Research Progress on Synthesis and Application of Cyclodextrin Polymers
Abstract
:1. Introduction
2. Synthesis of pCDs
3. Application of pCDs in Analytical Separation Science
3.1. Application of pCDs in Wastewater Treatment and Water Purification
3.2. Application of pCDs in Analysis and Detection
4. Application of pCDs in Materials Science
4.1. Application of pCD Films
4.2. Application of CDs Functionalized Graphene Materials
5. Application of pCDs in Biomedicine
5.1. pCDs Reduce the Toxicity of Some Exogenous Organisms
5.2. Application of pCDs in Drug Delivery
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eastburn, S.D.; Tao, B.Y. Applications of modified cyclodextrins. Biotechnol. Adv. 1994, 12, 325–339. [Google Scholar] [CrossRef]
- Gharib, R.; Greige-Gerges, H.; Fourmentin, S.; Charcosset, C.; Auezova, L. Liposomes incorporating cyclodextrin-drug inclusion complexes: Current state of knowledge. Carbohyd. Polym. 2015, 129, 175–186. [Google Scholar] [CrossRef]
- Storsberg, J.; Hartenstein, M.; Muller, A.H.E.; Ritter, H. Cyclodextrins in polymer synthesis: Polymerization of methyl methacrylate under atom-transfer conditions (ATRP) in aqueous solution. Macromol. Rapid Commun. 2000, 21, 1342–1346. [Google Scholar] [CrossRef]
- Yamamoto, K.; Nakai, Y. Inclusion Compound Formation by Co-Grinding of Cyclodextrin and Host Drugs. Sib. Khimicheskii Zhurnal 1991, 1991, 51–55. [Google Scholar]
- Buschmann, H.J.; Schollmeyer, E. Applications of cyclodextrins in cosmetic products: A review. J. Cosmet. Sci. 2002, 53, 185–191. [Google Scholar] [PubMed]
- Gerard, M.; Chaubey, A.; Malhotra, B.D. Application of conducting polymers to biosensors. Biosens. Bioelectron. 2002, 17, 345–359. [Google Scholar] [CrossRef]
- Xu, Y.H.; Jin, S.B.; Xu, H.; Nagai, A.; Jiang, D.L. Conjugated microporous polymers: Design, synthesis and application. Chem. Soc. Rev. 2013, 42, 8012–8031. [Google Scholar] [CrossRef] [PubMed]
- Borzenkov, M.; Mitina, N.; Lobaz, V.; Hevus, O. Synthesis and Properties of Novel Surface Active Monomers Based on Derivatives of 4-Hydroxybutyric Acid and 6-Hydroxyhexanoic Acid. J. Surfactants Deterg. 2015, 18, 133–144. [Google Scholar] [CrossRef]
- Hajipour, A.R.; Zahmatkesh, S.; Ruoho, A.E. Optically active polymer: Synthesis and characterization of new optically active poly (hydrazide-imide)s incorporating L-leucine. E-Polymers 2007, 7, 1018–1030. [Google Scholar] [CrossRef] [Green Version]
- Rusa, C.C.; Luca, C.; Tonelli, A.E. Polymer-cyclodextrin inclusion compounds: Toward new aspects of their inclusion mechanism. Macromolecules 2001, 34, 1318–1322. [Google Scholar] [CrossRef]
- Wenz, G.; Keller, B. Threading Cyclodextrin Rings on Polymer-Chains. Angew. Chem. Int. Ed. Engl. 1992, 31, 197–199. [Google Scholar] [CrossRef]
- Harada, A.; Takashima, Y.; Yamaguchi, H. Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev. 2009, 38, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zou, W.; Liu, L.Y.; Wang, M.; Li, F.; Shen, W.Y. Characterization and bacteriostatic effects of beta-cyclodextrin/quercetin inclusion compound nanofilms prepared by electrospinning. Food Chem. 2021, 338, 127980. [Google Scholar] [CrossRef]
- Krabicova, I.; Appleton, S.L.; Tannous, M.; Hoti, G.; Caldera, F.; Pedrazzo, A.R.; Cecone, C.; Cavalli, R.; Trotta, F. History of Cyclodextrin Nanosponges. Polymers (Basel) 2020, 12, 1122. [Google Scholar] [CrossRef] [PubMed]
- Crini, G. Review: A History of Cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.C.; Jie, K.C.; Huang, F.H. Supramolecular Amphiphiles Based on Host-Guest Molecular Recognition Motifs. Chem. Rev. 2015, 115, 7240–7303. [Google Scholar] [CrossRef]
- Miao, C.Y.; Zhang, L.M.; Yuan, W.J.; Su, D.F. Angiotensin II and AT(1) receptor in hypertrophied ventricles and aortas of sinoaortic-denervated rats. Acta Pharmacol. Sin. 2003, 24, 812–818. [Google Scholar]
- Yao, X.K.; Huang, P.; Nie, Z.H. Cyclodextrin-based polymer materials: From controlled synthesis to applications. Prog. Polym. Sci. 2019, 93, 1–35. [Google Scholar] [CrossRef]
- Gidwani, B.; Vyas, A. Synthesis, characterization and application of Epichlorohydrin-β-cyclodextrin polymer. Colloids Surf. B Biointerfaces 2014, 114, 130–137. [Google Scholar] [CrossRef]
- Gawish, S.M.; Ramadan, A.M.; Abo El-Ola, S.M.; Abou El-Kheir, A.A. Citric Acid Used as a Cross-Linking Agent for Grafting β-Cyclodextrin onto Wool Fabric. Polym. Plast. Technol. Eng. 2009, 48, 701–710. [Google Scholar] [CrossRef]
