Phytochemical Investigation and Antioxidant Activity of Globularia alypum L.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Phenolic Compounds
2.2. Antioxidant Activity
2.3. GC-MS Analyses
2.4. Phytochemical Profile by HPLC-DAD-ESI/MS
3. Materials and Methods
3.1. Samples
3.2. Chemical Reagents and Solvents
3.3. Preparation of Crude Extracts
3.4. Analysis and Quantification of Phenolic Contents
3.5. Determination of Antioxidant Activity
3.5.1. 2,2-Diphenyl-1-picrylhydrazyl Radical (DPPH) Free Radical-Scavenging Assay
3.5.2. 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic) Acid (ABTS) Radical Scavenging Activity
3.5.3. Ferric Reducing Power Determination
3.6. GC-MS
3.7. HPLC-DAD/ESI-MS
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef] [PubMed]
- Miliauskas, G.; Venskutonis, P.R.; Van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Auten, R.L.; Davis, J.M. Oxygen toxicity and reactive oxygen species: The devil is in the details. Pediatr. Res. 2009, 66, 121–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satoh, T. Astaxanthin: Health Benefits and Toxicity in Nutraceuticals; Elsevier: Amsterdam, The Netherlands, 2016; pp. 531–539. [Google Scholar]
- Farhan, H.; Malli, F.; Rammal, H.; Hijazi, A.; Bassal, A.; Ajouz, N.; Badran, B. Phytochemical screening and antioxidant activity of Lebanese Eryngium creticum L. Asian Pac. J. Trop. Biomed. 2012, 2, S1217–S1220. [Google Scholar] [CrossRef]
- Rammal, H.; Bouayed, J.; Younos, C.; Soulimani, R. The impact of high anxiety level on the oxidative status of mouse peripheral blood lymphocytes, granulocytes and monocytes. Eur. J. Pharmacol. 2008, 589, 173–175. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Kuo, Y.-H.; Chang, H.-N.; Kang, P.-L. Profiling and characterization antioxidant activities in Anoectochilus formosanus Hayata. J. Agric. Food Chem. 2002, 50, 1859–1865. [Google Scholar] [CrossRef]
- Farhan, H.; Rammal, H.; Hijazi, A.; Daher, A.; Reda, M.; Annan, H.; Chokr, A.; Bassal, A.; Badran, B. Chemical composition and antioxidant activity of a Lebanese plant Euphorbia macroclada schyzoceras. Asian Pac. J. Trop. Biomed. 2013, 3, 542–548. [Google Scholar] [CrossRef] [Green Version]
- Andersen, O.M.; Markham, K.R. Flavonoids: Chemistry, Biochemistry and Applications; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Hammiche, V.; Merad, R.; Azzouz, M. Plantes Toxiques à Usage Médicinal du Pourtour Méditerranéen; Springer: Paris, France, 2013. [Google Scholar]
- Jouad, H.; Haloui, M.; Rhiouani, H.; El Hilaly, J.; Eddouks, M. Ethnobotanical survey of medicinal plants used for the treatment of diabetes, cardiac and renal diseases in the North centre region of Morocco (Fez–Boulemane). J. Ethnopharmacol. 2001, 77, 175–182. [Google Scholar] [CrossRef]
- Boudjelal, A.; Henchiri, C.; Sari, M.; Sarri, D.; Hendel, N.; Benkhaled, A.; Ruberto, G. Herbalists and wild medicinal plants in M’Sila (North Algeria): An ethnopharmacology survey. J. Ethnopharmacol. 2013, 148, 395–402. [Google Scholar] [CrossRef]
- Telli, A.; Esnault, M.-A.; Khelil, A.O.E.H. An ethnopharmacological survey of plants used in traditional diabetes treatment in south-eastern Algeria (Ouargla province). J. Arid Environ. 2016, 127, 82–92. [Google Scholar] [CrossRef]
