In Vitro Phytotherapeutic Properties of Aqueous Extracted Adenia viridiflora Craib. towards Civilization Diseases
Abstract
:1. Introduction
2. Results
2.1. Phenolic Profiles
2.2. Antioxidant Activities
2.3. Enzyme Inhibitory Activities
3. Discussion
4. Materials and Methods
4.1. Sample Collection, Preparation, and Extraction
4.2. Determination of Phenolic Profiles
4.3. Determination of Antioxidant Activities
4.4. Enzyme Inhibitory Activities
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Polito, L.; Bortolotti, M.; Maiello, S.; Battelli, M.G.; Bolognesi, A. Plants producing robosome-inactivateing proteins in traditional medicine. Molecules 2016, 21, 1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semenya, S.S.; Maroyi, A. Plants Used by Bapedi Traditional Healers to Treat Asthma and Related Symptoms in Limpopo Province, South Africa. Evid. Based Complement. Altern. Med. 2018, 2018, 2183705. [Google Scholar] [CrossRef]
- Chander, M.P.; Kartick, C.; Vijayachari, P. Medicinal Plants Used by the Nicobarese Inhabiting Little Nicobar Island of the Andaman and Nicobar Archipelago, India. J. Altern. Complement. Med. 2015, 21, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Magassouba, F.; Diallo, A.; Kouyaté, M.; Mara, F.; Mara, O.; Bangoura, O.; Camara, A.; Traoré, S.; Zaoro, M.; Lamah, K.; et al. Ethnobotanical survey and antibacterial activity of some plants used in Guinean traditional medicine. J. Ethnopharmacol. 2007, 114, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Nyansah, W.B.; Koffuor, G.A.; Asare, F.; Gyanfosu, L. Anticoagulant effect and safety assessment of an aqueous extract of Pseudocedrela kotschyi (Schweinf.) harms and Adenia cissampeloides (Planch. Ex Hook.) harms. J. Intercult. Ethnopharmacol. 2016, 5, 153–161. [Google Scholar] [CrossRef]
- Annan, K.; Sarpong, K.; Asare, C.; Dickson, R.; Amponsah, K.; Gyan, B.; Ofori, M.; Gbedema, S. In vitro anti-plasmodial activity of three herbal remedies for malaria in Ghana: Adenia cissampeloides (Planch.) Harms., Termina liaivorensis A. Chev, and Elaeis guineensis Jacq. Pharmacogn. Res. 2012, 4, 225–229. [Google Scholar] [CrossRef] [Green Version]
- Ajayi, A.O. Antimicrobial nature and use of some medicinal plants in Nigeria. Afr. J. Biotechnol. 2008, 7, 595–599. [Google Scholar]
- Adewunmi, C.O.; Agbedahunsi, J.M.; Adebajo, A.C.; Aladesanmi, A.J.; Murphy, N.; Wando, J. Ethno-veterinary medicine: Screening of Nigerian medicinal plants for trypanocidal properties. J. Ethnopharmacol. 2001, 77, 19–24. [Google Scholar] [CrossRef]
- Gilles, K.; Léopold, A.A.; Djakalia, O.; Dédéou, S.; Bamba, K.; Edouard, N.K.; Hilaire, K.T. Anti-hemorrhoidal activity of leaf extract of Adenia lobata (Jacq.) Engl. (Passifloraceae). Res. J. Pharm. Technol. 2012, 5, 63–67. [Google Scholar]
- Gangoué-Piéboji, J.; Eze, N.; Ngongang, D.A.; Ngameni, B.; Tsabang, N.; Pegnyemb, D.E.; Biyiti, L.; Ngassam, P.; Koulla-Shiro, S.; Galleni, M. The in-vitro antimicrobial activity of some traditionally used medicinal plants against beta-lactam-resistant bacteria. J. Infect. Dev. Ctries. 2009, 3, 671–680. [Google Scholar] [CrossRef] [Green Version]