- Rukmani, A.; Sundrarajan, M. Inclusion of antibacterial agent thymol on β-cyclodextrin-grafted organic cotton. J. Ind. Text. 2012, 42, 132–144. [Google Scholar] [CrossRef]
- Ghorpade, V.S.; Yadav, A.V.; Dias, R.J. Citric acid crosslinked β-cyclodextrin/carboxymethylcellulose hydrogel films for controlled delivery of poorly soluble drugs. Carbohydr. Polym. 2017, 164, 339–348. [Google Scholar] [CrossRef] [PubMed]
- You, Q.; Zhang, P.; Bai, S.; Huang, W.; Jia, Z.; Zhou, C.; Li, D. Supramolecular linear polymer formed by host–guest interactions of β-cyclodextrin dimers and polyacrylamide end-capped with adamantane. Colloids Surf. A Physicochem. Eng. Asp. 2015, 484, 130–135. [Google Scholar] [CrossRef]
- Noomen, A.; Penciu, A.; Hbaieb, S.; Parrot-Lopez, H.; Amdouni, N.; Chevalier, Y.; Kalfat, R. Silicon Based Polymers. In Grafting β-Cyclodextrins to Silicone, Formulation of Emulsions and Encapsulation of Antifungal Drug; Ganachaud, F., Boileau, S., Boury, B., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 163–179. [Google Scholar]
- Wu, J.; Shen, Q.; Fang, L. Sulfobutylether-β-cyclodextrin/chitosan nanoparticles enhance the oral permeability and bioavailability of docetaxel. Drug Dev. Ind. Pharm. 2013, 39, 1010–1019. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Liu, Q.; Lai, X.; Li, H.; Zeng, X. Compatibilizing effect of β-cyclodextrin in RDP/phosphorus-containing polyacrylate composite emulsion and its synergism on the flame retardancy of the latex film. Prog. Org. Coat. 2014, 77, 975–980. [Google Scholar] [CrossRef]
- Shang, S.; Chiu, K.-L.; Jiang, S. Synthesis of immobilized poly(vinyl alcohol)/cyclodextrin eco-adsorbent and its application for the removal of ibuprofen from pharmaceutical sewage. J. Appl. Polym. Sci. 2017, 134, 21. [Google Scholar] [CrossRef]
- Jiang, L.X.; Yan, Y.; Huang, J.B. Versatility of cyclodextrins in self-assembly systems of amphiphiles. Adv. Colloid Interface 2011, 169, 13–25. [Google Scholar] [CrossRef]
- Van der Veen, B.A.; Uitdehaag, J.C.M.; Dijkstra, B.W.; Dijkhuizen, L. Engineering of cyclodextrin glycosyltransferase reaction and product specificity. BBA-Protein Struct. Mol. Enzymol. 2000, 1543, 336–360. [Google Scholar] [CrossRef] [Green Version]
- Messner, M.; Kurkov, S.V.; Flavia-Piera, R.; Brewster, M.E.; Loftsson, T. Self-assembly of cyclodextrins: The effect of the guest molecule. Int. J. Pharm. 2011, 408, 235–247. [Google Scholar] [CrossRef]
- Abou-Okeil, A.; Rehan, M.; El-Sawy, S.M.; El-bisi, M.K.; Ahmed-Farid, O.A.; Abdel-Mohdy, F.A. Lidocaine/β-cyclodextrin inclusion complex as drug delivery system. Eur. Polym. J. 2018, 108, 304–310. [Google Scholar] [CrossRef]
- Ol’khovich, M.; Sharapova, A.; Blokhina, S.; Perlovich, G.; Skachilova, S.; Shilova, E. A study of the inclusion complex of bioactive thiadiazole derivative with 2-hydroxypropyl-β-cyclodextrin: Preparation, characterization and physicochemical properties. J. Mol. Liq. 2019, 273, 653–662. [Google Scholar] [CrossRef]
- Aytac, Z.; Sen, H.S.; Durgun, E.; Uyar, T. Sulfisoxazole/cyclodextrin inclusion complex incorporated in electrospun hydroxypropyl cellulose nanofibers as drug delivery system. Colloid Surf. B 2015, 128, 331–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelova, A.; Ringard-Lefebvre, C.; Baszkin, A. Drug–Cyclodextrin Association Constants Determined by Surface Tension and Surface Pressure Measurements: I. Host–Guest Complexation of Water Soluble Drugs by Cyclodextrins: Polymyxin B–β Cyclodextrin System. J. Colloid Interface Sci. 1999, 212, 275–279. [Google Scholar] [CrossRef]
- Angelova, A.; Ringard-Lefebvre, C.; Baszkin, A. Drug–Cyclodextrin Association Constants Determined by Surface Tension and Surface Pressure Measurements: II. Sequestration of Water Insoluble Drugs from the Air–Water Interface: Retinol–β Cyclodextrin System. J. Colloid Interface Sci. 1999, 212, 280–285. [Google Scholar] [CrossRef]
- Frieler, L.; Ho, T.M.; Anthony, A.; Hidefumi, Y.; Yago, A.J.E.; Bhandari, B.R. Crystallisation properties of amorphous cyclodextrin powders and their complexation with fish oil. J. Food Sci. Technol. 2019, 56, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Yan, D. Hyperbranched polymers: From synthesis to applications. Prog. Polym. Sci. 2004, 29, 183–275. [Google Scholar] [CrossRef]
