Quantitative Evaluation of Carbon Fiber Dispersion in Amorphous Calcium Silicate Hydrate-Based Contact-Hardening Composites
Abstract
:1. Introduction
2. Raw Materials and Test Methods
2.1. Raw Materials
2.2. Preparation of Contact-Hardening Composites
2.3. Characterization of the Contact-Hardening Composites
2.4. Image Method for Fiber Distribution and Orientation
3. Results
3.1. Mechanical Properties of Contact-Hardening Composites
3.2. Electrical Resistivity of Contact-Hardening Composites
3.3. Image Analysis
3.3.1. Analysis of the Carbon Fiber Distribution
3.3.2. Analysis of the Fiber Orientation
4. Discussion
4.1. Correlation between the Electrical Resistivity and Dispersion Parameters
4.1.1. The Taipalus Model
4.1.2. Model Validation and Analysis
4.2. Correlation between Mechanical Properties and Dispersion Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Feldman, R.F.; Beaudoin, J.J. Microstructure and strength of hydrated cement. Cem. Concr. Res. 1976, 6, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Beaudoin, J.J. Comparison of mechanical properties of compacted calcium hydroxide and portland cement paste systems. Cem. Concr. Res. 1983, 13, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Sereda, P.J.; Feldman, R.F. Compacts of powdered material as porous bodies for use in sorption studies. J. Appl. Chem. 1963, 13, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Beaudoin, J.J.; Gu, P.; Myers, R.E. The Fracture of C-S-H and C-S-H/CH Mixtures. Cem. Concr. Res. 1998, 28, 341–347. [Google Scholar] [CrossRef]
- Glukhovsky, V.D.; Runova, P.F.; Маxcunov, C.E. Contact-Hardening Cementitious Materials and Compounds; Chongqing University Press: Chongqing, China, 2004. [Google Scholar]
- Pu, X.; Qin, L.; Yan, W.; Liang, J.; Wang, C.; He, G. The contact hardening performance of dispersive minerials with unstable structure. J. Chin. Ceram. Soc. 1999, 27, 133–138. [Google Scholar]
- Peng, X. Study on Synthesized Hydrated Silicate Nano Powder Binding Materials; Chongqing University: Chongqing, China, 2004. [Google Scholar]
- Glukhovski, V.V.; Glukhovski, I.V. Product performance based on contact-condensing binders as a function of pressing parameters. Ceram. Sci. Life 2020, 4, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Grasso, S.; Biesuz, M.; Zoli, L.; Taveri, G.; Duff, A.I.; Ke, D.; Jiang, A.; Reece, M.J. A review of cold sintering processes. Adv. Appl. Ceram. 2020, 119, 115–143. [Google Scholar] [CrossRef] [Green Version]
- Solonenko, A.P.; Blesman, A.I.; Polonyankin, D.A. Poorly crystallized hydroxyapatite and calcium silicate hydrate composites: Synthesis, characterization and soaking in simulated body fluid. Mater. Charact. 2020, 161, 110158. [Google Scholar] [CrossRef]
- Udawatte, C.P.; Yanagisawa, K.; Kamakura, T.; Matsumoto, Y.; Yamasaki, N. Solidification of xonotlite fibers with chitosan by hydrothermal hot pressing. Mater. Lett. 2000, 45, 298–301. [Google Scholar] [CrossRef]
- Wang, S.; Ji, G.; Peng, X.; Zhu, Z.; Sun, K. A Calcium Silicate Hydrate Based Artificial Wood and Its Prepration Method. China Patent 20191063559.8, 15 October 2019. [Google Scholar]
- Kim, J.K.; Kim, J.S.; Ha, G.J.; Kim, Y.Y. Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag. Cem. Concr. Res. 2007, 37, 1096–1105. [Google Scholar] [CrossRef]