- Gangoué-Piéboji, J.; Baurin, S.; Frère, J.M.; Ngassam, P.; Ngameni, B.; Azebaze, A.; Pegnyemb, D.E.; Watchueng, J.; Goffin, C.; Galleni, M. Screening of Some Medicinal Plants from Cameroon for β-Lactamase Inhibitory Activity. Phytother. Res. 2007, 21, 284–287. [Google Scholar] [CrossRef]
- Okpekon, T.; Yolou, S.; Gleye, C.; Roblot, F.; Loiseau, P.; Bories, C.; Grellier, P.; Frappier, F.; Laurens, A.; Hocquemiller, R. Antiparasitic activities of medicinal plants used in Ivory Coast. J. Ethnopharmacol. 2004, 90, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Marshall, S.J.; Russell, P.F.; Phillipson, J.D.; Kirby, G.C.; Warhurst, D.C.; Wright, C.W. Antiplasmodial and antiamoebic activities of medicinal plants from Sierra Leone. Phytother. Res. 2000, 14, 356–358. [Google Scholar] [CrossRef]
- Kraft, C.; Jenett-Siems, K.; Siems, K.; Jakupovic, J.; Mavi, S.; Bienzle, U.; Eich, E. In vitro antiplasmodial evaluation of medicinal plants from Zimbabwe. Phytother. Res. 2003, 17, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Carbonell-Capella, J.M.; Buniowska, M.; Barba, F.J.; Esteve, M.J.; Frígola, A. Analytical Methods for Determining Bioavailability and Bioaccessibility of Bioactive Compounds from Fruits and Vegetables: A Review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Gil-Chávez, G.J.; Villa, J.A.; Ayala-Zavala, J.F.; Heredia, J.B.; Sepulveda, D.; Yahia, E.M.; González-Aguilar, G.A. Technologies for Extraction and Production of Bioactive Compounds to be Used as Nutraceuticals and Food Ingredients: An Overview. Compr. Rev. Food Sci. Food Saf. 2013, 12, 5–23. [Google Scholar] [CrossRef]
- Correia, R.T.P.; Borges, K.C.; Medeiros, M.F.; Genovese, M.I. Bioactive compounds and phenolic-linked functionality of powdered tropical fruit residues. Food Sci. Technol. Int. 2012, 18, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Siriwatanametanon, N.; Fiebich, B.L.; Efferth, T.; Prieto, J.M.; Heinrich, M. Traditionally used Thai medicinal plants: In vitro anti-inflammatory, anticancer and antioxidant activities. J. Ethnopharmacol. 2010, 130, 196–207. [Google Scholar] [CrossRef]
- Njoku, V.O.; Obi, C.; Onyema, O.M. Phytochemical constituents of some selected medicinal plants. Afr. J. Pure Appl. Chem. 2009, 3, 228–233. [Google Scholar] [CrossRef]
- Mamyrbékova-Békro, J.A.; Konan, K.M.; Békro, Y.; Djié, B.M.; Bi, T.J.Z.; Mambo, V.; Boua, B.B. Phytocompounds of the Extracts of Four Medicinal Plants of Côte D’ivoire and Assessment of their Potential Antioxidant by Thin Layer Chromatography. Eur. J. Sci. Res. 2008, 24, 219–228. [Google Scholar]
- Sharma, M.; Hegde, P.; Hiremath, K.; Reddy, H.V.; Kamalanathan, A.S.; Swamy, B.M.; Inamdar, S.R. Purification, characterization and fine sugar specificity of a N-Acetylgalactosamine specific lectin from Adenia hondala. Glycoconj. J. 2018, 35, 511–523. [Google Scholar] [CrossRef]