- Tang, B.; Liu, X.B.; Zhao, X.L.; Zhang, J.H. Highly Efficient In Situ Toughening of Epoxy Thermosets with Reactive Hyperbranched Polyurethane. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Rubin Pedrazzo, A.; Caldera, F.; Zanetti, M.; Appleton, S.L.; Dhakar, N.K.; Trotta, F. Mechanochemical green synthesis of hyper-crosslinked cyclodextrin polymers. Beilstein J. Org. Chem. 2020, 16, 1554–1563. [Google Scholar] [CrossRef] [PubMed]
- Petitjean, M.; Aussant, F.; Vergara, A.; Isasi, J.R. Solventless Crosslinking of Chitosan, Xanthan, and Locust Bean Gum Networks Functionalized with beta-Cyclodextrin. Gels (Basel) 2020, 6, 51. [Google Scholar] [CrossRef]
- Jicsinszky, L.; Calsolaro, F.; Martina, K.; Bucciol, F.; Manzoli, M.; Cravotto, G. Reaction of oxiranes with cyclodextrins under high-energy ball-milling conditions. Beilstein J. Org. Chem. 2019, 15, 1448–1459. [Google Scholar] [CrossRef]
- Zhao, F.; Repo, E.; Yin, D.; Chen, L.; Kalliola, S.; Tang, J.; Iakovleva, E.; Tam, K.C.; Sillanpää, M. One-pot synthesis of trifunctional chitosan-EDTA-β-cyclodextrin polymer for simultaneous removal of metals and organic micropollutants. Sci. Rep. 2017, 7, 15811. [Google Scholar] [CrossRef]
- Ryvlin, D.; Girschikofsky, M.; Schollmeyer, D.; Hellmann, R.; Waldvogel, S.R. Pollutant Adsorbtion and Detection: Methyl-Substituted α-Cyclodextrin as Affinity Material for Storage, Separation, and Detection of Trichlorofluoromethane (Global Challenges 8/2018). Glob. Chall. 2018, 2, 1870184. [Google Scholar] [CrossRef]
- Villalobos, L.F.; Huang, T.F.; Peinemann, K.V. Cyclodextrin Films with Fast Solvent Transport and Shape-Selective Permeability. Adv. Mater. 2017, 29, 1606641. [Google Scholar] [CrossRef]
- Liu, Z.C.; Yang, W.J.; Tian, B.S.; Liu, J.; Zhu, W.P.; Ge, G.W.; Xiao, L.N.; Meng, Y.N. Fabrication of a self-assembled supramolecular fluorescent nanosensor from functional graphene oxide and its application for the detection of Al3+. New J. Chem. 2018, 42, 17665–17670. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Li, J.; Zhao, F.; Liu, Y.; Su, M.; Jiang, Y.; Liu, Y.; Zhang, J.; Yang, B.; et al. Inclusion Complex of Podophyllotoxin with γ-Cyclodextrin: Preparation, Characterization, Anticancer Activity, Water-Solubility and Toxicity. Chin. J. Chem. 2016, 34, 425–431. [Google Scholar] [CrossRef]
- Oliveri, V.; Bellia, F.; Viale, M.; Maric, I.; Vecchio, G. Linear polymers of β and γ cyclodextrins with a polyglutamic acid backbone as carriers for doxorubicin. Carbohydr. Polym. 2017, 177, 355–360. [Google Scholar] [CrossRef]
- Zheng, Y.C.; Li, S.P.; Weng, Z.L.; Gao, C. Hyperbranched polymers: Advances from synthesis to applications. Chem. Soc. Rev. 2015, 44, 4091–4130. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; von Gunten, U.; Wehrli, B. The challenge of micropollutants in aquatic systems. Science 2006, 313, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.H.; Dong, M.; Wei, S.Q.; Meng, Q.J.; Hu, L.M.; Hu, Q.; Wang, L.; Han, W.; Zhang, Y. Microwave-assisted one pot synthesis of beta-cyclodextrin modified biochar for concurrent removal of Pb(II) and bisphenol a in water. Carbohydr. Polym. 2020, 250, 117003. [Google Scholar] [CrossRef] [PubMed]
- An, T.C.; Yang, H.; Li, G.Y.; Song, W.H.; Cooper, W.J.; Nie, X.P. Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water. Appl. Catal. B-Environ. 2010, 94, 288–294. [Google Scholar] [CrossRef]
- Li, M.; Li, M.Y.; Feng, C.G.; Zeng, Q.X. Preparation and characterization of multi-carboxyl-functionalized silica gel for removal of Cu (II), Cd (II), Ni (II) and Zn (II) from aqueous solution. Appl. Surf. Sci. 2014, 314, 1063–1069. [Google Scholar] [CrossRef]
- Modwi, A.; Khezami, L.; Taha, K.; Al-Duaij, O.K.; Houas, A. Fast and high efficiency adsorption of Pb(II) ions by Cu/ZnO composite. Mater. Lett. 2017, 195, 41–44. [Google Scholar] [CrossRef]
- Sani, H.A.; Ahmad, M.B.; Hussein, M.Z.; Ibrahim, N.A.; Musa, A.; Saleh, T.A. Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions. Process. Saf. Environ. 2017, 109, 97–105. [Google Scholar] [CrossRef]
- Allabashi, R.; Arkas, M.; Hormann, G.; Tsiourvas, D. Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers. Water Res. 2007, 41, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.H.; Cai, X.Y.; Wang, Y.; Chen, J.W. Adsorption mechanism-based screening of cyclodextrin polymers for adsorption and separation of pesticides from water. Water Res. 2011, 45, 3499–3511. [Google Scholar] [CrossRef] [PubMed]