- Cheng, H.; Hong, C.; Zhang, X.; Xue, H. Lightweight carbon-bonded carbon fiber composites with quasi-layered and network structure. Mater. Des. 2015, 86, 156–159. [Google Scholar] [CrossRef]
- Ji, G.; Peng, X.; Wang, S.; Sun, K. A Type of Amorphous Calcium Silicate Hydrate Based Electrothermal Material and Its Preparation Method. China Patent 202010505527.5, 23 October 2020. [Google Scholar]
- Faneca, G.; Ikumi, T.; Torrents, J.M.; Aguado, A.; Segura, I. Conductive concrete made from recycled carbon fibres for self-heating and de-icing applications in urban furniture. Mater. Constr. 2020, 70, e223-1. [Google Scholar] [CrossRef]
- Gao, J.; Sha, A.; Wang, Z.; Hu, L.; Yun, D.; Liu, Z.; Huang, Y. Characterization of carbon fiber distribution in cement-based composites by Computed Tomography. Constr. Build. Mater. 2018, 177, 134–147. [Google Scholar] [CrossRef]
- Moghadas Nejad, F.; Vadood, M.; Baeetabar, S. Investigating the mechanical properties of carbon fibre-reinforced asphalt concrete. Road Mater. Pavement Des. 2014, 15, 465–475. [Google Scholar] [CrossRef]
- Woo, L.Y.; Wansom, S.; Ozyurt, N.; Mu, B.; Shah, S.P.; Mason, T.O. Characterizing fiber dispersion in cement composites using AC-Impedance Spectroscopy. Cem. Concr. Compos. 2005, 27, 627–636. [Google Scholar] [CrossRef]
- Nutt, S.; Hull], D. Direct observation and measurement of fiber architecture in short fiber-polymer composite foam through micro-CT imaging. Compos. Sci. Technol. 2004, 64, 2113–2120. [Google Scholar]
- Ferrara, L.; Faifer, M.; Toscani, S. A magnetic method for non destructive monitoring of fiber dispersion and orientation in steel fiber reinforced cementitious composites-part 1: Method calibration. Mater. Struct. 2012, 45, 575–589. [Google Scholar] [CrossRef]
- Boulekbache, B.; Hamrat, M.; Chemrouk, M.; Amziane, S. Flowability of fibre reinforced concrete and its Effect on the Mechanical Properties. Constr. Build. Mater. 2010, 24, 1664–1671. [Google Scholar] [CrossRef]
- Campbell, A.; Murray, P.; Yakushina, E.; Marshall, S.; Ion, W. New methods for automatic quantification of microstructural features using digital image processing. Mater. Des. 2017, 141, 395–406. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.-T.; Kim, J.-K. The relation between fiber orientation and tensile behavior in Ultra High Performance Fiber Reinforced Cementitious Composites (UHPFRCC). Cem. Concr. Res. 2011, 41, 1001–1014. [Google Scholar] [CrossRef]
- Cao, M.; Mao, Y.; Khan, M.; Si, W.; Shen, S. Different testing methods for assessing the synthetic fiber distribution in cement-based composites. Constr. Build. Mater. 2018, 184, 128–142. [Google Scholar] [CrossRef]
- Lataste, J.F.; Behloul, M.; Breysse, D. Characterisation of fibres distribution in a steel fibre reinforced concrete with electrical resistivity measurements. NDT E Int. 2008, 41, 638–647. [Google Scholar] [CrossRef]
- Lee, B.Y.; Kim, J.K.; Kim, J.S.; Kim, Y.Y. Quantitative evaluation technique of Polyvinyl Alcohol (PVA) fiber dispersion in engineered cementitious composites. Cem. Concr. Compos. 2009, 31, 408–417. [Google Scholar] [CrossRef]
- Kang, S.T.; Lee, B.Y.; Kim, J.K.; Kim, Y.Y. The effect of fibre distribution characteristics on the flexural strength of steel fibre-reinforced ultra high strength concrete. Constr. Build. Mater. 2011, 25, 2450–2457. [Google Scholar] [CrossRef]