- Pelosi, E.; Lubelli, C.; Polito, L.; Barbieri, L.; Bolognesi, A.; Stirpe, F. Ribosome-inactivating proteins and other lectins from Adenia (Passifloraceae). Toxicon 2005, 46, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Josepha, S.; Theophilus, F.; Dominic, E.; Rita, D.; Kwaw, M.; Kofi, A.; Eric, W.; George, K.; Alfred, A.; Henry, B. Antihyperglycaemic and antioxidant effects of Adenia lobata Engl (Passifloraceae) in streptozotocin-induced diabetic rats. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Adedapo, A.A.; Jimoh, F.O.; Afolayan, A.J.; Masika, P.J. Antioxidant activities and phenolic contents of the methanol extracts of the stems of Acokanthera oppositifolia and Adenia gummifera. BMC Complement. Altern. Med. 2008, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Anwar, K.; Rahmanto, B.; Triyasmono, L.; Rizki, M.I.; Halwany, W.; Lestari, F. The Influence of Leaf Age on Total Phenolic, Flavonoids, and Free Radical Scavenging Capacity of Aquilaria beccariana. Res. J. Pharm. Biol. Chem. Sci. 2017, 8, 129–133. [Google Scholar]
- Jayasekera, S.; Kaur, L.; Molan, A.-L.; Garg, M.L.; Moughan, P.J. Effects of season and plantation on phenolic content of unfermented and fermented Sri Lankan tea. Food Chem. 2014, 152, 546–551. [Google Scholar] [CrossRef]
- Yakoh, K.; Weschasat, T.; Suwannachote, P. Phenolic Compound of 10 Indigenous Vegetables from Surat Thani Province. J. Thai Tradit. Altern. Med. 2018, 16, 185–194. [Google Scholar]
- Firuzi, O.; Lacanna, A.; Petrucci, R.; Marrosu, G.; Saso, L. Evaluation of the antioxidant activity of flavonoids by “ferric reducing antioxidant power” assay and cyclic voltammetry. Biochim. Biophys. Acta BBA Gen. Subj. 2005, 1721, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Mudnic, I.; Modun, D.; Rastija, V.; Vukovic, J.; Brizic, I.; Katalinic, V.; Kozina, B.; Medic-Saric, M.; Boban, M. Antioxidative and vasodilatory effects of phenolic acids in wine. Food Chem. 2010, 119, 1205–1210. [Google Scholar] [CrossRef]
- Ishimoto, H.; Tai, A.; Yoshimura, M.; Amakura, Y.; Yoshida, T.; Hatano, T.; Ito, H. Antioxidative Properties of Functional Polyphenols and Their Metabolites Assessed by an ORAC assay. Biosci. Biotechnol. Biochem. 2012, 76, 395–399. [Google Scholar] [CrossRef] [Green Version]
- Zulueta, A.; Esteve, M.J.; Frígola, A. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem. 2009, 114, 310–316. [Google Scholar] [CrossRef]
- Dorta, E.; Fuentes-Lemus, E.; Aspée, A.; Atala, E.; Speisky, H.; Bridi, R.; Lissib, E.; López-Alarcón, C. The ORAC (oxygen radical absorbance capacity) index does not reflect the capacity of antioxidants to trap peroxyl radicals. RSC Adv. 2015, 5, 39899–39902. [Google Scholar] [CrossRef]
- Karamać, M.; Amarowicz, R. Inhibition of Pancreatic Lipase by Phenolic Acids—Examination in vitro. Z. Nat. C 1996, 51, 903–905. [Google Scholar] [CrossRef] [PubMed]
- Rahim, A.T.M.; Takahashi, Y.; Yamaki, K. Mode of pancreatic lipase inhibition activity in vitro by some flavonoids and non-flavonoid polyphenols. Food Res. Int. 2015, 75, 289–294. [Google Scholar] [CrossRef]
- Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of α-Glucosidase and α-Amylase by flavonoids. J. Nutr. Sci. Vitaminol. 2006, 52, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Pei, K.; Ou, J.; Huang, J.; Ou, S. p-Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 2016, 96, 2952–2962. [Google Scholar] [CrossRef]
- Collado-González, J.; Grosso, C.; Valentão, P.; Andrade, P.B.; Ferreres, F.; Durand, T.; Guy, A.; Galano, J.-M.; Torrecillas, A.; Gil-Izquierdo, Á. Inhibition of α-glucosidase and α-amylase by Spanish extra virgin olive oils: The involvement of bioactive compounds other than oleuropein and hydroxytyrosol. Food Chem. 2017, 235, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Oboh, G.; Agunloye, O.M.; Adefegha, S.A.; Akinyemi, A.J.; Ademiluyi, A.O. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): A comparative study. J. Basic Clin. Physiol. Pharmacol. 2015, 26, 165–170. [Google Scholar] [CrossRef]
