A Review of Lignocellulosic-Derived Nanoparticles for Drug Delivery Applications: Lignin Nanoparticles, Xylan Nanoparticles, and Cellulose Nanocrystals
Abstract
:1. Introduction
2. Lignin Nanoparticles (LNPs)
2.1. Synthesis Methods and Characteristics of LNPs
Lignin Sources | Synthesis Methods | Parameters Used | Hydrodynamics Diameters () (in nm) | Polydispersity Index (PDI) | ζ-Potential (in mV) | References |
---|---|---|---|---|---|---|
Organosolv lignin | Acid precipitation | - | 97.3–219.3 | - | - | [23] |
Alkaline pulping liquor | Acid precipitation + Ultrasonication | HCl as the acid | ± 80.0 | - | −63 (average value) | [14] |
HNO3 as the acid | ± 80.0 | |||||
H2SO4 as the acid | ± 90.0 | |||||
Enzymatic hydrolysis lignin | Self-assembly | - | 286 ± 8 | 0.208 | −38.2 ± 9 | [26] |
Acid-catalyzed condensed lignin | Solvent-shifting | Aspen wood chips as the raw material | 625.0 | - | −25 to 15 | [15] |
Eucalyptus wood chips as the raw material | 468.0 | |||||
Softwood lodgepole pine as the raw material | 317.0 | |||||
Corn stover as the raw material | 173.0 | |||||
Alkali lignin | Solvent-shifting | - | 131.2 | 0.065 | −58.2 | [25] |
Alkali lignin | Solvent-shifting | - | 115.9 | 0.307 | −27.0 | [21] |
Direct dialysis | 300.8 | 0.298 | −25.5 | |||
Organosolv lignin | Solvent-shifting | 270.8 | 0.226 | −32.4 | ||
Direct dialysis | 682.3 | 0.167 | −35.1 | |||
Soda lignin | Direct dialysis | 1 mg/mL of initial lignin | 128.4 | 0.3 | −26.3 | [28] |
2 mg/mL of initial lignin | 446.7 | 1.0 | −31.8 | |||
4 mg/mL of initial lignin | 559.7 | 1.0 | −37.8 | |||
Ethyl acetate-extracted lignin | 444.8 | 0.8 | −30.6 | |||
2-butanone-extracted lignin | 592.9 | 1.0 | −34.0 | |||
Methanol-extracted lignin | 850.3 | 1.0 | −29.8 | |||
Kraft lignin | Direct dialysis | Waste as the anti-solvent | 115.91 ± 6.73 | 0.265 ± 0.01 | −31.99 ± 0.81 | [30] |
(0 h storage) | (0 h storage) | (0 h storage) | ||||
117.15 ± 8.83 | 0.301 ± 0.03 | −32.22 ± 1.09 | ||||
(24 h storage) | (24 h storage) | (24 h storage) | ||||
Aqueous HCl solution the anti-solvent | 152.4 ± 7.21 | 0.075 ± 0.02 | −20.95 ± 1.87 | |||
(0 h storage) | (0 h storage) | (0 h storage) | ||||
203.5 ± 5.72 | 0.212 ± 0.02 | −12.01 ± 0.42 | ||||
(24 h storage) | (24 h storage) | (24 h storage) | ||||
Aqueous HCl solution the initial anti-solvent, and then replaced with water as the final anti-solvent | 129.88 ± 4.92 | 0.175 ± 0.02 | −23.71 ± 0.91 | |||
(0 h storage) | (0 h storage) | (0 h storage) | ||||
137.6 ± 4.67 | 0.187 ± 0.02 | −23.81 ± 0.75 | ||||
(24 h storage) | (24 h storage) | (24 h storage) | ||||
Alkali lignin | Homogenization | - | ∼200.0 | 0.250 | - | [31] |
Organosolv lignin | Homogenization | 50% v/v ethanol-water as the solvent | 956 ± 10 | 0.413 ± 0.035 | −38.0 ± 1.0 | [19] |
75% v/v ethanol-water as the solvent | 530 ± 972 | 0.502 ± 0.094 | −35.4 ± 0.7 | |||
Hybrid organosolv lignin | Water as the solvent | 2002 ± 52 | 0.248 ± 0.016 | −47.1 ± 0.6 | ||
50% v/v ethanol-water as the solvent | 650 ± 9 | 0.164 ± 0.027 | −37.1 ± 1.2 | |||
75% v/v ethanol-water as the solvent | 488 ± 14 | 0.486 ± 0.011 | −24.5 ± 0.6 |
2.2. LNPs Application for Drug Delivery System
3. Xylan Nanoparticles (XNPs)
3.1. Synthesis Methods and Characteristics of XNPs
3.2. XNPs Application for Drug Delivery System
4. Cellulose Nanocrystals (CNCs)
4.1. Synthesis Methods and Characteristics of CNCs
4.2. CNCs Application for Drug Delivery System
CNCs or Modified CNCs | Loaded Drugs | Loading Capacity | Encapsulation Efficiency | Release (%) | References |
---|---|---|---|---|---|
CNCs | Hydroquinone | - | 30.0 ± 3% | 40 (pH neutral, 1 h) | [67] |
80 (pH neutral, 4 h) | |||||
CNCs | Tetracycline | 129.46 mg/g | - | 25.1 (pH 2.1) | [54] |
82.21 (pH 7.2) | |||||