- Sancey, B.; Trunfio, G.; Charles, J.; Badot, P.M.; Crini, G. Sorption onto crosslinked cyclodextrin polymers for industrial pollutants removal: An interesting environmental approach. J. Incl. Phenom. Macrocycl. 2011, 70, 315–320. [Google Scholar] [CrossRef]
- Yilmaz, E.; Memon, S.; Yilmaz, M. Removal of direct azo dyes and aromatic amines from aqueous solutions using two beta-cyclodextrin-based polymers. J. Hazard Mater. 2010, 174, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Aoki, N.; Kinoshita, K.; Mikuni, K.; Nakanishi, K.; Hattori, K. Adsorption of 4-nonylphenol ethoxylates onto insoluble chitosan beads bearing cyclodextrin moieties. J. Incl. Phenom. Macrocycl. 2007, 57, 237–241. [Google Scholar] [CrossRef]
- Romo, A.; Peñas, F.J.; Isasi, J.R.; García-Zubiri, I.X.; González-Gaitano, G. Extraction of phenols from aqueous solutions by β-cyclodextrin polymers. Comparison of sorptive capacities with other sorbents. React. Funct. Polym. 2008, 68, 406–413. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chung, Y.C. Removal of phthalate esters from aqueous solutions by chitosan bead. J. Environ. Sci. Health Part A 2006, 41, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Kitaoka, M.; Hayashi, K. Adsorption of bisphenol A by cross-linked beta-cyclodextrin polymer. J. Incl. Phenom. Macrocycl. 2002, 44, 429–431. [Google Scholar] [CrossRef]
- Li, J.; Chen, C.; Zhao, Y.; Hu, J.; Shao, D.; Wang, X. Synthesis of water-dispersible Fe3O4@β-cyclodextrin by plasma-induced grafting technique for pollutant treatment. Chem. Eng. J. 2013, 229, 296–303. [Google Scholar] [CrossRef]
- Repo, E.; Warchol, J.K.; Bhatnagar, A.; Mudhoo, A.; Sillanpaa, M. Aminopolycarboxylic acid functionalized adsorbents for heavy metals removal from water. Water Res. 2013, 47, 4812–4832. [Google Scholar] [CrossRef] [PubMed]
- Jurecska, L.; Dobosy, P.; Barkacs, K.; Fenyvesi, E.; Zaray, G. Characterization of cyclodextrin containing nanofilters for removal of pharmaceutical residues (Reprinted from International Journal of Pharmaceutical and Biomedical Analysis, vol 98, pg 90–93, 2014). J. Pharm. Biomed. 2015, 106, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Alsbaiee, A.; Smith, B.J.; Xiao, L.; Ling, Y.; Helbling, D.E.; Dichtel, W.R. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 2016, 529, 190–194. [Google Scholar] [CrossRef]
- Lo Meo, P.; Lazzara, G.; Liotta, L.; Riela, S.; Noto, R. Cyclodextrin-calixarene co-polymers as a new class of nanosponges. Polym. Chem. 2014, 5, 4499–4510. [Google Scholar] [CrossRef]
- Hu, X.; Hu, Y.; Xu, G.; Li, M.; Zhu, Y.; Jiang, L.; Tu, Y.; Zhu, X.; Xie, X.; Li, A. Green synthesis of a magnetic β-cyclodextrin polymer for rapid removal of organic micro-pollutants and heavy metals from dyeing wastewater. Environ. Res. 2020, 180, 108796. [Google Scholar] [CrossRef]
- García-Díaz, E.; Zhang, D.; Li, Y.; Verduzco, R.; Alvarez, P.J.J. TiO2 microspheres with cross-linked cyclodextrin coating exhibit improved stability and sustained photocatalytic degradation of bisphenol A in secondary effluent. Water Res. 2020, 183, 116095. [Google Scholar] [CrossRef]
- Khammar, S.; Bahramifar, N.; Younesi, H. Preparation and surface engineering of CM-β-CD functionalized Fe3O4@TiO2 nanoparticles for photocatalytic degradation of polychlorinated biphenyls (PCBs) from transformer oil. J. Hazard Mater. 2020, 394, 122422. [Google Scholar] [CrossRef]
- Wagner, A.J.; Zubarev, D.Y.; Aspuru-Guzik, A.; Blackmond, D.G. Chiral Sugars Drive Enantioenrichment in Prebiotic Amino Acid Synthesis. Acs Central Sci. 2017, 3, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Knight, B.; Stache, E.; Ferreira, E. An analysis of the complementary stereoselective alkylations of imidazolidinone derivatives toward α-quaternary proline-based amino amides. Tetrahedron 2015, 71, 5814–5823. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Munoz, D.; Kasprzyk-Hordern, B. Multi-residue enantiomeric analysis of human and veterinary pharmaceuticals and their metabolites in environmental samples by chiral liquid chromatography coupled with tandem mass spectrometry detection. Anal. Bioanal. Chem. 2015, 407, 9085–9104. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Li, Z.; Zhang, H.; Xu, J.F.; Qi, P.P.; Xu, H.; Wang, Q.; Wang, X.Q. Environmental Behavior of the Chiral Organophosphorus Insecticide Acephate and Its Chiral Metabolite Methamidophos: Enantioselective Transformation and Degradation in Soils. Environ. Sci. Technol. 2013, 47, 9233–9240. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, G.; Stalcup, A.M. Chiral Separation Techniques: A Practical Approach. J. Am. Chem. Soc. 2007, 129, 8922–8923. [Google Scholar]