- Bhullar, K.S.; Lassalle-Claux, G.; Touaibia, M.; Rupasinghe, H.V. Antihypertensive effect of caffeic acid and its analogs through dual renin–angiotensin–aldosterone system inhibition. Eur. J. Pharmacol. 2014, 730, 125–132. [Google Scholar] [CrossRef]
- Guerrero, L.; Castillo, J.; Quiñones, M.; Garcia-Vallvé, S.; Arola, L.; Pujadas, G.; Muguerza, B. Inhibition of Angiotensin-Converting Enzyme Activity by Flavonoids: Structure-Activity Relationship Studies. PLoS ONE 2012, 7, e49493. [Google Scholar] [CrossRef] [Green Version]
- Szwajgier, D. Anticholinesterase Activity of Phenolic Acids and their Derivatives. Z. Nat. C 2013, 68, 125–132. [Google Scholar]
- Xie, Y.; Yang, W.; Chen, X.; Xiao, J. Inhibition of flavonoids on acetylcholine esterase: Binding and structure–activity relationship. Food Funct. 2014, 5, 2582–2589. [Google Scholar] [CrossRef]
- Lee, S.; Youn, K.; Lim, G.; Lee, J.; Jun, M. In Silico Docking and In Vitro Approaches towards BACE1 and Cholinesterases Inhibitory Effect of Citrus Flavanones. Molecules 2018, 23, 1509. [Google Scholar] [CrossRef] [Green Version]
- Green, K.D.; Fosso, M.Y.; Garneau-Tsodikova, S. Multifunctional Donepezil Analogues as Cholinesterase and BACE1 Inhibitors. Molecules 2018, 23, 3252. [Google Scholar] [CrossRef] [Green Version]
- Shimmyo, Y.; Kihara, T.; Akaike, A.; Niidome, T.; Sugimoto, H. Flavonols and flavones as BACE-1 inhibitors: Structure–activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features. Biochim. Biophys. Acta BBA Gen. Subj. 2008, 1780, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Youn, K.; Jun, M. Inhibitory Effects of Key Compounds Isolated from Corni fructus on BACE1 Activity. Phytother. Res. 2012, 26, 1714–1718. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, Y.; Zhu, J.; Li, B.; Li, Z.; Zhu, W.; Shi, J.; Jia, Q.; Li, Y. Recent progress in natural products as DPP-4 inhibitors. Future Med. Chem. 2015, 7, 1079–1089. [Google Scholar] [CrossRef]
- Fan, J.; Johnson, M.H.; Lila, M.A.; Yousef, G.; De Mejia, E.G. Berry and Citrus Phenolic Compounds Inhibit Dipeptidyl Peptidase IV: Implications in Diabetes Management. Evid.-Based Complement. Altern. Med. 2013, 2013, 479505. [Google Scholar] [CrossRef] [Green Version]
- Al Shukor, N.; Van Camp, J.; Gonzales, G.B.; Staljanssens, D.; Struijs, K.; Zotti, M.J.; Raes, K.; Smagghe, G. Angiotensin-Converting Enzyme Inhibitory Effects by Plant Phenolic Compounds: A Study of Structure Activity Relationships. J. Agric. Food Chem. 2013, 61, 11832–11839. [Google Scholar] [CrossRef]
- Nyarko, A.A.; Addy, M.E. Effect of aqueous extract of Adenia cissampeloides on blood pressure and serum analytes of hypertensive patients. Phytother. Res. 1990, 4, 25–28. [Google Scholar] [CrossRef]
