Fourier Transform Infrared (FTIR) Spectroscopic Analyses of Microbiological Samples and Biogenic Selenium Nanoparticles of Microbial Origin: Sample Preparation Effects
Abstract
:1. Introduction
2. Results and Discussion
2.1. Bacterial Biomass: Sample Treatment Effects in FTIR Spectroscopic Analysis
2.1.1. Effects of Grinding
2.1.2. Effects of Drying
2.2. Analysis of Bacterially Synthesised Selenium Nanoparticles by FTIR Spectroscopy
3. Materials and Methods
3.1. Bacterial Strains and Growth Conditions
3.2. Bacterial Synthesis of SeNPs and Their Purification
3.3. Sample Preparation for FTIR Spectroscopic Analyses
3.4. FTIR Spectroscopic Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability: Samples of the bacterial biomass and SeNPs are available from the authors. |
References
- Xu, J.-L.; Gowen, A.A. Time series Fourier transform infrared spectroscopy for characterization of water vapor sorption in hydrophilic and hydrophobic polymeric films. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 250, 119371. [Google Scholar] [CrossRef] [PubMed]
- Frandsen, B.N.; Deal, A.M.; Lane, J.R.; Vaida, V. Lactic acid spectroscopy: Intra- and intermolecular interactions. J. Phys. Chem. A 2021, 125, 218–229. [Google Scholar] [CrossRef]
- Kannan, P.P.; Karthick, N.K.; Arivazhagan, G. Hydrogen bond interactions in the binary solutions of formamide with methanol: FTIR spectroscopic and theoretical studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 229, 117892. [Google Scholar] [CrossRef]
- Camisasca, G.; Schlesinger, D.; Zhovtobriukh, I.; Pitsevich, G.; Pettersson, L.G.M. A proposal for the structure of high- and low-density fluctuations in liquid water. J. Chem. Phys. 2019, 151, 034508. [Google Scholar] [CrossRef]
- Duarte, L.J.; Bruns, R.E. FTIR and dispersive gas phase absolute infrared intensities of hydrocarbon fundamental bands. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 214, 1–6. [Google Scholar] [CrossRef]
- Gao, X.; Leng, C.; Zeng, G.; Fu, D.; Zhang, Y.; Liu, Y. Ozone initiated heterogeneous oxidation of unsaturated carboxylic acids by ATR-FTIR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 214, 177–183. [Google Scholar] [CrossRef]
- Sato, E.T.; Machado, N.; Araújo, D.R.; Paulino, L.C.; Martinho, H. Fourier transform infrared absorption (FTIR) on dry stratum corneum, corneocyte-lipid interfaces: Experimental and vibrational spectroscopy calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 249, 119218. [Google Scholar] [CrossRef]
- Chrisikou, I.; Orkoula, M.; Kontoyannis, C. FT-IR/ATR solid film formation: Qualitative and quantitative analysis of a piperacillin-tazobactam formulation. Molecules 2020, 25, 6051. [Google Scholar] [CrossRef]
- Gorbikova, E.; Samsonov, S.A.; Kalendar, R. Probing the proton-loading site of cytochrome c oxidase using time-resolved Fourier transform infrared spectroscopy. Molecules 2020, 25, 3393. [Google Scholar] [CrossRef] [PubMed]
- Bekiaris, G.; Koutrotsios, G.; Tarantilis, P.A.; Pappas, C.S.; Zervakis, G.I. FTIR assessment of compositional changes in lignocellulosic wastes during cultivation of Cyclocybe cylindracea mushrooms and use of chemometric models to predict production performance. J. Mater. Cycles Waste Manag. 2020, 22, 1027–1035. [Google Scholar] [CrossRef]
- Andrushchenko, V.; Pohle, W. Influence of the hydrophobic domain on the self-assembly and hydrogen bonding of hydroxy-amphiphiles. Phys. Chem. Chem. Phys. 2019, 21, 11242–11258. [Google Scholar] [CrossRef] [Green Version]
- Procacci, B.; Rutherford, S.H.; Greetham, G.M.; Towrie, M.; Parker, A.W.; Robinson, C.V.; Howle, C.R.; Hunt, N.T. Differentiation of bacterial spores via 2D-IR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 249, 119319. [Google Scholar] [CrossRef]
- Elkadi, O.A.; Hassan, R.; Elanany, M.; Byrne, H.J.; Ramadan, M.A. Identification of Aspergillus species in human blood plasma by infrared spectroscopy and machine learning. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 248, 119259. [Google Scholar] [CrossRef]