- Athmouni, K.; Belghith, T.; El Fek, A.; Ayadi, H. Phytochemical composition and antioxidant activity of extracts of some medicinal plants in Tunisia. Int. J. Pharmacol. Toxicol. 2016, 4, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Chograni, H.; Riahi, L.; Zaouali, Y.; Boussaid, M. Polyphenols, flavonoids, antioxidant activity in leaves and flowers of Tunisian Globularia alypum L. (Globulariaceae). Afr. J. Ecol. 2013, 51, 343–347. [Google Scholar] [CrossRef]
- Khantouche, L.; Guesmi, F.; Motri, S.; Mejri, M.; Abderabba, M. Nutritional Composition, Analysis of Secondary Metabolites and Antioxidative Effects of the Leaves of Globularia alypum L. Indian J. Pharm. Sci. 2018, 80, 274–281. [Google Scholar] [CrossRef]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Krimat, S.; Tahar, D.; Lynda, L.; Saida, B.; Chabane, C.; Hafidha, M. Antioxidant and antimicrobial activities of selected medicinal plants from Algeria. J. Coast. Life Med. 2014, 2, 478–483. [Google Scholar]
- Tiss, M.; Souiy, Z.; Achour, L.; Hamden, K. Anti-obesity, anti-hyperglycaemic, anti-antipyretic and analgesic activities of Globularia alypum extracts. Arch. Physiol. Biochem. 2020, 1–8. [Google Scholar] [CrossRef]
- Taghzouti, O.K.; Balouirib, M.; Ouedrhiric, W.; Chahadd, A.E.; Romanea, A. In vitro evaluation of the antioxidant and antimicrobial effects of Globularia alypum L. extracts. J. Mater. Environ. Sci. 2016, 7, 1988–1995. [Google Scholar]
- Kumaran, A. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem. 2006, 97, 109–114. [Google Scholar] [CrossRef]
- Touaibia, M.; Chaouch, F.Z. Global chemical composition and antioxidative effect of the ethanol extracts prepared from Globularia alypum leaves. Nat. Technol. 2016, 14, 2. [Google Scholar]
- Feriani, A.; Del Mar Contreras, M.; Talhaoui, N.; Gomez Caravaca, A.M. Protective effect of Globularia alypum leaves against deltamethrin-induced nephrotoxicity in rats and determination of its bioactive compounds using high-performance liquid chromatography coupled with electrospray ionization tandem quadrupole–time-of-flight mass spectrometry. J. Funct. Foods 2017, 32, 139–148. [Google Scholar]
- Es-Safi, N.-E.; Khlifi, S.; Kerhoas, L.; Kollmann, A.; El Abbouyi, A.; Ducrot, P.-H. Antioxidant constituents of the aerial parts of Globularia a Lypum growing in Morocco. J. Nat. Prod. 2005, 68, 1293–1296. [Google Scholar] [CrossRef] [PubMed]
- Es-Safi, N.-E.; Kerhoas, L.; Ducrot, P.H. Fragmentation study of globularin through positive and negative ESI/MS, CID/MS, and tandem MS/MS. Spectrosc. Lett. 2007, 40, 695–714. [Google Scholar] [CrossRef]
- Es-Safi, N.-E.; Khlifi, S.; Kollmann, A.; Kerhoas, L.; El Abbouyi, A.; Ducrot, P.-H. Iridoid glucosides from the aerial parts of Globularia alypum L. (Globulariaceae). Chem. Pharm. Bull. 2006, 54, 85–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Cadi, H.; El Cadi, A.; Kounnoun, A.; Oulad El Majdoub, Y.; Lovillo, M.P.; Brigui, J.; Dugo, P.; Mondello, L.; Cacciola, F. Wild strawberry (Arbutus unedo): Phytochemical screening and antioxidant properties of fruits collected in northern Morocco. Arab. J. Chem. 2020, 13, 6299–6311. [Google Scholar] [CrossRef]