CNCs | Procaine HCl | - | ±20% | ±80 (pH 7.4, 6 min) | [68] |
Imipramine HCl | ±85% | ±35% (pH 7.4, 2 h) | |||
TEMPO-CNCs | Procaine HCl | ±30% | ±60 (pH 7.4, 3 min) | ||
Imipramine HCl | ±55% | ±50 (pH 7.4, 2 h) | |||
Chitosan-CNCs | Procaine HCl | ±20% | ±40 (pH 7.4, 12 min) | ||
Imipramine HCl | ±50% | ±80 (pH 7.4, 2 h) | |||
CNCs | Doxorubicin HCl | - | 83% | 93 (pH 7.4, 1 day) | [66] |
Tetracycline HCl | 48% | 87 (pH 7.4, 1 day) | |||
CTAB-CNCs | Paclitaxel | 90% | 44 (pH 7.4, 2 days) | ||
Docetaxel | 90% | 59 (pH 7.4, 2 days) | |||
Etoposide | 48% | 75 (pH 7.4, 4 days) | |||
CTAB-CNCs | Luteolin | 12.9 ± 1.5 mg/g | - | 44 (pH 6.4, 24 h) | [69] |
57 (pH 7.4, 24 h) | |||||
Luteoloside | 56.9 ± 0.9 mg/g | 57 (pH 6.4, 24 h) | |||
72 (pH 7.4, 24 h) | |||||
CTAB-CNCs | Curcumin | - | 80–90% | - | [73] |
CTAB-CNCs | Paclitaxel | 65.49 mg/g | 87.32% | ±25 (pH 5.8, 19 h) | [72] |
±65 (pH 7.4, 19 h) | |||||
SDS-CNCs | 43.61 mg/g | 59.60% | ±65 (pH 5.8, 19 h) | ||
±95 (pH 7.4, 19 h) | |||||
Tween 20-CNCs | 28.67 mg/g | 57.33% | ±75 (pH 5.8, 19 h) | ||
±80 (pH 7.4, 19 h) | |||||
β-cd-CNCs | Curcumin | 8–10% | - | 24 (in H2O/CHCl3, 8 h) | [74] |
l-l-MA-CNCs | Tosufloxacin tosylate | 29.14% | 99.84% | 40.38 (pH 7.4, 30 h, without enzyme lysozyme) | [65] |
72.55 (pH 7.4, 30 h, with enzyme lysozyme) | |||||
RS-CNCs | Curcumin | 12.40 ± 0.24% (at 10 h) | 49.49 ± 0.94% (at 10 h) | 43 (pH 7.4, 1 day) | [70] |
78 (pH 7.4, 3 days) | |||||
RS-CNCs | Tetracycline | 13.97 mg/g (only CNCs) 18.11 mg/g (modified CNCs) | - | 18.28 (pH 3, 14 h) | [71] |
55.49 (pH 7, 14 h) |
5. Comparisons of LNPs, XNPs, and CNCs in Drug Delivery Application
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zorkina, Y.; Abramova, O.; Ushakova, V.; Morozova, A.; Zubkov, E.; Valikhov, M.; Melnikov, P.; Majouga, A.; Chekhonin, V. Nano carrier drug delivery systems for the treatment of neuropsychiatric disorders: Advantages and limitations. Molecules 2020, 25, 5294. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Tripathi, S.; Tripathi, P.K. Invasomes: Potential vesicular systems for transdermal delivery of drug molecules. J. Drug Deliv. Sci. Technol. 2020, 102166. [Google Scholar] [CrossRef]
- Teran-Saavedra, N.G.; Sarabia-Sainz, J.A.; Velázquez-Contreras, E.F.; Montfort, G.R.-C.; Pedroza-Montero, M.; Vazquez-Moreno, L. Albumin-albumin/lactosylated core-shell nanoparticles: Therapy to treat hepatocellular carcinoma for controlled delivery of doxorubicin. Molecules 2020, 25, 5432. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Gou, K.; Yang, B.; Wang, Y.; Pu, X.; Li, S.; Li, H. Enlarged pore size chiral mesoporous silica nanoparticles loaded poorly water-soluble drug perform superior delivery effect. Molecules 2019, 24, 3552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moodley, T.; Singh, M. Sterically stabilised polymeric mesoporous silica nanoparticles improve doxorubicin efficiency: Tailored cancer therapy. Molecules 2020, 25, 742. [Google Scholar] [CrossRef] [Green Version]
- Newham, G.; Mathew, R.K.; Wurdak, H.; Evans, S.D.; Ong, Z.Y. Polyelectrolyte complex templated synthesis of monodisperse, sub-100 nm porous silica nanoparticles for cancer targeted and stimuli-responsive drug delivery. J. Colloid Interface Sci. 2020, 584, 669–683. [Google Scholar] [CrossRef]
- Nogueira, J.; Soares, S.F.; Amorim, C.O.; Amaral, J.S.; Silva, C.; Martel, F.; Trindade, T.; Daniel-Da-Silva, A.L. Magnetic driven nanocarriers for pH-responsive doxorubicin release in cancer therapy. Molecules 2020, 25, 333. [Google Scholar] [CrossRef] [Green Version]
- Sathishkumar, P.; Li, Z.; Govindan, R.; Jayakumar, R.; Wang, C.; Long Gu, F. Zinc oxide-quercetin nanocomposite as a smart nano-drug delivery system: Molecular-level interaction studies. Appl. Surf. Sci. 2021, 536, 147741. [Google Scholar] [CrossRef]