- Yang, J.; Yin, C.; Miao, X.; Meng, X.; Liu, Z.; Hu, L. Rapid discrimination of adulteration in Radix astragali combining diffuse reflectance mid-infrared Fourier transform spectroscopy with chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 248, 119251. [Google Scholar] [CrossRef]
- Grace, C.E.E.; Lakshmi, P.K.; Meenakshi, S.; Vaidyanathan, S.; Srisudha, S.; Mary, M.B. Biomolecular transitions and lipid accumulation in green microalgae monitored by FTIR and Raman analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 224, 117382. [Google Scholar] [CrossRef] [PubMed]
- Alugoju, P.; Narsimulu, D.; Bhanu, J.U.; Satyanarayana, N.; Periyasamy, L. Role of quercetin and caloric restriction on the biomolecular composition of aged rat cerebral cortex: An FTIR study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 220, 117128. [Google Scholar] [CrossRef]
- Marques, V.; Cunha, B.; Couto, A.; Sampaio, P.; Fonseca, L.P.; Aleixo, S.; Calado, C.R.C. Characterization of gastric cells infection by diverse Helicobacter pylori strains through Fourier-transform infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 210, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Katti, D.R.; Katti, K.S. Fourier transform infrared spectroscopy based spectral biomarkers of metastasized breast cancer progression. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 208, 85–96. [Google Scholar] [CrossRef]
- Naumann, D. Infrared spectroscopy in microbiology. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; Wiley: Chichester, UK, 2000; pp. 102–131. [Google Scholar] [CrossRef]
- Ojeda, J.J.; Dittrich, M. Fourier transform infrared spectroscopy for molecular analysis of microbial cells. In Microbial Systems Biology: Methods and Protocols. Methods in Molecular Biology; Navid, A., Ed.; Humana Press: Totowa, NJ, USA, 2012; Volume 881, Chapter 8; pp. 187–211. [Google Scholar] [CrossRef]
- Kamnev, A.A.; Sadovnikova, J.N.; Tarantilis, P.A.; Polissiou, M.G.; Antonyuk, L.P. Responses of Azospirillum brasilense to nitrogen deficiency and to wheat lectin: A diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic study. Microb. Ecol. 2008, 56, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Pistorius, A.M.A.; DeGrip, W.J.; Egorova-Zachernyuk, T.A. Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotechnol. Bioeng. 2009, 103, 123–129. [Google Scholar] [CrossRef]
- Maity, J.P.; Kar, S.; Lin, C.-M.; Chen, C.-Y.; Chang, Y.-F.; Jean, J.-S.; Kulp, T.R. Identification and discrimination of bacteria using Fourier transform infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 116, 478–484. [Google Scholar] [CrossRef]
- Kamnev, A.A.; Tugarova, A.V.; Dyatlova, Y.A.; Tarantilis, P.A.; Grigoryeva, O.P.; Fainleib, A.M.; De Luca, S. Methodological effects in Fourier transform infrared (FTIR) spectroscopy: Implications for structural analyses of biomacromolecular samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 193, 558–564. [Google Scholar] [CrossRef]
- Tugarova, A.V.; Dyatlova, Y.A.; Kenzhegulov, O.A.; Kamnev, A.A. Poly-3-hydroxybutyrate synthesis by different Azospirillum brasilense strains under varying nitrogen deficiency: A comparative in-situ FTIR spectroscopic analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 252, 119458. [Google Scholar] [CrossRef] [PubMed]
- Bashan, Y.; de-Bashan, L.E. How the plant growth-promoting bacterium Azospirillum promotes plant growth—A critical assessment. Adv. Agron. 2010, 108, 77–136. [Google Scholar] [CrossRef]
- Cassán, F.; Okon, Y.; Creus, C. (Eds.) Handbook for Azospirillum. Technical Issues and Protocols; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Cassán, F.; Coniglio, A.; López, G.; Molina, R.; Nievas, S.; de Carlan, C.L.N.; Donadio, F.; Torres, D.; Rosas, S.; Pedrosa, F.O.; et al. Everything you must know about Azospirillum and its impact on agriculture and beyond. Biol. Fertil. Soils 2020, 56, 461–479. [Google Scholar] [CrossRef]