- Wannasaksri, W.; On-Nom, N.; Chupeerach, C.; Suttisansanee, U. Optimization of Extraction Condition and Antioxidant Activities of Bioactive Compounds from Adenia viridiflora Craib. In Proceedings of the International Conference on Food and Applied Bioscience 2020: Insights for Research and Industry 4.0, Chiangmai Grandview Hotel & Convention Center, Chiang Mai, Thailand, 6–7 February 2020; Faculty of Agro-Industry, Chiang Mai University: Chiang Mai, Thailand, 2020; pp. 174–181. [Google Scholar]
- Sritalahareuthai, V.; Temviriyanukul, P.; On-Nom, N.; Charoenkiatkul, S.; Suttisansanee, U. Phenolic Profiles, Antioxidant, and Inhibitory Activities of Kadsura heteroclita (Roxb.) Craib and Kadsura coccinea (Lem.) A.C. Sm. Foods 2020, 9, 1222. [Google Scholar] [CrossRef] [PubMed]
- Sripum, C.; Kukreja, R.K.; Charoenkiatkul, S.; Kriengsinyos, W.; Suttisansanee, U. The effect of extraction conditions on antioxidant activities and total phenolic contents of different processed Thai Jasmine rice. Int. Food Res. J. 2017, 24, 1644–1650. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Hinkaew, J.; Sahasakul, Y.; Tangsuphoom, N.; Suttisansanee, U. The Effect of Cultivar Variation on Total Phenolic Contents and Antioxidant Activities of Date Palm Fruit (Phoenix dactylifera L.). Curr. Res. Nutr. Food Sci. J. 2020, 8, 155–163. [Google Scholar] [CrossRef]
- Chupeerach, C.; Aursalung, A.; Watcharachaisoponsiri, T.; Whanmek, K.; Thiyajai, P.; Yosphan, K.; Sritalahareuthai, V.; Sahasakul, Y.; Santivarangkna, C.; Suttisansanee, U. The Effect of Steaming and Fermentation on Nutritive Values, Antioxidant Activities, and Inhibitory Properties of Tea Leaves. Foods 2021, 10, 117. [Google Scholar] [CrossRef]
- Amerongen, A.; Beelen, M.J.C.; Wolbers, L.A.M.; Gilst, W.H.; Buikema, J.H.; Nelissen, J.W.P.M. Egg Protein Hydrolysates. World Intellectual Property Organization Patent No. WO 2009128713 A1, 22 October 2009. [Google Scholar]
A. viridiflora Craib. Sources | Phenolics (mg/100 g DW) | TPCs (mg GAE/g DW) | TFCs (mg QE/g DW) | ||||
---|---|---|---|---|---|---|---|
Phenolic Acids | Flavonoids | ||||||
Caffeic Acid | p-Coumaric Acid | Sinapic Acid | Naringenin | Apigenin | |||
Old leaves | |||||||
KP | 7.78 ± 0.16 b | 78.44 ± 4.32 b* | 8.66 ± 0.44 c* | 2055.79 ± 50.36 a | 2.89 ± 0.52 b* | 28.70 ± 1.79 a* | 5.96 ± 0.35 c* |
MN | ND | 97.09 ± 2.88 a* | 10.31 ± 0.18 b* | 1982.69 ± 102.84 a | 10.60 ± 3.66 a* | 25.37 ± 1.16 b | 8.35 ± 0.61 b* |
PN | ND | 55.86 ± 3.61 c* | 14.00 ± 1.28 a* | 1957.50 ± 122.01 a | 6.09 ± 0.28 ab* | 27.89 ± 1.61 a* | 14.08 ± 1.41 a* |
UT | 11.79 ± 0.92 a* | 79.20 ± 4.31 b* | 8.60 ± 0.61 c* | 1968.48 ± 81.76 a | 2.03 ± 2.22 b | 23.56 ± 1.34 c* | 8.38 ± 0.33 b* |
Young shoots | |||||||
KP | ND | 25.22 ± 2.56 b | 4.79 ± 0.01 b | 2164.95 ± 108.27 a | 11.82 ± 2.11 a | 20.57 ± 0.72 c | 7.35 ± 0.42 b |
MN | ND | 38.98 ± 0.37 a | 7.19 ± 0.49 a | 2127.74 ± 66.19 a | 2.89 ± 1.77 b | 26.35 ± 1.84 a | 7.15 ± 0.50 b |
PN | ND | 22.60 ± 0.93 b | 6.52 ± 0.02 a | 2100.10 ± 36.02 a | 1.22 ± 0.98 b | 23.57 ± 0.92 b | 9.65 ± 0.72 a |
UT | 2.21 ± 0.80 | 23.43 ± 1.42 b | 4.49 ± 0.26 b | 2054.07 ± 38.36 a | 5.22 ± 0.25 b | 20.38 ± 0.79 c | 7.50 ± 0.69 b |
A. viridiflora Craib. Sources | Antioxidant Activities | ||
---|---|---|---|
DPPH Radical Scavenging Assay (µmol TE/100 g DW) | FRAP Assay (µmol TE/g DW) | ORAC Assay (µmol TE/g DW) | |
Old leaves | |||
KP | 0.96 ± 0.07 b* | 34.08 ± 3.12 b* | 753.77 ± 74.81 c* |