- Pieri, M.; Miraglia, N.; Acampora, A.; Genovese, G.; Soleo, L.; Sannolo, N. Determination of urinary S-phenylmercapturic acid by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2003, 795, 347–354. [Google Scholar] [CrossRef]
- Sabatini, L.; Barbieri, A.; Indiveri, P.; Mattioli, S.; Violante, F.S. Validation of an HPLC–MS/MS method for the simultaneous determination of phenylmercapturic acid, benzylmercapturic acid and o-methylbenzyl mercapturic acid in urine as biomarkers of exposure to benzene, toluene and xylenes. J. Chromatogr. B 2008, 863, 115–122. [Google Scholar] [CrossRef] [PubMed]
- B’Hymer, C. Validation of an HPLC-MS-MS Method for the Determination of Urinary S-Benzylmercapturic Acid and S-Phenylmercapturic Acid. J. Chromatogr. Sci. 2011, 49, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Schettgen, T.; Musiol, A.; Alt, A.; Kraus, T. Fast determination of urinary S-phenylmercapturic acid (S-PMA) and S-benzylmercapturic acid (S-BMA) by column-switching liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2008, 863, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, A.; Sabatini, L.; Accorsi, A.; Roda, A.; Violante, F.S. Simultaneous determination of t,t-muconic, S-phenylmercapturic and S-benzylmercapturic acids in urine by a rapid and sensitive liquid chromatography/electrospray tandem mass spectrometry method. Rapid Commun. Mass Spectrom. 2004, 18, 1983–1988. [Google Scholar] [CrossRef]
- Chou, J.S.; Lin, Y.C.; Ma, Y.C.; Sheen, J.F.; Shih, T.S. Measurement of benzylmercapturic acid in human urine by liquid chromatography-electrospray ionization-tandem quadrupole mass spectrometry. J. Anal. Toxicol. 2006, 30, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Immohra, L.I.; Pein-Hackelbusch, M. Development of stereoselective e-tongue sensors considering the sensor performance using specific quality attributes-A bottom up approach. Sensor Actuat. B Chem. 2017, 253, 868–878. [Google Scholar] [CrossRef]
- Girschikofsky, M.; Ryvlin, D.; Waldvogel, S.R.; Hellmann, R. Optical Sensor for Real-Time Detection of Trichlorofluoromethane. Sensors 2019, 19, 632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Wang, H.; Jin, Y.; Shuang, Y.; Li, L. Preparation of a new benzylureido-β-cyclodextrin-based column and its application for the determination of phenylmercapturic acid and benzylmercapturic acid enantiomers in human urine by LC/MS/MS. Anal. Bioanal. Chem. 2019, 411, 5465–5479. [Google Scholar] [CrossRef]
- Fliszar-Nyul, E.; Lemli, B.; Kunsagi-Mate, S.; Szente, L.; Poor, M. Interactions of Mycotoxin Alternariol with Cyclodextrins and Its Removal from Aqueous Solution by Beta-Cyclodextrin Bead Polymer. Biomolecules 2019, 9, 428. [Google Scholar] [CrossRef] [Green Version]
- Carcu-Dobrin, M.; Sabau, A.G.; Hancu, G.; Arpad, G.; Rusu, A.; Kelemen, H.; Papp, L.A.; Carje, A. Chiral discrimination of amlodipine from pharmaceutical products using capillary electrophoresis. Braz. J. Pharm. Sci. 2020, 56, 56. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Kobayashi, Y.; Sekine, T.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H.; Harada, A. Visible chiral discrimination via macroscopic selective assembly. Commun. Chem. 2018, 1, 4. [Google Scholar] [CrossRef]
- Fane, A.G.; Wang, R.; Hu, M.X. Synthetic Membranes for Water Purification: Status and Future. Angew. Chem. Int. Ed. 2015, 54, 3368–3386. [Google Scholar] [CrossRef]
- Saufi, S.M.; Fee, C.J. Mixed matrix membrane chromatography based on hydrophobic interaction for whey protein fractionation. J. Membr. Sci. 2013, 444, 157–163. [Google Scholar] [CrossRef]
- Moron-Lopez, J.; Nieto-Reyes, L.; Senan-Salinas, J.; Molina, S.; El-Shehawy, R. Recycled desalination membranes as a support material for biofilm development: A new approach for microcystin removal during water treatment. Sci. Total. Environ. 2019, 647, 785–793. [Google Scholar] [CrossRef]