- Guo, J.; Cao, R.; Huang, K.; Xu, Y. Comparison of selective acidolysis of xylan and enzymatic hydrolysability of cellulose in various lignocellulosic materials by a novel xylonic acid catalysis method. Bioresour. Technol. 2020, 304, 122943. [Google Scholar] [CrossRef]
- Wang, F.; Ouyang, D.; Zhou, Z.; Page, S.J.; Liu, D.; Zhao, X. Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. J. Energy Chem. 2021, 57, 247–280. [Google Scholar] [CrossRef]
- Carmichael, E.; Ghassemieh, E.; Lyons, G. Biorefining of lignocellulosic feedstock and waste materials using ionic liquid. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2020, 262, 114741. [Google Scholar] [CrossRef]
- Ufodike, C.O.; Eze, V.O.; Ahmed, M.F.; Oluwalowo, A.; Park, J.G.; Okoli, O.I.; Wang, H. Evaluation of the inter-particle interference of cellulose and lignin in lignocellulosic materials. Int. J. Biol. Macromol. 2020, 147, 762–767. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Othman, M.Z. A selective fractionation method of lignocellulosic materials using electro-assisted organosolv pretreatment. Bioresour. Technol. 2019, 288, 121421. [Google Scholar] [CrossRef]
- Agustin, M.B.; Penttilä, P.A.; Lahtinen, M.; Mikkonen, K.S. Rapid and direct preparation of lignin nanoparticles from alkaline pulping liquor by mild ultrasonication. ACS Sustain. Chem. Eng. 2019, 7, 19925–19934. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, Y.; Tian, D.; Hu, J.; He, J.; Yang, G.; Luo, L.; Xiao, Y.; Deng, S.; Deng, O.; et al. Fabrication of spherical lignin nanoparticles using acid-catalyzed condensed lignins. Int. J. Biol. Macromol. 2020, 164, 3038–3047. [Google Scholar] [CrossRef] [PubMed]
- Sauraj; Kumar, S.U.; Gopinath, P.; Negi, Y.S. Synthesis and bio-evaluation of xylan-5-fluorouracil-1-acetic acid conjugates as prodrugs for colon cancer treatment. Carbohydr. Polym. 2017, 157, 1442–1450. [Google Scholar] [CrossRef]
- Olad, A.; Doustdar, F.; Gharekhani, H. Fabrication and characterization of a starch-based superabsorbent hydrogel composite reinforced with cellulose nanocrystals from potato peel waste. Colloids Surf. Physicochem. Eng. Asp. 2020, 601, 124962. [Google Scholar] [CrossRef]
- Chen, L.; Shi, Y.; Gao, B.; Zhao, Y.; Jiang, Y.; Zha, Z.; Xue, W.; Gong, L. Lignin nanoparticles: Green synthesis in a γ-valerolactone/water binary solvent and application to enhance antimicrobial activity of essential oils. ACS Sustain. Chem. Eng. 2020, 8, 714–722. [Google Scholar] [CrossRef]
- Matsakas, L.; Karnaouri, A.; Cwirzen, A.; Rova, U.; Christakopoulos, P. Formation of lignin nanoparticles by combining organosolv pretreatment of birch biomass and homogenization processes. Molecules 2018, 23, 1822. [Google Scholar] [CrossRef] [Green Version]
- Alqahtani, M.S.; Alqahtani, A.; Al-Thabit, A.; Roni, M.; Syed, R. Novel lignin nanoparticles for oral drug delivery. J. Mater. Chem. B 2019, 7, 4461–4473. [Google Scholar] [CrossRef]
- Bertolo, M.R.V.; Brenelli de Paiva, L.B.; Nascimento, V.M.; Gandin, C.A.; Neto, M.O.; Driemeier, C.E.; Rabelo, S.C. Lignins from sugarcane bagasse: Renewable source of nanoparticles as Pickering emulsions stabilizers for bioactive compounds encapsulation. Ind. Crops Prod. 2019, 140, 111591. [Google Scholar] [CrossRef]
- Alqahtani, M.S.; Kazi, M.; Ahmad, M.Z.; Syed, R.; Alsenaidy, M.A.; Albraiki, S.A. Lignin nanoparticles as a promising vaccine adjuvant and delivery system for ovalbumin. Int. J. Biol. Macromol. 2020, 163, 1314–1322. [Google Scholar] [CrossRef] [PubMed]
