TEMPO-Oxidized Cellulose Beads as Potential pH-Responsive Carriers for Site-Specific Drug Delivery in the Gastrointestinal Tract
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Carboxylate Content
2.2. Morphological Analysis
2.3. Swelling Analysis
2.4. Modulated Differential Scanning Calorimetry (mDSC) and X-ray Powder Diffraction (XRPD) Analysis of IND and FNB-Loaded OCBs
2.5. In Vitro Release Results
2.5.1. IND-Loaded OCBs
2.5.2. FNB-Loaded OCBs
2.6. Kinetics of the Drug Release
3. Materials and Methods
3.1. Materials
3.2. Oxidation of Mesoporous Cellulose Beads
3.3. Determination of Carboxylate Content
3.4. Freeze-Drying
3.5. Characterization of Beads
3.5.1. Scanning Electron Microscopy (SEM)
3.5.2. Nitrogen Physisorption and Calculation
3.5.3. Swelling Analysis
3.6. Drug Loading
3.7. Solid-State Characterization
3.7.1. Modulated Differential Scanning Calorimetry (mDSC)
3.7.2. X-ray Powder Diffraction (XRPD)
3.8. In Vitro Drug Release Testing
3.9. Drug Release Kinetics
3.10. Statistical Analysis of Drug Release Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Frima, H.J.; Gabellieri, C.; Nilsson, M.I. Drug delivery research in the European Union’s Seventh Framework Program for Research. J. Control. Release 2012, 161, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Langer, R.S.; Peppas, N.A. Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials 1981, 2, 201–214. [Google Scholar] [CrossRef]
- Siegel, R.A. Stimuli sensitive polymers and self-regulated drug delivery systems: A very partial review. J. Control. Release 2014, 190, 337–351. [Google Scholar] [CrossRef] [Green Version]
- Fallingborg, J. Intraluminal pH of the human gastrointestinal tract. Dan. Med. Bull. 1999, 46, 183–196. [Google Scholar]
- Gupta, P.; Vermani, K.; Garg, S. Hydrogels: From controlled release to pH-responsive drug delivery. Drug Discov. Today 2002, 7, 569–579. [Google Scholar] [CrossRef]
- Seeli, D.S.; Prabaharan, M. Guar gum oleate-graft-poly (methacrylic acid) hydrogel as a colon-specific controlled drug delivery carrier. Carbohydr. Polym. 2017, 158, 51–57. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Yuan, Z. Chitosan cross-linked poly (acrylic acid) hydrogels: Drug release control and mechanism. Colloids Surf. B 2017, 152, 252–259. [Google Scholar] [CrossRef] [Green Version]
- García-González, C.A.; Alnaief, M.; Smirnova, I. Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems. Carbohydr. Polym. 2011, 86, 1425–1438. [Google Scholar] [CrossRef]
- Liu, Z.; Jiao, Y.; Wang, Y. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev. 2008, 60, 1650–1662. [Google Scholar] [CrossRef]
- Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem. Rev. 2010, 110, 3479–3500. [Google Scholar] [CrossRef] [PubMed]
- Hickey, R.J.; Pelling, A.E. Cellulose biomaterials for tissue engineering. Front. Bioeng. Biotechnol. 2019, 7, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, L.; Yang, M.; Chen, H. Preparation of a poly (ionic liquid)-functionalized cellulose aerogel and its application in protein enrichment and separation. Carbohydr. Polym. 2019, 218, 154–162. [Google Scholar] [CrossRef]
- Hakkarainen, T.; Koivuniemi, R.; Kosonen, M. Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J. Control. Release 2016, 244, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Yildir, E.; Kolakovic, R.; Genina, N. Tailored beads made of dissolved cellulose—Investigation of their drug release properties. Int. J. Pharm. 2013, 456, 417–423. [Google Scholar] [CrossRef]
- Trygg, J.; Fardim, P.; Gericke, M. Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohydr. Polym. 2013, 93, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, R.; Saito, T.; Isogai, A. Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8. Int. J. Biol. Macromol. 2012, 51, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Hirota, M.; Tamura, N. Oxidation of bleached wood pulp by TEMPO/NaClO/NaClO2 system: Effect of the oxidation conditions on carboxylate content and degree of polymerization. J. Wood Sci. 2010, 56, 227–232. [Google Scholar] [CrossRef]
- Trivedi, P.; Trygg, J.; Saloranta, T. Synthesis of novel zwitterionic cellulose beads by oxidation and coupling chemistry in water. Cellulose 2016, 23, 1751–1761. [Google Scholar] [CrossRef]
- Zhao, S.; Malfait, W.J.; Guerrero-Alburquerque, N. Biopolymer aerogels and foams: Chemistry, properties, and applications. Angew. Chem. Int. Ed. 2018, 57, 7580–7608. [Google Scholar] [CrossRef]