- Eren, E.; Sarihan, A.; Eren, B.; Gumus, H.; Kocak, F.O. Preparation, characterization and performance enhancement of polysulfone ultrafiltration membrane using PBI as hydrophilic modifier. J. Membr. Sci. 2015, 475, 1–8. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Wang, L.L.; Xu, Y. ZrO2 solid superacid porous shell/void/TiO2 core particles (ZVT)/polyvinylidene fluoride (PVDF) composite membranes with anti-fouling performance for sewage treatment. Chem. Eng. J. 2015, 260, 258–268. [Google Scholar] [CrossRef]
- Dhiman, P.; Bhatia, M. Pharmaceutical applications of cyclodextrins and their derivatives. J. Incl. Phenom. Macrocycl. 2020, 98, 171–186. [Google Scholar] [CrossRef]
- Martin del Valle, E. Cyclodextrins and their uses: A review. Process. Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Schneiderman, E.; Stalcup, A.M. Cyclodextrins: A versatile tool in separation science. J. Chromatogr. B 2000, 745, 83–102. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Crini, G. Environmental applications of water-insoluble β-cyclodextrin–epichlorohydrin polymers. Prog. Polym. Sci. 2013, 38, 344–368. [Google Scholar] [CrossRef]
- Pangeni, R.; Choi, J.U.; Panthi, V.K.; Byun, Y.; Park, J.W. Enhanced oral absorption of pemetrexed by ion-pairing complex formation with deoxycholic acid derivative and multiple nanoemulsion formulations: Preparation, characterization, and in vivo oral bioavailability and anticancer effect. Int. J. Nanomed. 2018, 13, 3329–3351. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Z.; Lin, H.B.; Liu, F.; Yu, X.M.; Wang, Y.Z.; Wang, Y. A new strategy to simultaneously improve the permeability, heat-deformation resistance and antifouling properties of polylactide membrane via bio-based beta-cyclodextrin and surface crosslinking. J. Membr. Sci. 2016, 513, 166–176. [Google Scholar] [CrossRef]
- Peng, X.; Peng, L.L.; Wu, C.Z.; Xie, Y. Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 2014, 43, 3303–3323. [Google Scholar] [CrossRef]
- Akbarzade, S.; Chamsaz, M.; Rounaghi, G.H. Highly selective preconcentration of ultra-trace amounts of lead ions in real water and food samples by dispersive solid phase extraction using modified magnetic graphene oxide as a novel sorbent. Anal. Methods 2018, 10, 2081–2087. [Google Scholar] [CrossRef]
- Yang, K.; Chen, B.; Zhu, L. Graphene-coated materials using silica particles as a framework for highly efficient removal of aromatic pollutants in water. Sci. Rep. 2015, 5, 11641. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Liu, Z.Y.; Sun, D.D.; Ng, W.J. The efficient separation of surfactant-stabilized oil-water emulsions with a flexible and superhydrophilic graphene-TiO2 composite membrane. J. Mater. Chem. A 2014, 2, 14082–14088. [Google Scholar] [CrossRef]
- Peng, Y.M.; Nie, J.P.; Cheng, W.; Liu, G.; Zhu, D.W.; Zhang, L.H.; Liang, C.Y.; Mei, L.; Huang, L.Q.; Zeng, X.W. A multifunctional nanoplatform for cancer chemo-photothermal synergistic therapy and overcoming multidrug resistance. Biomater. Sci. 2018, 6, 1084–1098. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.Y.; Laurent, S.; Chen, W.; Akhavan, O.; Imani, M.; Ashkarran, A.A.; Mahmoudi, M. Graphene: Promises, Facts, Opportunities, and Challenges in Nanomedicine. Chem. Rev. 2013, 113, 3407–3424. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-H.; Liu, Z.; Hu, J.-Q.; Cai, Q.-W.; Li, X.-Y.; Wang, W.; Faraj, Y.; Ju, X.-J.; Xie, R.; Chu, L.-Y. β-Cyclodextrin-modified graphene oxide membranes with large adsorption capacity and high flux for efficient removal of bisphenol A from water. J. Membr. Sci. 2020, 595, 117510. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, D.; Yu, L.; Huang, Y. Light-triggered C60 release from a graphene/cyclodextrin nanoplatform for the protection of cytotoxicity induced by nitric oxide. J. Mater. Chem. B 2018, 6, 518–526. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, F.Y.; Huang, L.Q.; Lu, Y.X.; Chen, J. Cyclodextrin functionalized 3D-graphene for the removal of Cr(VI) with the easy and rapid separation strategy. Abstr. Pap. Am. Chem. S 2019, 258, 112854. [Google Scholar] [CrossRef]
- Connors, K.A. The stability of cyclodextrin complexes in solution. Chem. Rev. 1997, 97, 1325–1357. [Google Scholar] [CrossRef]
- Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98, 1743–1753. [Google Scholar] [CrossRef] [PubMed]
- Szejtli, J. Past, present, and future of cyclodextrin research. Pure Appl. Chem. 2004, 76, 1825–1845. [Google Scholar] [CrossRef] [Green Version]