- Beisl, S.; Adamcyk, J.; Friedl, A. Direct precipitation of lignin nanoparticles from wheat straw organosolv liquors using a static mixer. Molecules 2020, 25, 1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alqahtani, M.S.; Alqahtani, A.; Kazi, M.; Ahmad, M.Z.; Alahmari, A.; Alsenaidy, M.A.; Syed, R. Wound-healing potential of curcumin loaded lignin nanoparticles. J. Drug Deliv. Sci. Technol. 2020, 60, 102020. [Google Scholar] [CrossRef]
- Dai, L.; Liu, R.; Hu, L.Q.; Zou, Z.F.; Si, C.L. Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol. ACS Sustain. Chem. Eng. 2017, 5, 8241–8249. [Google Scholar] [CrossRef]
- Zhou, Y.; Han, Y.; Li, G.; Yang, S.; Xiong, F.; Chu, F. Preparation of targeted lignin-based hollow nanoparticles for the delivery of doxorubicin. Nanomaterials 2019, 9, 188. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Han, Y.; Li, G.; Chu, F. Effects of lignin-based hollow nanoparticle structure on the loading and release behavior of doxorubicin. Materials 2019, 12, 1694. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Park, S.Y.; Choi, I.G.; Choi, J.W. Investigation of molecular size effect on the formation of lignin nanoparticles by nanoprecipitation. Appl. Sci. 2020, 10, 4910. [Google Scholar] [CrossRef]
- Matsakas, L.; Gerber, M.; Yu, L.; Rova, U.; Christakopoulos, P. Preparation of low carbon impact lignin nanoparticles with controllable size by using different strategies for particles recovery. Ind. Crops Prod. 2020, 147, 112243. [Google Scholar] [CrossRef]
- Siddiqui, L.; Bag, J.; Seetha; Mittal, D.; Leekha, A.; Mishra, H.; Mishra, M.; Verma, A.K.; Mishra, P.K.; Ekielski, A.; et al. Assessing the potential of lignin nanoparticles as drug carrier: Synthesis, cytotoxicity and genotoxicity studies. Int. J. Biol. Macromol. 2020, 152, 786–802. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, K.; Niu, L.; Zhang, Y.; Liu, Y.; Wang, C.; Chu, F. Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles. Int. J. Biol. Macromol. 2019, 128, 414–420. [Google Scholar] [CrossRef]
- Figueiredo, P.; Lintinen, K.; Kiriazis, A.; Hynninen, V.; Liu, Z.; Bauleth-Ramos, T.; Rahikkala, A.; Correia, A.; Kohout, T.; Sarmento, B.; et al. In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials 2017, 121, 97–108. [Google Scholar] [CrossRef]
- Kumar, S.; Negi, Y.S. Corn cob xylan-based nanoparticles: Ester prodrug of 5-aminosalicylic acid for possible targeted delivery of drug. J. Pharm. Sci. Res. 2012, 4, 1995–2003. [Google Scholar]
- Sauraj; Kumar, S.U.; Kumar, V.; Priyadarshi, R.; Gopinath, P.; Negi, Y.S. pH-responsive prodrug nanoparticles based on xylan-curcumin conjugate for the efficient delivery of curcumin in cancer therapy. Carbohydr. Polym. 2018, 188, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.Q.; Su, L.Y.; Yue, P.P.; Huang, Y.H.; Bian, J.; Li, M.F.; Peng, F.; Sun, R.C. Syntheses of xylan stearate nanoparticles with loading function from by-products of viscose fiber mills. Cellulose 2019, 26, 7195–7206. [Google Scholar] [CrossRef]
- Sauraj; Kumar, V.; Kumar, B.; Deeba, F.; Bano, S.; Kulshreshtha, A.; Gopinath, P.; Negi, Y.S. Lipophilic 5-fluorouracil prodrug encapsulated xylan-stearic acid conjugates nanoparticles for colon cancer therapy. Int. J. Biol. Macromol. 2019, 128, 204–213. [Google Scholar] [CrossRef]
- Sauraj; Kumar, V.; Kumar, B.; Priyadarshi, R.; Deeba, F.; Kulshreshtha, A.; Kumar, A.; Agrawal, G.; Gopinath, P.; Negi, Y.S. Redox responsive xylan-SS-curcumin prodrug nanoparticles for dual drug delivery in cancer therapy. Mater. Sci. Eng. C 2020, 107, 110356. [Google Scholar] [CrossRef]
- Daus, S.; Heinze, T. Xylan-based nanoparticles: Prodrugs for ibuprofen release. Macromol. Biosci. 2010, 10, 211–220. [Google Scholar] [CrossRef]
- Kumar, S.; Negi, Y.S. Nanoparticles synthesis from corn cob (xylan) and their potential application as colon-specific drug carrier. Macromol. Symp. 2012, 320, 75–80. [Google Scholar] [CrossRef]