- Wang, S.; Peng, X.; Tao, Z.; Tang, L.; Zeng, L. Influence of drying conditions on the contact-hardening behaviours of calcium silicate hydrate powder. Constr. Build. Mater. 2017, 136, 465–473. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry; Thomas Telford: London, UK, 1997. [Google Scholar]
- Yang, N.; Yue, W. The Handbook of Inorganic Metalloid Materials Atlas; Wuhan University of Technolgy Press: Wuhan, China, 2000. [Google Scholar]
- Wang, S.; Peng, X.; Tang, L.; Cao, C.; Zeng, L. Contact-Hardening Behavior of Calcium Silicate Hydrate Powders. Materials 2018, 11, 2367. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Yang, K.; Yang, C. An alternative admixture to reduce sorptivity of alkali-activated slag cement by optimising pore structure and introducing hydrophobic film. Cem. Concr. Compos. 2018, 95, 183–192. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histogram. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Bosman, T.; Kearsley, E.P. The influence of fibre spatial characteristics on the flexural performance of SFRC. Mater. Struct. 2019, 52, 51. [Google Scholar] [CrossRef]
- Mathur, N.; Mathur, S.; Mathur, D. A Novel Approach to Improve Sobel Edge Detector. Procedia Comput. Sci. 2016, 93, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.; Yu, R.; Shui, Z.; Wang, X.; Rao, S.; Lin, Z. Optimization of fibre orientation and distribution for a sustainable Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): Experiments and mechanism analysis. Constr. Build. Mater. 2018, 169, 8–19. [Google Scholar] [CrossRef]
- Jia, Y.; Li, K.; Xue, L.; Ren, J.; Zhang, S.; Zhang, X. Microstructure and mechanical properties of carbon fiber reinforced multilayered (PyC–SiC) n matrix composites. Mater. Des. 2015, 86, 55–60. [Google Scholar] [CrossRef]
- Zhan, S.L.; Wang, L. Research on the conductivity of carbon fiber conductive mortar used in sacrificial anode method. Water Transp. 2013, 1, 58–59. [Google Scholar]
- Zhang, P.; Bin, Y.; Zhang, R.; Matsuo, M. Joule heat dependence of dynamic tensile modulus of polyimide-vapor grown carbon fiber nanocomposites under applied electric field evaluated in terms of thermal fluctuation-induced tunneling effect. Polymer 2014, 55, 2597–2608. [Google Scholar] [CrossRef]
- Han, J.; Wang, K.; Wang, X.; Monteiro, P.J.M. 2D image analysis method for evaluating coarse aggregate characteristic and distribution in concrete. Constr. Build. Mater. 2016, 127, 30–42. [Google Scholar] [CrossRef]
- Kittler, J. On the accuracy of the Sobel edge detector. Image Vis. Comput. 1983, 1, 37–42. [Google Scholar] [CrossRef]
- Ding, C.; Guo, L.; Chen, B. Orientation distribution of polyvinyl alcohol fibers and its influence on bridging capacity and mechanical performances for high ductility cementitious composites. Constr. Build. Mater. 2020, 247, 118491. [Google Scholar] [CrossRef]
- Batchelor, G.K.; O’Brien, R.W. Thermal or Electrical Conduction Through a Granular Material. Proc. R. Soc. Lond. Ser. A 1977, 355, 313. [Google Scholar] [CrossRef]
- Weber, M.; Kamal, M.R. Estimation of the volume resistivity of electrically conductive composites. Polym. Compos. 1997, 18, 711–725. [Google Scholar] [CrossRef]
- Taipalus, R.; Harmia, T.; Zhang, M.Q.; Friedrich, K. The electrical conductivity of carbon-fibre-reinforced polypropylene/polyaniline complex-blends: Experimental characterisation and modelling. Compos. Sci. Technol. 2001, 61, 801–814. [Google Scholar] [CrossRef]