- Tarrand, J.J.; Krieg, N.R.; Döbereiner, J. A taxonomic study of the Spirillum lipoferum group, with description of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerink) comb. nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol. 1978, 24, 967–980. [Google Scholar] [CrossRef]
- Baldani, V.L.D.; Baldani, J.I.; Döbereiner, J. Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can. J. Microbiol. 1983, 29, 924–929. [Google Scholar] [CrossRef]
- Ferreira, N.d.S.; Sant’Anna, F.H.; Reis, V.M.; Ambrosini, A.; Volpiano, C.G.; Rothballer, M.; Schwab, S.; Baura, V.A.; Balsanelli, E.; Pedrosa, F.d.O.; et al. Genome-based reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. nov. Int. J. Syst. Evol. Microbiol. 2020, 70. [Google Scholar] [CrossRef]
- Tugarova, A.V.; Vetchinkina, E.P.; Loshchinina, E.A.; Burov, A.M.; Nikitina, V.E.; Kamnev, A.A. Reduction of selenite by Azospirillum brasilense with the formation of selenium nanoparticles. Microb. Ecol. 2014, 68, 495–503. [Google Scholar] [CrossRef]
- Tugarova, A.V.; Mamchenkova, P.V.; Khanadeev, V.A.; Kamnev, A.A. Selenite reduction by the rhizobacterium Azospirillum brasilense, synthesis of extracellular selenium nanoparticles and their characterisation. New Biotechnol. 2020, 58, 17–24. [Google Scholar] [CrossRef]
- Tugarova, A.V.; Kamnev, A.A. Proteins in microbial synthesis of selenium nanoparticles. Talanta 2017, 174, 539–547. [Google Scholar] [CrossRef]
- Ojeda, J.J.; Merroun, M.L.; Tugarova, A.V.; Lampis, S.; Kamnev, A.A.; Gardiner, P.H.E. Developments in the study and applications of bacterial transformations of selenium species. Crit. Rev. Biotechnol. 2020, 40, 1250–1264. [Google Scholar] [CrossRef]
- Bulgarini, A.; Lampis, S.; Turner, R.J.; Vallini, J. Biomolecular composition of capping layer and stability of biogenic selenium nanoparticles synthesized by five bacterial species. Microb. Biotechnol. 2021, 14. [Google Scholar] [CrossRef]
- Sato, H.; Dybal, J.; Murakami, R.; Noda, I.; Ozaki, Y. Infrared and Raman spectroscopy and quantum chemistry calculation studies of C–H⋯O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoate. J. Mol. Struct. 2005, 744–747, 35–46. [Google Scholar] [CrossRef]
- Padermshoke, A.; Katsumoto, Y.; Sato, H.; Ekgasit, S.; Noda, I.; Ozaki, Y. Melting behavior of poly(3-hydroxybutyrate) investigated by two-dimensional infrared correlation spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 541–550. [Google Scholar] [CrossRef]
- Kansiz, M.; Domínguez-Vidal, A.; McNaughton, D.; Lendl, B. Fourier-transform infrared (FTIR) spectroscopy for monitoring and determining the degree of crystallisation of polyhydroxyalkanoates (PHAs). Anal. Bioanal. Chem. 2007, 388, 1207–1213. [Google Scholar] [CrossRef]
- Müller-Santos, M.; Koskimäki, J.J.; Alves, L.P.S.; de Souza, E.M.; Jendrossek, D.; Pirttilä, A.M. The protective role of PHB and its degradation products against stress situations in bacteria. FEMS Microbiol. Rev. 2021, 45. [Google Scholar] [CrossRef]
- Obruca, S.; Sedlacek, P.; Slaninova, E.; Fritz, I.; Daffert, C.; Meixner, K.; Sedrlova, Z.; Koller, M. Novel unexpected functions of PHA granules. Appl. Microbiol. Biotechnol. 2020, 104, 4795–4810. [Google Scholar] [CrossRef] [PubMed]
- Sedlacek, P.; Slaninova, E.; Koller, M.; Nebesarova, J.; Marova, I.; Krzyzanek, V.; Obruca, S. PHA granules help bacterial cells to preserve cell integrity when exposed to sudden osmotic imbalances. New Biotechnol. 2019, 49, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Sedlacek, P.; Slaninova, E.; Enev, V.; Koller, M.; Nebesarova, J.; Marova, I.; Hrubanova, K.; Krzyzanek, V.; Samek, O.; Obruca, S. What keeps polyhydroxyalkanoates in bacterial cells amorphous? A derivation from stress exposure experiments. Appl. Microbiol. Biotechnol. 2019, 103, 1905–1917. [Google Scholar] [CrossRef]