- Qin, Y.; Peng, X. Synthesis of biocompatible cholesteryl-carboxymethyl xylan micelles for tumor-targeting intracellular DOX delivery. ACS Biomater. Sci. Eng. 2020, 6, 1582–1589. [Google Scholar] [CrossRef]
- Calvino, C.; Macke, N.; Kato, R.; Rowan, S.J. Development, processing and applications of bio-sourced cellulose nanocrystal composites. Prog. Polym. Sci. 2020, 103. [Google Scholar] [CrossRef]
- Gao, A.; Chen, H.; Tang, J.; Xie, K.; Hou, A. Efficient extraction of cellulose nanocrystals from waste Calotropis gigantea fiber by SO42-/TiO2 nano-solid superacid catalyst combined with ball milling exfoliation. Ind. Crops Prod. 2020, 152, 112524. [Google Scholar] [CrossRef]
- Prasanna, N.S.; Mitra, J. Isolation and characterization of cellulose nanocrystals from Cucumis sativus peels. Carbohydr. Polym. 2020, 247, 116706. [Google Scholar] [CrossRef]
- Doh, H.; Lee, M.H.; Whiteside, W.S. Physicochemical characteristics of cellulose nanocrystals isolated from seaweed biomass. Food Hydrocoll. 2020, 102, 105542. [Google Scholar] [CrossRef]
- Lin, K.-H.; Enomae, T.; Chang, F.-C. Cellulose nanocrystal isolation from hardwood pulp using various hydrolysis conditions. Molecules 2019, 24, 3724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sá, N.M.S.M.; Mattos, A.L.A.; Silva, L.M.A.; Brito, E.S.; Rosa, M.F.; Azeredo, H.M.C. From cashew byproducts to biodegradable active materials: Bacterial cellulose-lignin-cellulose nanocrystal nanocomposite films. Int. J. Biol. Macromol. 2020, 161, 1337–1345. [Google Scholar] [CrossRef] [PubMed]
- Coelho, C.C.S.; Michelin, M.; Cerqueira, M.A.; Gonçalves, C.; Tonon, R.V.; Pastrana, L.M.; Freitas-Silva, O.; Vicente, A.A.; Cabral, L.M.C.; Teixeira, J.A. Cellulose nanocrystals from grape pomace: Production, properties and cytotoxicity assessment. Carbohydr. Polym. 2018, 192, 327–336. [Google Scholar] [CrossRef] [PubMed]
- de Souza Coelho, C.C.; Silva, R.B.S.; Carvalho, C.W.P.; Rossi, A.L.; Teixeira, J.A.; Freitas-Silva, O.; Cabral, L.M.C. Cellulose nanocrystals from grape pomace and their use for the development of starch-based nanocomposite films. Int. J. Biol. Macromol. 2020, 159, 1048–1061. [Google Scholar] [CrossRef]
- Kamelnia, E.; Divsalar, A.; Darroudi, M.; Yaghmaei, P.; Sadri, K. Production of new cellulose nanocrystals from Ferula gummosa and their use in medical applications via investigation of their biodistribution. Ind. Crops Prod. 2019, 139, 111538. [Google Scholar] [CrossRef]
- Huang, S.; Zhou, L.; Li, M.C.; Wu, Q.; Zhou, D. Cellulose nanocrystals (CNCs) from corn stalk: Activation energy analysis. Materials 2017, 10, 80. [Google Scholar] [CrossRef] [Green Version]
- Chieng, B.W.; Lee, S.H.; Ibrahim, N.A.; Then, Y.Y.; Loo, Y.Y. Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber. Polymers 2017, 9, 355. [Google Scholar] [CrossRef]
- Rahman, N.H.A.; Chieng, B.W.; Ibrahim, N.A.; Rahman, N.A. Extraction and characterization of cellulose nanocrystals from tea leaf waste fibers. Polymers 2017, 9, 588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.; Liu, Y.; Wang, X.; Li, M.; Lei, H.; Xu, H. Cellulose nanocrystals prepared from wheat bran: Characterization and cytotoxicity assessment. Int. J. Biol. Macromol. 2019, 140, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Wijaya, C.J.; Saputra, S.N.; Soetaredjo, F.E.; Putro, J.N.; Lin, C.X.; Kurniawan, A.; Ju, Y.H.; Ismadji, S. Cellulose nanocrystals from passion fruit peels waste as antibiotic drug carrier. Carbohydr. Polym. 2017, 175, 370–376. [Google Scholar] [CrossRef] [Green Version]
- Wijaya, C.J.; Ismadji, S.; Aparamarta, H.W.; Gunawan, S. Optimization of cellulose nanocrystals from bamboo shoots using Response Surface Methodology. Heliyon 2019, 5, e02807. [Google Scholar] [CrossRef] [PubMed]