- Amessis-Ouchemoukh, N.; Abu-Reidah, I.M.; Quirantes-Piné, R.; Rodríguez-Pérez, C.; Madani, K.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Tentative characterisation of iridoids, phenylethanoid glycosides and flavonoid derivatives from Globularia alypum L. (Globulariaceae) leaves by LC-ESI-QTOF-MS. Phytochem. Anal. 2014, 25, 389–398. [Google Scholar] [CrossRef]
- Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 1927, 73, 627–650. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Hatano, T.; Kagawa, H.; Yasuhara, T.; Okuda, T. Two new flavonoids and other constituents in licorice root: Their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 1988, 36, 2090–2097. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Oyaızu, M. Studies on product of browning reaction prepared from glucose amine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Oulad El Majdoub, Y.; Alibrando, F.; Cacciola, F.; Arena, K.; Pagnotta, E.; Matteo, R.; Micalizzi, G.; Dugo, L.; Dugo, P.; Mondello, L. Chemical Characterization of Three Accessions of Brassica juncea L. Extracts from Different Plant Tissues. Molecules 2020, 25, 5421. [Google Scholar] [CrossRef]
- Arena, K.; Cacciola, F.; Rigano, F.; Dugo, P.; Mondello, L. Evaluation of matrix effect in one-dimensional and comprehensive two-dimensional liquid chromatography for the determination of the phenolic fraction in extra virgin olive oils. J. Sep. Sci. 2020, 43, 1781–1789. [Google Scholar] [CrossRef]
- Arena, K.; Cacciola, F.; Mangraviti, D.; Zoccali, M.; Rigano, F.; Marino, N.; Dugo, P.; Mondello, L. Determination of the polyphenolic fraction of Pistacia vera L. kernel extracts by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry detection. Anal. Bioanal. Chem. 2019, 411, 4819–4829. [Google Scholar] [CrossRef]
Plant Extracts | Polyphenols (µg GAE/mg of Extract) | Flavonoids (µg CE/mg of Extract) |
---|---|---|
Ethyl acetate | 56.5 ± 0.61 | 30.2 ± 0.55 |
Chloroform | 18.9 ± 0.48 | 18.0 ± 0.36 |
Antioxidant Properties (Mean IC50 Value µg/mL ± Standard Deviation) | |||
---|---|---|---|
Plant Extracts | DPPH | ABTS | Reducing Power (mg AAE/g DW) |
Ethyl acetate | 12.3 ± 3.83 | 37.0 ± 2.45 | 531.1 ± 1.08 |
Chloroform | 69.8 ± 1.89 | 114.6 ± 0.63 | 473.2 ± 1.88 |
Peak | Compound | Similarity % | LRI (lib) | LRI (exp) | Area % | Library |
---|---|---|---|---|---|---|
1 | Pimelic ketone | 98 | 901 | 898 | 0.45 | FFNSC 4.0 |
2 | n-Hexanoic acid | 95 | 997 | 975 | 0.01 | FFNSC 4.0 |
3 | p-Cymene | 90 | 1025 | 1025 | 0.01 | FFNSC 4.0 |
4 | Benzyl alcohol | 96 | 1040 | 1036 | 0.02 | FFNSC 4.0 |
5 | γ-Terpinene | 93 | 1058 | 1058 | 0.02 | FFNSC 4.0 |
6 | (Z)-Sabinene hydrate | 91 | 1069 | 1071 | 0.01 | FFNSC 4.0 |
7 | Linalool | 94 | 1101 | 1100 | 0.03 | FFNSC 4.0 |
8 | (E)-Sabinene hydrate | 92 | 1099 | 1102 | 0.02 | FFNSC 4.0 |
9 | n-Nonanal | 92 | 1107 | 1106 | 0.01 | FFNSC 4.0 |
10 | Maltol | 91 | 1108 | 1111 | 0.03 | FFNSC 4.0 |
11 | Borneol | 95 | 1173 | 1174 | 0.03 | FFNSC 4.0 |
12 | Terpinen-4-ol | 92 | 1184 | 1182 | 0.03 | FFNSC 4.0 |
13 | 2-(2-butoxyethoxy)-Ethanol | 95 | 1192 | 1186 | 0.03 | W11N17 |