MN | 0.99 ± 0.06 b* | 35.74 ± 3.27 ab* | 1094.66 ± 119.33 b* |
PN | 1.44 ± 0.10 a* | 37.00 ± 1.60 a* | 1403.53 ± 122.44 a |
UT | 0.97 ± 0.05 b* | 35.17 ± 2.36 ab* | 1106.77 ± 102.36 b |
Young shoots | |||
KP | 1.25 ± 0.06 b | 16.52 ± 0.97 b | 1148.47 ± 74.70 b |
MN | 1.37 ± 0.04 a | 29.24 ± 2.88 a | 842.36 ± 69.59 c |
PN | 1.28 ± 0.02 b | 28.03 ± 0.98 a | 1438.85 ± 145.27 a |
UT | 1.23 ± 0.10 b | 14.36 ± 0.85 c | 1066.29 ± 100.98 b |
A. viridiflora Craib. Sources | Inhibitory Activity (%) | ||||||
---|---|---|---|---|---|---|---|
Obesity | Diabetes | Alzheimer’s Disease | Hypertension | ||||
1 Lipase | 2 α-Glucosidase | 3 DPP-IV | 1 AChE | 1 BChE | 4 BACE-1 | 5 ACE | |
Old leaves | |||||||
KP | 14.81 ± 1.30 c* | 58.08 ± 5.26 c* | 46.07 ± 4.55 c* | 27.70 ± 2.12 a | 8.91 ± 0.65 d* | 78.57 ± 1.49 bc | 48.58 ± 3.97 b |
MN | 23.54 ± 1.32 a* | 66.48 ± 5.43 b | 61.96 ± 3.36 b* | 20.80 ± 1.43 c | 18.70 ± 1.87 a* | 85.01 ± 6.82 ab | 60.33 ± 5.84 a* |
PN | 22.30 ± 1.65 a* | 75.09 ± 4.84 a* | 69.89 ± 4.47 a* | 23.91 ± 1.40 b* | 13.03 ± 1.01 c* | 90.63 ± 3.17 a* | 61.71 ± 6.03 a |
UT | 20.53 ± 1.75 b* | 62.39 ± 3.57 bc* | 62.35 ± 6.27 b* | 22.59 ± 1.59 b | 14.65 ± 1.23 b* | 72.60 ± 0.70 c | 52.73 ± 4.92 b |
Young shoots | |||||||
KP | 10.16 ± 0.98 c | 79.87 ± 6.14 a | 30.19 ± 3.07 d | 28.68 ± 2.52 a | 7.18 ± 0.85 c | 81.97 ± 4.52 a | 47.84 ± 4.74 d |
MN | 17.24 ± 1.51 a | 66.15 ± 3.94 b | 74.14 ± 2.88 a | 22.13 ± 2.20 b | 15.02 ± 1.06 a | 72.13 ± 4.68 b | 65.53 ± 1.39 a |
PN | 12.41 ± 1.11 b | 82.82 ± 5.98 a | 54.01 ± 4.89 b | 16.29 ± 1.51 c | 5.18 ± 0.74 d | 78.57 ± 4.47 ab | 59.65 ± 1.31 b |
UT | 8.41 ± 0.79 d | 68.69 ± 5.38 b | 44.74 ± 4.05 c | 21.94 ± 1.76 b | 9.69 ± 0.81 b | 70.49 ± 0.99 b | 54.36 ± 3.31 c |
Time (min) | Flow Rate (mL/min) | Solvent A (%) | Solvent B (%) | Solvent C (%) |
---|---|---|---|---|
0 | 0.6 | 90 | 6 | 4 |
5 | 0.6 | 85 | 9 | 6 |
30 | 0.6 | 71 | 17.4 | 11.6 |
60 | 0.6 | 0 | 85 | 15 |
61 | 0.6 | 90 | 6 | 4 |
66 | 0.6 | 90 | 6 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wannasaksri, W.; On-Nom, N.; Chupeerach, C.; Temviriyanukul, P.; Charoenkiatkul, S.; Suttisansanee, U. In Vitro Phytotherapeutic Properties of Aqueous Extracted Adenia viridiflora Craib. towards Civilization Diseases. Molecules 2021, 26, 1082. https://doi.org/10.3390/molecules26041082
Wannasaksri W, On-Nom N, Chupeerach C, Temviriyanukul P, Charoenkiatkul S, Suttisansanee U. In Vitro Phytotherapeutic Properties of Aqueous Extracted Adenia viridiflora Craib. towards Civilization Diseases. Molecules. 2021; 26(4):1082. https://doi.org/10.3390/molecules26041082
Chicago/Turabian StyleWannasaksri, Werawat, Nattira On-Nom, Chaowanee Chupeerach, Piya Temviriyanukul, Somsri Charoenkiatkul, and Uthaiwan Suttisansanee. 2021. "In Vitro Phytotherapeutic Properties of Aqueous Extracted Adenia viridiflora Craib. towards Civilization Diseases" Molecules 26, no. 4: 1082. https://doi.org/10.3390/molecules26041082
APA StyleWannasaksri, W., On-Nom, N., Chupeerach, C., Temviriyanukul, P., Charoenkiatkul, S., & Suttisansanee, U. (2021). In Vitro Phytotherapeutic Properties of Aqueous Extracted Adenia viridiflora Craib. towards Civilization Diseases. Molecules, 26(4), 1082. https://doi.org/10.3390/molecules26041082