- Pandi, N.; Sonawane, S.H.; Kishore, K.A. Synthesis of cellulose nanocrystals (CNCs) from cotton using ultrasound-assisted acid hydrolysis. Ultrason. Sonochemistry 2021, 70, 105353. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Lu, L.; Li, Y.; Yan, Y.; Fang, Z.; Chen, X.; Huang, B. High-yield synthesis of functionalized cellulose nanocrystals for nano-biocomposites. ACS Appl. Nano Mater. 2019, 2, 2036–2043. [Google Scholar] [CrossRef]
- Pereira, B.; Arantes, V. Production of cellulose nanocrystals integrated into a biochemical sugar platform process via enzymatic hydrolysis at high solid loading. Ind. Crops Prod. 2020, 152, 112377. [Google Scholar] [CrossRef]
- Park, N.-M.; Choi, S.; Oh, J.E.; Hwang, D.Y. Facile extraction of cellulose nanocrystals. Carbohydr. Polym. 2019, 223, 115114. [Google Scholar] [CrossRef]
- Novo, L.P.; Bras, J.; García, A.; Belgacem, N.; Curvelo, A.A.S. Subcritical water: A method for green production of cellulose nanocrystals. ACS Sustain. Chem. Eng. 2015, 3, 2839–2846. [Google Scholar] [CrossRef]
- Reyes, G.; Aguayo, M.G.; Pérez, A.F.; Pääkkönen, T.; Gacitúa, W.; Rojas, O.J. Dissolution and hydrolysis of bleached kraft pulp using ionic liquids. Polymers 2019, 11, 673. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wei, X.; Wang, Q.; Chen, J.; Chang, G.; Kong, L.; Su, J.; Liu, Y. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr. Polym. 2012, 90, 1609–1613. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Xing, X.; Jing, Y.; Han, Y. Preparation of cellulose nanocrystals based on waste paper via different systems. Int. J. Biol. Macromol. 2020, 149, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Meirelles, A.A.D.; Costa, A.L.R.; Cunha, R.L. Cellulose nanocrystals from ultrasound process stabilizing O/W Pickering emulsion. Int. J. Biol. Macromol. 2020, 158, 75–84. [Google Scholar] [CrossRef]
- Tang, L.; Lin, F.; Li, T.; Cai, Z.; Hong, B.; Huang, B. Design and synthesis of functionalized cellulose nanocrystals-based drug conjugates for colon-targeted drug delivery. Cellulose 2018, 25, 4525–4536. [Google Scholar] [CrossRef]
- Jackson, J.K.; Letchford, K.; Wasserman, B.Z.; Ye, L.; Hamad, W.Y.; Burt, H.M. The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int. J. Nanomed. 2011, 6, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Taheri, A.; Mohammadi, M. The use of cellulose nanocrystals for potential application in topical delivery of hydroquinone. Chem. Biol. Drug Des. 2015, 86, 102–106. [Google Scholar] [CrossRef]
- Akhlaghi, S.P.; Tiong, D.; Berry, R.M.; Tam, K.C. Comparative release studies of two cationic model drugs from different cellulose nanocrystal derivatives. Eur. J. Pharm. Biopharm. 2014, 88, 207–215. [Google Scholar] [CrossRef]
- Qing, W.; Wang, Y.; Wang, Y.; Zhao, D.; Liu, X.; Zhu, J. The modified nanocrystalline cellulose for hydrophobic drug delivery. Appl. Surf. Sci. 2016, 366, 404–409. [Google Scholar] [CrossRef] [Green Version]
- Wijaya, C.J.; Ismadji, S.; Aparamarta, H.W.; Gunawan, S. Hydrophobic modification of cellulose nanocrystals from bamboo shoots using rarasaponins. ACS Omega 2020, 5, 20967–20975. [Google Scholar] [CrossRef]
- Bundjaja, V.; Sari, T.M.; Soetaredjo, F.E.; Yuliana, M.; Angkawijaya, A.E.; Ismadji, S.; Cheng, K.-C.; Santoso, S.P. Aqueous sorption of tetracycline using rarasaponin-modified nanocrystalline cellulose. J. Mol. Liq. 2020, 301, 112433. [Google Scholar] [CrossRef]
- Putro, J.N.; Ismadji, S.; Gunarto, C.; Yuliana, M.; Santoso, S.P.; Soetaredjo, F.E.; Ju, Y.H. The effect of surfactants modification on nanocrystalline cellulose for paclitaxel loading and release study. J. Mol. Liq. 2019, 282, 407–414. [Google Scholar] [CrossRef]