- Borisova, A.; De Bruyn, M.; Budarin, V.L. A sustainable freeze-drying route to porous polysaccharides with tailored hierarchical meso-and macroporosity. Macromol. Rapid. Commun. 2015, 36, 774–779. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, R.N.; Schliesser, J.; Mittal, A.; Decker, S.R.; Santos, A.F.L.; Freitas, V.L.; Urbas, A.; Lang, B.E.; Heiss, C.; Da Silva, M.D.R.; et al. A thermodynamic investigation of the cellulose allomorphs: Cellulose (am), cellulose Iβ (cr), cellulose II (cr), and cellulose III (cr). J. Chem. Thermodyn. 2015, 81, 184–226. [Google Scholar] [CrossRef] [Green Version]
- Qian, K.K.; Bogner, R.H. Spontaneous crystalline-to-amorphous phase transformation of organic or medicinal compounds in the presence of porous media, part 1: Thermodynamics of spontaneous amorphization. J. Pharm. Sci. Res. 2011, 100, 2801–2815. [Google Scholar] [CrossRef] [PubMed]
- Rengarajan, G.T.; Enke, D.; Steinhart, M. Stabilization of the amorphous state of pharmaceuticals in nanopores. J. Mater. Chem. 2008, 18, 2537–2539. [Google Scholar] [CrossRef]
- Tipduangta, P.; Takieddin, K.; Fabian, L. A new low melting-point polymorph of fenofibrate prepared via talc induced heterogeneous nucleation. Cryst. Growth Des. 2015, 15, 5011–5020. [Google Scholar] [CrossRef]
- Alhalaweh, A.; Alzghoul, A.; Mahlin, D. Physical stability of drugs after storage above and below the glass transition temperature: Relationship to glass-forming ability. Int. J. Pharm. 2015, 495, 312–317. [Google Scholar] [CrossRef] [PubMed]
- De Wever, P.; de Oliveira-Silva, R.; Marreiros, J. Topochemical Engineering of Cellulose—Carboxymethyl Cellulose Beads: A Low-Field NMR Relaxometry Study. Molecules 2020, 26, 14. [Google Scholar] [CrossRef] [PubMed]
- Paula, C.T.B.; Rebelo, R.C.; Coelho, J. The impact of the introduction of hydrolyzed cellulose on the thermal and mechanical properties of LDPE composites. Eur. J. Wood. Prod. 2019, 77, 1095–1106. [Google Scholar] [CrossRef]
- Mellaerts, R.; Jammaer, J.A.G.; Van Speybroeck, M. Physical state of poorly water-soluble therapeutic molecules loaded into SBA-15 ordered mesoporous silica carriers: A case study with itraconazole and ibuprofen. Langmuir 2008, 24, 8651–8659. [Google Scholar] [CrossRef] [PubMed]
- Olad, A.; Eslamzadeh, M.; Katiraee, F. Evaluation of in vitro anti-fungal properties of allicin loaded ion cross-linked poly (AA-co-AAm)/PVA/Cloisite 15A Nanocomposite hydrogel films as wound dressing materials. J. Polym. Res. 2020, 27, 1–10. [Google Scholar] [CrossRef]
Samples | Zero-Order | First-Order | ||
---|---|---|---|---|
k0 | R2 | k1 | R2 | |
OCBs-1_IND_Ace | 0.0957 | 0.9695 | 0.1264 | 0.9904 |
OCBs-2_IND_Ace | 0.1076 | 0.9736 | 0.1395 | 0.9932 |
OCBs-3_IND_Ace | 0.1583 | 0.9731 | 0.2235 | 0.9862 |
OCBs-4_IND_Ace | 0.1899 | 0.9769 | 0.2704 | 0.9680 |
OCBs-4_IND_DCM | 0.1755 | 0.8686 | 0.4422 | 0.9788 |
OCBs-1_FNB_Ace | 0.0163 | 0.9739 | 0.0200 | 0.9435 |
OCBs-2_FNB_Ace | 0.0230 | 0.9536 | 0.0280 | 0.9292 |
OCBs-3_FNB_Ace | 0.0306 | 0.9609 | 0.0380 | 0.9490 |
OCBs-4_FNB_Ace | 0.0348 | 0.9411 | 0.0477 | 0.9215 |
Samples | Zero-Order | First-Order | ||
---|---|---|---|---|
k0 | R2 | k1 | R2 | |
OCBs-1_FNB_Ace | 0.0114 | 0.8846 | 0.0150 | 0.7501 |
OCBs-2_FNB_Ace | 0.0130 | 0.8697 | 0.0171 | 0.7911 |
OCBs-3_FNB_Ace | 0.0114 | 0.8133 | 0.0179 | 0.5807 |
OCBs-4_FNB_Ace | 0.0174 | 0.9439 | 0.0203 | 0.9352 |
OCBs-1 | OCBs-2 | OCBs-3 | OCBs-4 | |
---|---|---|---|---|
NaClO2 | 1.50 | 3.00 | 7.50 | 12.0 |
TEMPO | 0.200 | |||
NaClO | 0.600 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, F.; De Wever, P.; Fardim, P.; Van den Mooter, G. TEMPO-Oxidized Cellulose Beads as Potential pH-Responsive Carriers for Site-Specific Drug Delivery in the Gastrointestinal Tract. Molecules 2021, 26, 1030. https://doi.org/10.3390/molecules26041030
Xie F, De Wever P, Fardim P, Van den Mooter G. TEMPO-Oxidized Cellulose Beads as Potential pH-Responsive Carriers for Site-Specific Drug Delivery in the Gastrointestinal Tract. Molecules. 2021; 26(4):1030. https://doi.org/10.3390/molecules26041030
Chicago/Turabian StyleXie, Fan, Pieter De Wever, Pedro Fardim, and Guy Van den Mooter. 2021. "TEMPO-Oxidized Cellulose Beads as Potential pH-Responsive Carriers for Site-Specific Drug Delivery in the Gastrointestinal Tract" Molecules 26, no. 4: 1030. https://doi.org/10.3390/molecules26041030
APA StyleXie, F., De Wever, P., Fardim, P., & Van den Mooter, G. (2021). TEMPO-Oxidized Cellulose Beads as Potential pH-Responsive Carriers for Site-Specific Drug Delivery in the Gastrointestinal Tract. Molecules, 26(4), 1030. https://doi.org/10.3390/molecules26041030