- Del Castillo, T.; Marales-Sanfrutos, J.; Santoyo-González, F.; Magez, S.; Lopez-Jaramillo, F.J.; Garcia-Salcedo, J.A. Monovinyl Sulfone β-Cyclodextrin. A Flexible Drug Carrier System. Chemmedchem 2014, 9, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Faisal, Z.; Garai, E.; Csepregi, R.; Bakos, K.; Fliszar-Nyul, E.; Szente, L.; Balazs, A.; Cserhati, M.; Koszegi, T.; Urbanyi, B.; et al. Protective effects of beta-cyclodextrins vs. zearalenone-induced toxicity in HeLa cells and Tg(vtg1:mCherry) zebrafish embryos. Chemosphere 2020, 240, 124948. [Google Scholar] [CrossRef]
- Hu, Z.M.; Li, S.N.; Wang, S.K.; Zhang, B.; Huang, Q. Encapsulation of menthol into cyclodextrin metal-organic frameworks: Preparation, structure characterization and evaluation of complexing capacity. Food Chem. 2021, 338, 127839. [Google Scholar] [CrossRef]
- Chen, L.; Okuda, T.; Lu, X.Y.; Chan, H.K. Amorphous powders for inhalation drug delivery. Adv. Drug Deliv. Rev. 2016, 100, 102–115. [Google Scholar] [CrossRef] [PubMed]
- Stegemann, S.; Leveiller, F.; Franchi, D.; de Jong, H.; Linden, H. When poor solubility becomes an issue: From early stage to proof of concept. Eur. J. Pharm. Sci. 2007, 31, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Wauthoz, N.; Amighi, K. Formulation Strategies for Pulmonary Delivery of Poorly Soluble Drugs; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 87–122. [Google Scholar]
- Nishimura, K.; Hidaka, R.; Hirayama, F.; Arima, H.; Uekama, K. Improvement of Dispersion and Release Properties of Nifedipine in Suppositoriesby Complexation with 2-Hydroxypropyl-β-cyclodextrin. J. Incl. Phenom. Macrocycl. 2006, 56, 85–88. [Google Scholar] [CrossRef]
- Wang, Y.; Han, B. ChemInform Abstract: Cyclodextrin-Based Porous Nanocapsules. ChemInform 2013, 44, 38. [Google Scholar] [CrossRef]
- Monteil, M.; Lecouvey, M.; Landy, D.; Ruellan, S.; Mallard, I. Cyclodextrins: A promising drug delivery vehicle for bisphosphonate. Carbohyd. Polym. 2017, 156, 285–293. [Google Scholar] [CrossRef]
- Hudock, M.P.; Sanz-Rodriguez, C.E.; Song, Y.C.; Chan, J.M.W.; Zhang, Y.H.; Odeh, S.; Kosztowski, T.; Leon-Rossell, A.; Concepcion, J.L.; Yardley, V.; et al. Inhibition of Trypanosoma cruzi hexokinase by bisphosphonates. J. Med. Chem. 2006, 49, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Szajnman, S.H.; Rosso, V.S.; Malayil, L.; Smith, A.; Moreno, S.N.J.; Docampo, R.; Rodriguez, J.B. 1-(Fluoroalkylidene)-1,1-bisphosphonic acids are potent and selective inhibitors of the enzymatic activity of Toxoplasma gondii farnesyl pyrophosphate synthase. Org. Biomol. Chem. 2012, 10, 1424–1433. [Google Scholar] [CrossRef] [Green Version]
- Ho, D.K.; Costa, A.; De Rossi, C.; Carvalho-Wodarz, C.D.; Loretz, B.; Lehr, C.M. Polysaccharide Submicrocarrier for Improved Pulmonary Delivery of Poorly Soluble Anti-infective Ciprofloxacin: Preparation, Characterization, and Influence of Size on Cellular Uptake. Mol. Pharm. 2018, 15, 1081–1096. [Google Scholar] [CrossRef]
- Khelghati, N.; Rasmi, Y.; Farahmandan, N.; Sadeghpour, A.; Mir, S.M.; Karimian, A.; Yousefi, B. Hyperbranched polyglycerol β-cyclodextrin as magnetic platform for optimization of doxorubicin cytotoxic effects on Saos-2 bone cancerous cell line. J. Drug Deliv. Sci. Technol. 2020, 57, 101741. [Google Scholar] [CrossRef]
- Li, R.; Li, X.; Zhang, Y.; Delawder, A.O.; Colley, N.D.; Whiting, E.A.; Barnes, J.C. Diblock brush-arm star copolymers via a core-first/graft-from approach using γ-cyclodextrin and ROMP: A modular platform for drug delivery. Polym. Chem. 2020, 11, 541–550. [Google Scholar] [CrossRef]
- Blencowe, A.; Tan, J.F.; Goh, T.K.; Qiao, G.G. Core cross-linked star polymers via controlled radical polymerisation. Polymer 2009, 50, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.M.; McKenzie, T.G.; Fu, Q.; Wong, E.H.; Xu, J.; An, Z.; Shanmugam, S.; Davis, T.P.; Boyer, C.; Qiao, G.G. Star Polymers. Chem. Rev. 2016, 116, 6743–6836. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Sarkar, B.; Roy, P.; Basak, C.; Chakraborty, R.; Gardas, R.L. Physicochemical investigations of amino acid ionic liquid based inclusion complex probed by spectral and molecular docking techniques. J. Mol. Liq. 2019, 291, 111255. [Google Scholar] [CrossRef]