- Zainuddin, N.; Ahmad, I.; Kargarzadeh, H.; Ramli, S. Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin. Carbohydr. Polym. 2017, 163, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Ntoutoume, G.M.A.N.; Granet, R.; Mbakidi, J.P.; Brégier, F.; Léger, D.Y.; Fidanzi-Dugas, C.; Lequart, V.; Joly, N.; Liagre, B.; Chaleix, V.; et al. Development of curcumin-cyclodextrin/cellulose nanocrystals complexes: New anticancer drug delivery systems. Bioorg. Med. Chem. Lett. 2016, 26, 941–945. [Google Scholar] [CrossRef] [PubMed]
Methods | Descriptions | Advantages | Drawbacks | References |
---|---|---|---|---|
Acid precipitation | A lignin solution (in alkali or ethylene glycol) is gradually added by an acid solution |
|
| [14,23] |
Solvent-shifting or dropping nano-precipitation | A lignin solution in the organic solvent (such as tetrahydrofuran, dimethyl sulfoxide, or dioxane) is introduced into an anti-solvent (such as water) |
|
| [14,18,21,24,25] |
Direct dialysis or dialysis nano-precipitation | A lignin solution in the organic solvent is dialyzed using a dialysis cellulose membrane against water |
|
| [21] |
Ultrasonication | A lignin solution in water is sonicated |
|
| [14] |
Homogenization | A lignin solution in water is processed in a homogenizer |
|
| [18,19] |
Loaded Drugs | Loading Capacity (%) | Encapsulation Efficiency (%) | Release (%) | References |
---|---|---|---|---|
Curcumin | - | 92 ± 4 | 34 (intestinal pH 7.4; 8 h) | [20] |
±80 (intestinal pH 7.4; 150 h) | ||||
8.7 (gastric pH 2; 4 h) | ||||
±25 (gastric pH 2; 150 h) | ||||
Ovalbumin | - | 81.64 | 16.4 ± 4.2 (pH 7.4; 12 h) | |
Resveratrol | >20 | > 90 | > 80 (pH 7.4; 50 h) | |
Benzazulene | 8 ± 1 | 77 ± 10 | 90 (pH 5.5; 6 h) | [32] |
95 (pH 7.4; 6 h) | ||||
Sorafenib | 7 ± 2 | 68 ± 19 | 61 (pH 5.5; 6 h) | |
100 (pH 7.4; 6 h) | ||||
Doxorubicin | - | 67.5 ± 6 (In vitro) | 21.3 (pH 5.5; 4 h) | [26] |
49.4 ± 7 (Ex vitro) | 15.2 (pH 7.4; 4 h) | |||
Doxorubicin | >12.5 | >60 | >50 (pH 5.5; 60 h) | [27] |
>65 (pH 7.4; 60 h) | ||||
Irinotecan | 13.61 ± 0.59 | 67.65 ± 1.95 | 22.11 ± 4.05 (pH 7.4; 2 h) | [30] |
43.84 ± 6.07 (pH 7.4; 8 h) | ||||
86.72 ± 7.05 (pH 7.4 72 h) |
Raw Materials | Preparation Methods | Crystallinity Index (in %) | Morphology | Particle Size (in nm) | ζ-Potential (in mV) | References | |
---|---|---|---|---|---|---|---|
Pretreatment | Treatment | ||||||
Bleached hardwood pulp | Alkaline pretreatment | Acid hydrolysis (46 & 63 wt% H2SO4) | 70–80 | Rod- or needle-like shape | ±600 (46 wt% H2SO4) | - | [45] |
±250 (63 wt% H2SO4) | |||||||
Cucumber peels | Hot water, acid, and alkaline pretreatments + NaOCl bleaching | Acid hydrolysis (60 wt% H2SO4) | 74.1 | Irregularly shaped flakes (freeze-drying method) and rod-like shape (drop-casting method) | 582.96 (without sonication) | −48.4 ± 1.3 | [43] |
110.9 (with sonication) | |||||||
Seaweed | Acid and alkaline pretreatments + NaOCl & H2O2 bleaching | Acid hydrolysis (51 wt% H2SO4) | 98.89 ± 0.24 | Rod-like shape | 239.43 ± 38.57 (length) | - | [44] |
22.45 ± 6.51 (width) | |||||||
Cashew tree pruning residue | Acetosolv pretreatment + alkaline-peroxide bleaching | Acid hydrolysis (60 vol% + 25 vol% HCl) | - | Needle-like shape | 276 ± 45.7 (length) | −26.1 ± 2.4 | [46] |
17.5 ± 4.52 (width) | |||||||
Grape pomace | Organosolv, acid, alkaline pretreatments + alkaline-peroxide bleaching | Acid hydrolysis (64–65 wt% H2SO4) | 74.89 | Needle-like shape | 323 (length) | - | [47,48] |
7 (width) | |||||||
Ferula gummosa roots | Alkaline pretreatment | Acid hydrolysis (64 wt% H2SO4) | 84.01 | Spherical shape | 22.11 ± 5 | [49] | |
Cornstalk | Organosolv extraction + acid and alkaline pretreatments | Acid hydrolysis (60 wt% H2SO4) | 69.20 | Needle-like shape | 120.2 ± 61.3 (length) | - | [50] |