14 | p-Menth-3-en-7-al | 91 | 1195 | 1197 | 0.24 | FFNSC 4.0 |
15 | n-Decanal | 90 | 1208 | 1207 | 0.02 | FFNSC 4.0 |
16 | 3-ethyl-4-methyl-1H-Pyrrole-2,5-dione | 90 | 1234 | 1235 | 0.01 | W11N17 |
17 | Cuminaldehyde | 95 | 1243 | 1246 | 2.75 | FFNSC 4.0 |
18 | n-Nonanoic acid | 93 | 1289 | 1269 | 0.03 | FFNSC 4.0 |
19 | Phellandral | 92 | 1277 | 1280 | 0.01 | FFNSC 4.0 |
20 | α-Terpinen-7-al | 98 | 1287 | 1289 | 0.91 | FFNSC 4.0 |
21 | γ-Terpinen-7-al | 91 | 1292 | 1294 | 1.21 | FFNSC 4.0 |
22 | p-Mentha-1,4-dien-7-ol | 91 | 1327 | 1332 | 0.04 | FFNSC 4.0 |
23 | δ-Elemene | 94 | 1335 | 1336 | 0.03 | FFNSC 4.0 |
24 | Eugenol | 95 | 1357 | 1355 | 0.48 | FFNSC 4.0 |
25 | 2,6-dimethyl-2,7-Octadiene-1,6-diol | 93 | 1367 | 1364 | 0.05 | W11N17 |
26 | α-Copaene | 96 | 1375 | 1377 | 0.16 | FFNSC 4.0 |
27 | β-Elemene | 90 | 1390 | 1391 | 0.03 | FFNSC 4.0 |
28 | Vanillin | 90 | 1394 | 1399 | 0.01 | FFNSC 4.0 |
29 | (E)-Caryophyllene | 96 | 1424 | 1421 | 1.08 | FFNSC 4.0 |
30 | (E)-Cinnamic acid | 96 | 1454 | 1443 | 1.52 | FFNSC 4.0 |
31 | (E)-, β-Farnesene | 92 | 1452 | 1453 | 0.01 | FFNSC 4.0 |
32 | α-Humulene | 95 | 1454 | 1457 | 0.06 | FFNSC 4.0 |
33 | α-Curcumene | 91 | 1480 | 1482 | 0.51 | FFNSC 4.0 |
34 | α-Zingiberene | 91 | 1496 | 1496 | 0.61 | FFNSC 4.0 |
35 | (E,E)-, α-Farnesene | 96 | 1504 | 1505 | 0.09 | FFNSC 4.0 |
36 | β-Bisabolene | 94 | 1508 | 1509 | 0.37 | FFNSC 4.0 |
37 | γ-Cadinene | 95 | 1512 | 1516 | 0.09 | FFNSC 4.0 |
38 | Cubebol | 89 | 1419 | 1518 | 0.02 | FFNSC 4.0 |
39 | δ-Cadinene | 93 | 1518 | 1521 | 0.22 | FFNSC 4.0 |
40 | β-Sesquiphellandrene | 94 | 1523 | 1525 | 0.55 | FFNSC 4.0 |
41 | (R)-5,6,7,7a-Tetrahydro-4,4,7a-trimethyl- 2(4H)-benzofuranone | 93 | 1525 | 1532 | 0.15 | W11N17 |
42 | n-Dodecanoic acid | 95 | 1570 | 1565 | 0.17 | FFNSC 4.0 |
43 | Caryophyllene oxide | 92 | 1587 | 1585 | 0.09 | FFNSC 4.0 |
44 | n-Hexadecane | 93 | 1600 | 1599 | 0.04 | FFNSC 4.0 |
45 | ar-Tumerone | 97 | 1668 | 1666 | 0.37 | FFNSC 4.0 |
46 | n-Heptadecane | 91 | 1699 | 1700 | 0.05 | FFNSC 4.0 |
47 | n-Tetradecanoic acid | 90 | 1773 | 1766 | 1.28 | FFNSC 4.0 |
48 | Octadec-1-ene | 95 | 1793 | 1793 | 0.03 | FFNSC 4.0 |
49 | n-Octadecane | 96 | 1800 | 1799 | 0.04 | FFNSC 4.0 |
50 | Neophytadiene | 95 | 1836 | 1836 | 0.45 | FFNSC 4.0 |
51 | methyl-Hexadecanoate | 93 | 1925 | 1926 | 0.12 | FFNSC 4.0 |
52 | n-Hexadecanoic acid | 92 | 1977 | 1974 | 13.55 | FFNSC 4.0 |
53 | isopropyl-Hexadecanoate | 93 | 2023 | 2023 | 0.04 | FFNSC 4.0 |
54 | n-Heptadecanoic acid | 91 | 2065 | 2065 | 0.26 | W11N17 |
55 | Phytol | 96 | 2111 | 2111 | 0.56 | FFNSC 4.0 |
56 | Linoleic acid | 92 | 2144 | 2146 | 11.58 | FFNSC 4.0 |
57 | Oleic acid | 90 | 2142 | 2153 | 12.98 | FFNSC 4.0 |
58 | Stearic acid | 90 | 2165 | 2171 | 3.93 | FFNSC 4.0 |
59 | n-Docosane | 95 | 2200 | 2200 | 0.05 | FFNSC 4.0 |
60 | n-Tricosane | 94 | 2300 | 2300 | 0.2 | FFNSC 4.0 |
61 | n-Tetracosane | 94 | 2400 | 2399 | 0.44 | FFNSC 4.0 |
62 | Behenyl alcohol | 98 | 2493 | 2496 | 0.11 | FFNSC 4.0 |
63 | n-Pentacosane | 93 | 2500 | 2500 | 1.23 | FFNSC 4.0 |
64 | n-Hexacosane | 94 | 2600 | 2599 | 1.01 | FFNSC 4.0 |
65 | Octocrylene | 92 | 2658 | 2654 | 0.03 | FFNSC 4.0 |