- Viale, M.; Vecchio, G.; Monticone, M.; Bertone, V.; Giglio, V.; Maric, I.; Cilli, M.; Bocchini, V.; Profumo, A.; Ponzoni, M.; et al. Fibrin Gels Entrapment of a Poly-Cyclodextrin Nanocarrier as a Doxorubicin Delivery System in an Orthotopic Model of Neuroblastoma: Evaluation of In Vitro Activity and In Vivo Toxicity. Pharm. Res. 2019, 36, 115. [Google Scholar] [CrossRef] [PubMed]
- Haley, R.M.; Zuckerman, S.T.; Gormley, C.A.; Korley, J.N.; von Recum, H.A. Local delivery polymer provides sustained antifungal activity of amphotericin B with reduced cytotoxicity. Exp. Biol. Med. 2019, 244, 526–533. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.J.; Yao, N.; Qian, L.; Zhang, X.F.; Chen, Q.; Wang, J.F.; Zhang, L.J. pH-responsive unimolecular micelle-gold nanoparticles-drug nanohybrid system for cancer theranostics. Acta Biomater. 2017, 58, 455–465. [Google Scholar] [CrossRef]
- Liu, H.; Chen, J.; Li, X.; Deng, Z.; Gao, P.; Li, J.; Ren, T.; Huang, L.; Yang, Y.; Zhong, S. Amphipathic β-cyclodextrin nanocarriers serve as intelligent delivery platform for anticancer drug. Colloids Surf. B Biointerfaces 2019, 180, 429–440. [Google Scholar] [CrossRef]
- Namgung, R.; Lee, Y.; Kim, J.; Jang, Y.; Lee, B.-H.; Kim, I.-S.; Sokkar, P.; Rhee, Y.; Hoffman, A.; Kim, W. Poly-cyclodextrin and poly-paclitaxel nano-assembly for anticancer therapy. Nat. Commun. 2014, 5, 3702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Y.; Liu, X.; Huang, M.; Jiang, J.; Liao, Y.-P.; Liu, Q.; Chang, C.H.; Liao, H.; Lu, J.; Wang, X.; et al. Development of self-assembled multi-arm polyrotaxanes nanocarriers for systemic plasmid delivery in vivo. Biomaterials 2019, 192, 416–428. [Google Scholar] [CrossRef] [PubMed]
- Tamura, A.; Yui, N. Polyrotaxane-based systemic delivery of β-cyclodextrins for potentiating therapeutic efficacy in a mouse model of Niemann-Pick type C disease. J. Control. Release 2018, 269, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.; Caporali, P.; Dolas, A.; Johny, S.; Goyal, S.; Dragotto, J.; Macone, A.; Jayaraman, R.; Fiorenza, M.T. Linear Cyclodextrin Polymer Prodrugs as Novel Therapeutics for Niemann-Pick Type C1 Disorder. Sci. Rep. 2018, 8, 9547. [Google Scholar] [CrossRef] [Green Version]
Formulations | Drugs Carried | Application Effect | System Size | Ref. |
---|---|---|---|---|
PGAβCyD | Doxorubicin | Inhibit tumor tissue growth, Reduce the side effects of doxorubicin | 5.5 nm | [47] |
PGAγCyD. | Doxorubicin | Inhibit tumor tissue growth, Reduce the side effects of doxorubicin | 5.5 nm | [47] |
CD/BP | Bisphosphonate | Treat parasitic diseases | ND | [121] |
sMC | Ciprofloxacin | Improve the solubility and release of the drug | 400–900 nm | [124] |
HPG-β-CD | Doxorubicin | Reduce the side effects of doxorubicin | 30 nm | [125] |
DBASC | Doxorubicin | Inhibit tumor tissue growth, Reduce the side effects of doxorubicin | 10.0–11.0 nm | [126] |
PN-β-CD | Real drug cell drugs | Non-toxic, drug-acceptable, low-cost, and environmentally friendly carrier | ND | [129] |
CD-NH2/Dox | Doxorubicin | Treatment of neuroblastoma | 3.2 nm | [130] |
pCDs | AmB | Treatment of clinical fungus | 2–15 kDa | [131] |
β-CD-(PLA-PDMAEMA-PEtOxMA)21 | Doxorubicin | Inhibit tumor tissue growth | 27–28 nm | [132] |
CCSP | Doxorubicin | Reduce drug leakage and increase drug load content | 40–50 nm | [133] |
Polymer—cyclodextrin conjugate | Polymer—paclitaxel conjugate | Confer high stability to the nano-assembly | 54.6 ± 11.6 nm | [134] |
pCD polyrotaxane | interleukin 12 | Protective packaging | 193 ± 6.2 nm | [135] |
β-CD/Pluronic P123-based polyrotaxane | β-CD | Treating NPC | 29,000 Da | [136] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Lin, T.; Cheng, C.; Wang, Q.; Lin, S.; Liu, C.; Han, X. Research Progress on Synthesis and Application of Cyclodextrin Polymers. Molecules 2021, 26, 1090. https://doi.org/10.3390/molecules26041090
Liu Y, Lin T, Cheng C, Wang Q, Lin S, Liu C, Han X. Research Progress on Synthesis and Application of Cyclodextrin Polymers. Molecules. 2021; 26(4):1090. https://doi.org/10.3390/molecules26041090
Chicago/Turabian StyleLiu, Yuan, Ting Lin, Cui Cheng, Qiaowen Wang, Shujin Lin, Chun Liu, and Xiao Han. 2021. "Research Progress on Synthesis and Application of Cyclodextrin Polymers" Molecules 26, no. 4: 1090. https://doi.org/10.3390/molecules26041090
APA StyleLiu, Y., Lin, T., Cheng, C., Wang, Q., Lin, S., Liu, C., & Han, X. (2021). Research Progress on Synthesis and Application of Cyclodextrin Polymers. Molecules, 26(4), 1090. https://doi.org/10.3390/molecules26041090