated Brown Rice Ameliorates Obesity in High-Fat Diet-Induced Obese Rats. BMC Complement. Altern. Med. 2016, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Brunt, E.M. Pathology of Fatty Liver Disease. Mod. Pathol. 2007, 20, S40–S48. [Google Scholar] [CrossRef]
- Aita, K.; Jin, Y.; Irie, H.; Takahashi, I.; Kobori, K.; Nakasato, Y.; Kodama, H.; Yanagawa, Y.; Yoshikawa, T.; Shiga, J. Are There Histopathologic Characteristics Particular to Fulminant Hepatic Failure Caused by Human Herpesvirus-6 Infection? A Case Report and Discussion. Hum. Pathol. 2001, 32, 887–889. [Google Scholar] [CrossRef]
- Tsutsumi, V.; Nakamura, T.; Ueno, T.; Torimura, T.; Aguirre-García, J. Structure and Ultrastructure of the Normal and Diseased Liver. Liver Pathophysiol. Ther. Antioxid. 2017, 23–44. [Google Scholar] [CrossRef]
- Kadir, N.A.A.A.; Azlan, A.; Abas, F.; Ismail, I.S. Beneficial Effect of Supercritical Carbon Dioxide Extracted (SC-CO2) Dabai (Canarium odontophyllum) Pulp Oil in Hypercholesterolemia-Induced SPF Sprague-Dawley Rats. Nat. Prod. Commun. 2018, 13, 1583–1586. [Google Scholar] [CrossRef] [Green Version]
- Pizarro, M.L.; Becerra, M.; Sayago, A.; Beltrán, M.; Beltrán, R. Comparison of Different Extraction Methods to Determine Phenolic Compounds in Virgin Olive Oil. Food Anal. Methods 2013, 6, 123–132. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Dianoczki, C.; Recseg, K.; Karlovits, G.; Szłyk, E. Determination of Antioxidant Capacities of Vegetable Oils by Ferric-Ion Spectrophotometric Methods. Talanta 2008, 76, 899–905. [Google Scholar] [CrossRef]
- Schneider, S. Quality Analysis of Virgin Olive Oils—Part 6 Nutritive Benefits—Phenolic Compounds in Virgin Olive Oil; Agilent Technologies, Inc.: Santa Clara, CA, USA, 2016. [Google Scholar]
- Wu, L.; Hsu, H.; Chen, Y.; Chiu, C.; Lin, Y.; Ho, J.A. Antioxidant and Antiproliferative Activities of Red Pitaya. Food Chem. 2006, 95, 319–327. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Ismail, A.; Abas, F. Influence of Different Extraction Media on Phenolic Contents and Antioxidant Capacity of Defatted Dabai (Canarium odontophyllum) Fruit. Food Anal. Methods 2012, 5, 339–350. [Google Scholar] [CrossRef]
- Mawatari, S.; Ohnishi, Y.; Kaji, Y.; Maruyama, T.; Murakami, K.; Tsutsui, K.; Fujino, T. High-Cholesterol Diets Induce Changes in Lipid Composition of Rat Erythrocyte Membrane Including Decrease in Cholesterol, Increase in Alpha-Tocopherol and Changes in Fatty Acids of Phospholipids. Biosci. Biotechnol. Biochem. 2003, 67, 1457–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, C.X.; Chong, G.H.; Hamzah, H.; Ghazali, H.M. Effect of Virgin Avocado Oil on Diet-Induced Hypercholesterolemia in Rats via 1 H NMR-Based Metabolomics Approach. Phyther. Res. 2018, 32, 2264–2274. [Google Scholar] [CrossRef]
Experimental Diet | Total Phenolic Content (mg GAE/g Extract) |
---|---|
ND | 2.842 ± 0.12 c |
HC | 2.649 ± 0.05 d |
2% DPO | 3.115 ± 0.00 b |
2% DDP | 3.969 ± 0.01 a |
Group | TC (mmol/L) | TG (mmol/L) | LDL-C (mmol/L) | HDL-C (mmol/L) | HMG-CoA-r (ng/mL) |
---|---|---|---|---|---|
NG | 1.57 ± 0.15 a | 1.97 ± 0.92 | 0.17 ± 0.06 a | 1.36 ± 0.14 | 1.47 ± 0.07 a |
PG | 2.12 ± 0.65 b | 2.08 ± 0.65 | 0.50 ± 0.19 b | 1.27 ± 0.53 | 2.02 ± 0.24 b |
HG | 1.51 ± 0.18 a | 1.10 ± 0.30 ab | 0.42 ± 0.13 b | 1.22 ± 0.16 | 1.64 ± 0.12 ab |
DG | 1.37 ± 0.25 a | 1.18 ± 0.38 ab | 0.33 ± 0.11 ab | 1.25 ± 0.19 | 1.43 ± 0.07 a |
SG | 1.23 ± 0.05 a | 1.49 ± 0.28 | 0.24 ± 0.05 a | 1.08 ± 0.07 b | 1.39 ± 0.04 a |
Group | AST (U/L) | ALT (U/L) | Liver Weight (g/100 g BW) | Histopathological Changes | |
---|---|---|---|---|---|
Hepatic Steatosis 1 | |||||
Microvesicular | Macrovesicular | ||||
NG | 81.83 ± 4.17 a | 20.33 ± 3.14 a | 3.73 ± 0.32 a | - | - |
PG | 124.33 ± 23.90 b | 30.33 ± 7.66 b | 4.64 ± 0.46 b | +++ | +++ |
HG | 101.33 ± 18.54 a | 23.17 ± 4.26 a | 3.95 ± 0.39 a | ++ | ++ |
DG | 88.83 ± 13.73 a | 22.33 ± 3.01 a | 3.83 ± 0.28 a | ++ | ++ |
SG | 105.67 ± 15.74 b | 33.83 ± 4.88 b | 4.16 ± 0.48 a | ++ | ++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadir, N.A.A.A.; Azlan, A.; Abas, F.; Ismail, I.S. Hepatoprotective Effect of Supercritical Carbon Dioxide Extracted Dabai Pulp Oil and Its Defatted Pulp. Molecules 2021, 26, 671. https://doi.org/10.3390/molecules26030671
Kadir NAAA, Azlan A, Abas F, Ismail IS. Hepatoprotective Effect of Supercritical Carbon Dioxide Extracted Dabai Pulp Oil and Its Defatted Pulp. Molecules. 2021; 26(3):671. https://doi.org/10.3390/molecules26030671
Chicago/Turabian StyleKadir, Noor Atiqah Aizan Abdul, Azrina Azlan, Faridah Abas, and Intan Safinar Ismail. 2021. "Hepatoprotective Effect of Supercritical Carbon Dioxide Extracted Dabai Pulp Oil and Its Defatted Pulp" Molecules 26, no. 3: 671. https://doi.org/10.3390/molecules26030671
APA StyleKadir, N. A. A. A., Azlan, A., Abas, F., & Ismail, I. S. (2021). Hepatoprotective Effect of Supercritical Carbon Dioxide Extracted Dabai Pulp Oil and Its Defatted Pulp. Molecules, 26(3), 671. https://doi.org/10.3390/molecules26030671