- Radzuan, N.A.M.; Sulong, A.B.; Somalu, M.R.; Husaini, T.; Majlan, E.H.; Rosli, M.I. Carbon Fibre Reinforced Polypropylene: An Electrical Conductivity Model. Key Eng. Mater. 2018, 791, 29–34. [Google Scholar] [CrossRef]
- Férec, J.; Bertevas, E.; Khoo, B.C.; Ausias, G.; Phan-Thien, N. Thermal or electrical bulk properties of rod-filled composites. Int. J. Eng. Sci. 2018, 133, 219–230. [Google Scholar] [CrossRef]
- Liao, Z.; Zhang, K.; Yang, W.; Fan, J.; Xing, T. Effect of h-BN Amount on the Performance of Thermally Conductive and Insulating h-BN/MVQ Composites. Polym. Mater. Sci. Eng. 2016, 32, 65–70. [Google Scholar]
- Weber, M. The Processing and Properties of Electrically Conductive Fiber Composites; McGill University: Montreal, QC, Canada, 1995. [Google Scholar]
- Taherian, R.; Hadianfard, M.J.; Golikand, A.N. A new equation for predicting electrical conductivity of carbon-filled polymer composites used for bipolar plates of fuel cells. J. Appl. Polym. Sci. 2013, 128, 1497–1509. [Google Scholar] [CrossRef]
Length (mm) | Diameter (μm) | Density (kg/m3) | Aspect Ratio | Tensile Strength (GPa) | Young’s Modulus (GPa) | Electrical Resistivity (Ω·cm) |
---|---|---|---|---|---|---|
10 | 40 | 1650 | 2500 | 1.95 | 150 | 290 |
Mix No. | Vf (%) | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | Xtotal |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.5 | 61 | 50 | 37 | 22 | 56 | 62 | 9 | 20 | 75 | 392 |
2 | 1.0 | 95 | 72 | 134 | 49 | 44 | 76 | 44 | 54 | 73 | 641 |
3 | 2.0 | 146 | 142 | 146 | 123 | 96 | 47 | 132 | 151 | 197 | 1180 |
4 | 3.0 | 133 | 440 | 85 | 128 | 89 | 133 | 203 | 148 | 237 | 1596 |
5 | 4.0 | 105 | 71 | 270 | 71 | 317 | 186 | 265 | 387 | 351 | 2023 |
Fiber Content | θ (°) | cosθ | Vp (%) | k | b | Residual (Ω·cm) | R2 | ||
---|---|---|---|---|---|---|---|---|---|
2.0 wt.% | 46.2 | 0.692 | 2.0 | 4.91 × 10−4 | −4.63 × 10−5 | 2480 | 2550 | 70 | 0.976 |
3.0 wt.% | 44.6 | 0.712 | 3.0 | 4.91 × 10−4 | −4.63 × 10−5 | 1222 | 1250 | 28 | 0.976 |
4.0 wt.% | 45.8 | 0.697 | 4.0 | 4.91 × 10−4 | −4.63 × 10−5 | 1007 | 1000 | 7 | 0.976 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, G.; Xiong, G.; Peng, X.; Wang, S.; Wang, C.; Sun, K.; Zeng, L. Quantitative Evaluation of Carbon Fiber Dispersion in Amorphous Calcium Silicate Hydrate-Based Contact-Hardening Composites. Molecules 2021, 26, 726. https://doi.org/10.3390/molecules26030726
Ji G, Xiong G, Peng X, Wang S, Wang C, Sun K, Zeng L. Quantitative Evaluation of Carbon Fiber Dispersion in Amorphous Calcium Silicate Hydrate-Based Contact-Hardening Composites. Molecules. 2021; 26(3):726. https://doi.org/10.3390/molecules26030726
Chicago/Turabian StyleJi, Guangxiang, Guangqi Xiong, Xiaoqin Peng, Shuping Wang, Chong Wang, Keke Sun, and Lu Zeng. 2021. "Quantitative Evaluation of Carbon Fiber Dispersion in Amorphous Calcium Silicate Hydrate-Based Contact-Hardening Composites" Molecules 26, no. 3: 726. https://doi.org/10.3390/molecules26030726
APA StyleJi, G., Xiong, G., Peng, X., Wang, S., Wang, C., Sun, K., & Zeng, L. (2021). Quantitative Evaluation of Carbon Fiber Dispersion in Amorphous Calcium Silicate Hydrate-Based Contact-Hardening Composites. Molecules, 26(3), 726. https://doi.org/10.3390/molecules26030726