66 | n-Heptacosane | 92 | 2700 | 2700 | 2.64 | FFNSC 4.0 |
67 | n-Octacosane | 93 | 2800 | 2799 | 1.17 | FFNSC 4.0 |
68 | n-Nonacosane | 90 | 2900 | 2900 | 4.2 | FFNSC 4.0 |
69 | n-Triacontane | 91 | 3000 | 2999 | 0.84 | FFNSC 4.0 |
70 | n-Hentriacontane | 90 | 3100 | 3100 | 1.59 | FFNSC 4.0 |
71 | Vitamin E | 94 | 3138 | 3133 | 4.23 | W11N17 |
72 | n-Dotriacontane | 91 | 3200 | 3199 | 0.22 | FFNSC 4.0 |
73 | γ-Sitosterol | 95 | 3351 | 3325 | 4.13 | W11N17 |
TOTAL IDENTIFIED | 79.59 |
Peak | tR (min) | λMAX (nm) | m/z | Fragments | Tentative Identification | Detection | Concentration (mg/100 g) |
---|---|---|---|---|---|---|---|
1 | 1.74 | 240 | 191 | - | Quinic acid | DAD/MS | - |
2 | 5.81 | 270 | 169 | - | Gallic acid | DAD/MS | 4.3 ± 0.12 |
3 | 18.58 | 274 | 197 | - | Gallic acid ethyl ester | DAD/MS | 4.2 ± 0.20 |
4 | 19.33 | 272 | 373 | 392 | Gardoside/geniposidic acid | DAD/MS | - |
5 | 22.22 | 253–361 | 463 | 301 | Quercetin glucoside | DAD/MS | 4.7 ± 0.20 |
6 | 25.37 | 277 | 468 | - | Unknown | - | - |
7 | 25.92 | 274 | 489 | - | Acetylbarlerin | DAD/MS | - |
8 | 27.04 | 253–356 | 447 | 301 | Quercetin rhamnoside | DAD/MS | 14.5 ± 1.20 |
9 | 27.67 | 271–351 | 507 | 285 | Kaempferol derivative | DAD/MS | 10.8 ± 0.50 |
10 | 28.79 | 283 | 505 | 301 | Quercetin acetyl hexoside | DAD/MS | 0.3 ± 0.01 |
11 | 30.18 | 215–279 | 469 | - | Unknown | DAD/MS | - |
12 | 30.69 | 271 | 503 | - | Serratoside | DAD/MS | - |
13 | 31.18 | 268–350 | 477 | - | Calceolarioside | DAD/MS | - |
14 | 31.40 | 256–346 | 447 | 301 | Quercetin glucoside | DAD/MS | 7.8 ± 0.30 |
15 | 33.03 | 275 | 641 | 320 | Unknown | - | - |
16 | 34.44 | 277 | 517 | - | Phellamurin | DAD/MS | - |
17 | 36.96 | 221–283 | 525 | - | Unknown | - | - |
18 | 37.60 | 226–269 | 527 | - | Globularioside/baldaccioside | DAD/MS | - |
19 | 38.57 | 335–371 | 543 | - | Unknown | DAD/MS | - |
20 | 38.92 | 230–324 | 513 | - | Unknown | DAD/MS | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asraoui, F.; Kounnoun, A.; Cadi, H.E.; Cacciola, F.; Majdoub, Y.O.E.; Alibrando, F.; Mandolfino, F.; Dugo, P.; Mondello, L.; Louajri, A. Phytochemical Investigation and Antioxidant Activity of Globularia alypum L. Molecules 2021, 26, 759. https://doi.org/10.3390/molecules26030759
Asraoui F, Kounnoun A, Cadi HE, Cacciola F, Majdoub YOE, Alibrando F, Mandolfino F, Dugo P, Mondello L, Louajri A. Phytochemical Investigation and Antioxidant Activity of Globularia alypum L. Molecules. 2021; 26(3):759. https://doi.org/10.3390/molecules26030759
Chicago/Turabian StyleAsraoui, Fadoua, Ayoub Kounnoun, Hafssa El Cadi, Francesco Cacciola, Yassine Oulad El Majdoub, Filippo Alibrando, Filippo Mandolfino, Paola Dugo, Luigi Mondello, and Adnane Louajri. 2021. "Phytochemical Investigation and Antioxidant Activity of Globularia alypum L." Molecules 26, no. 3: 759. https://doi.org/10.3390/molecules26030759
APA StyleAsraoui, F., Kounnoun, A., Cadi, H. E., Cacciola, F., Majdoub, Y. O. E., Alibrando, F., Mandolfino, F., Dugo, P., Mondello, L., & Louajri, A. (2021). Phytochemical Investigation and Antioxidant Activity of Globularia alypum L. Molecules, 26(3), 759. https://doi.org/10.3390/molecules26030759