6.4 ± 3.1 (width) | |||||||
Oil palm mesocarp fibers | Alkaline pretreatment + acetate buffer-NaClO2-water bleaching | Acid hydrolysis (65 w% H2SO4) | 77.80 | Rod-like shape | 4.52 (width) | - | [51] |
Tea leaf waste fibers | Alkaline pretreatment + acetate buffer-NaClO2-water bleaching | Acid hydrolysis (65 w% H2SO4) | 83.1 | Rod-like shape | 7.97 (width) | - | [52] |
Wheat bran | Organosolv, enzymatic, and alkaline pretreatments + NaClO2 bleaching | Acid hydrolysis (64 wt% H2SO4) | 66.67 (30 min) | Needle-like shape | 644.77 ± 225.20 (30 min) | −36.5 ± 0.8 (30 min) | [53] |
70.32 (60 min) | 568.81 ± 229.66 (60 min) | −39.8 ± 1.0 (60 min) | |||||
66.74 (30 min) | 486.18 ± 177.36 (30 min) | −39.6 ± 1.2 (30 min) | |||||
Passion fruit peels waste | Alkaline pretreatment + alkaline-peroxide bleaching | Acid hydrolysis (52 wt% H2SO4) | 77.96 | Rod-like shape | 103–173.5 | −25 to −22 | [54] |
Bamboo shoots | Alkaline pretreatment + alkaline-peroxide bleaching | Acid hydrolysis (55 wt% H2SO4) | 83.65 | Rod-like shape | - | - | [55] |
Waste cotton from hospital | NaOCl bleaching | Ultrasound-assisted acid hydrolysis (50 wt% H2SO4) | 81.23 | Spherical shape | 221 | - | [56] |
Dissolving bamboo pulp | - | Microwave-ultrasound-assisted acid hydrolysis (oxalic acid) | 78.31 | Rod-like shape | 285 (length) 17 (width) | −42.9 | [57] |
Bleached Eucalyptus Kraft pulp | - | Acid hydrolysis (62 wt% H2SO4) | 90.3 ± 0.0 | Needle-like shape | <10 (width) | - | [58] |
Enzymatic hydrolysis using Cellic CTec 2 (Novozymes) | 94.1 ± 2.7 | Needle-like shape | 6–12 (width) | ||||
Sugarcane bagasse | Steam explosion + alkaline pretreatment + alkaline-peroxide bleaching | Enzymatic hydrolysis using Cellic CTec 2 (Novozymes) | 96.5 ± 1.1 | Needle-like shape | 14–22 (width) | ||
Cotton cellulose powder | Alkaline pretreatment + NaClO2 bleaching | High-pressure homogenization | 79 ± 1 | Needle-like shape | 177.5 ± 123.7 (length) | - | [59] |
7.7 ± 3.0 (width) | |||||||
Microcrystalline cellulose | - | Subcritical water | 79.0 | Rod-like shape | 242 ± 98 (length) | - | [60] |
55 ± 20 (width) | |||||||
Eucalyptus bleached hardwood Kraft pulp | - | Ionic liquids treatment | - | Spherical shape | 123 ± 48 ([bmim][HSO4]) | −24 ± 2.5 ([bmim][HSO4]) | [61] |
77 ± 25 ([emim][Cl]) | −12 ± 6 ([emim][Cl]) | ||||||
Crown flower | Alkaline pretreatment + acetic acid-H2O2 bleaching | Solid acid-catalyzed exfoliation | 43.02 | Rod-like shape | 242.06 ± 80.79 (length) | −15.6 ± 1.4 | [42] |
8.80 ± 2.92 (width) |
Nanoparticles | Excellences | Weaknesses |
---|---|---|
LNPs |
|
|
XNPs |
|
|
CNCs |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijaya, C.J.; Ismadji, S.; Gunawan, S. A Review of Lignocellulosic-Derived Nanoparticles for Drug Delivery Applications: Lignin Nanoparticles, Xylan Nanoparticles, and Cellulose Nanocrystals. Molecules 2021, 26, 676. https://doi.org/10.3390/molecules26030676
Wijaya CJ, Ismadji S, Gunawan S. A Review of Lignocellulosic-Derived Nanoparticles for Drug Delivery Applications: Lignin Nanoparticles, Xylan Nanoparticles, and Cellulose Nanocrystals. Molecules. 2021; 26(3):676. https://doi.org/10.3390/molecules26030676
Chicago/Turabian StyleWijaya, Christian J., Suryadi Ismadji, and Setiyo Gunawan. 2021. "A Review of Lignocellulosic-Derived Nanoparticles for Drug Delivery Applications: Lignin Nanoparticles, Xylan Nanoparticles, and Cellulose Nanocrystals" Molecules 26, no. 3: 676. https://doi.org/10.3390/molecules26030676
APA StyleWijaya, C. J., Ismadji, S., & Gunawan, S. (2021). A Review of Lignocellulosic-Derived Nanoparticles for Drug Delivery Applications: Lignin Nanoparticles, Xylan Nanoparticles, and Cellulose Nanocrystals. Molecules, 26(3), 676. https://doi.org/10.3390/molecules26030676