- Obruca, S.; Sedlacek, P.; Koller, M.; Kucera, D.; Pernicova, I. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol. Adv. 2018, 36, 856–870. [Google Scholar] [CrossRef] [PubMed]
- Müller-Santos, M.; de Souza, E.M.; Pedrosa, F.d.O.; Chubatsu, L.S. Polyhydroxybutyrate in Azospirillum brasilense. In Handbook for Azospirillum; Cassán, F., Okon, Y., Creus, C., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Chapter 13; pp. 241–250. [Google Scholar] [CrossRef]
- Talari, A.C.S.; Martinez, M.A.G.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2017, 52, 456–506. [Google Scholar] [CrossRef]
- Kamnev, A.A.; Mamchenkova, P.V.; Dyatlova, Y.A.; Tugarova, A.V. FTIR spectroscopic studies of selenite reduction by cells of the rhizobacterium Azospirillum brasilense Sp7 and the formation of selenium nanoparticles. J. Mol. Struct. 2017, 1140, 106–112. [Google Scholar] [CrossRef]
- Tugarova, A.V.; Scheludko, A.V.; Dyatlova, Y.A.; Filip’echeva, Y.A.; Kamnev, A.A. FTIR spectroscopic study of biofilms formed by the rhizobacterium Azospirillum brasilense Sp245 and its mutant Azospirillum brasilense Sp245.1610. J. Mol. Struct. 2017, 1140, 142–147. [Google Scholar] [CrossRef]
- Turkovskaya, O.V.; Golubev, S.N. The Collection of Rhizosphere Microorganisms: Its importance for the study of associative plant-bacterium interactions. Vavilov J. Genet. Breed. 2020, 24, 315–324. [Google Scholar] [CrossRef]
Samples of A. baldaniorum Sp245 | Assignment (Functional Groups) | |
---|---|---|
Without Grinding | With Grinding | |
3288 | 3286 | O–H; N–H (amide A in proteins), ν |
2962 | 2961 | C–H in –CH3, νas |
2930 | 2929 | C–H in >CH2, νas |
2878 | 2877 | C–H in –CH3, νs |
2854 | 2854 | C–H in >CH2, νs |
1737 | 1729 | Ester C=O, ν (PHB; phospholipids) |
1654 | 1653 | Amide I (proteins) |
1543 | 1542 | Amide II (proteins) |
1454 | 1453 | –CH3, δ (in proteins, lipids, polyesters, etc.) |
1391 | 1388 | COO−, νs (in amino acid side chains and carboxylated polysaccharides) 2 |
1301 | 1285 | C–O–C/C–C–O, ν (in esters; PHB) |
1246 | 1236 | C–O–C (esters)/amide III/O–P=O, νas |
1188 1124 | 1187 1127 | C–O, C–C, C–OH, ν; C–O–H, C–O–C, δ (polysaccharides) |
1084 | 1085 | O–P=O, νs |
Functional Groups | SeNPs without Washing | SeNPs after 1 Washing Step | SeNPs after 2 Washing Steps | SeNPs after 3 Washing Steps |
---|---|---|---|---|
C=O (ester), ν | 1737 (v.w.) 1728 (v.w.) | 1742 1726 (w.) | 1737 | 1734 |
Amide I (in proteins) | 1696 (v.w.) 1679 (v.w.) 1657 1635 (v.w.) | 1690 1676 (w.) 1658 (s.) 1644 | 1690 1675 (w.) 1655 (s.) 1627 | 1684 1668 (w.) 1654 (s.) 1633 |
Carboxylate (COO–, νas) | 1561(v.s.) | 1566 | 1583 (w.) | 1556 (w.) |
Amide II (in proteins) | 1539 (v.w.) | 1546 (s.) | 1549 (s.) | 1542 (s.) |
“Tyrosine” band | 1518 (w.) | 1516 | 1518 | 1520 |
Carboxylate (COO–, νs) | 1410 (s.) | 1409 | 1413 (w.) | 1418 (w.) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamnev, A.A.; Dyatlova, Y.A.; Kenzhegulov, O.A.; Vladimirova, A.A.; Mamchenkova, P.V.; Tugarova, A.V. Fourier Transform Infrared (FTIR) Spectroscopic Analyses of Microbiological Samples and Biogenic Selenium Nanoparticles of Microbial Origin: Sample Preparation Effects. Molecules 2021, 26, 1146. https://doi.org/10.3390/molecules26041146
Kamnev AA, Dyatlova YA, Kenzhegulov OA, Vladimirova AA, Mamchenkova PV, Tugarova AV. Fourier Transform Infrared (FTIR) Spectroscopic Analyses of Microbiological Samples and Biogenic Selenium Nanoparticles of Microbial Origin: Sample Preparation Effects. Molecules. 2021; 26(4):1146. https://doi.org/10.3390/molecules26041146
Chicago/Turabian StyleKamnev, Alexander A., Yulia A. Dyatlova, Odissey A. Kenzhegulov, Anastasiya A. Vladimirova, Polina V. Mamchenkova, and Anna V. Tugarova. 2021. "Fourier Transform Infrared (FTIR) Spectroscopic Analyses of Microbiological Samples and Biogenic Selenium Nanoparticles of Microbial Origin: Sample Preparation Effects" Molecules 26, no. 4: 1146. https://doi.org/10.3390/molecules26041146
APA StyleKamnev, A. A., Dyatlova, Y. A., Kenzhegulov, O. A., Vladimirova, A. A., Mamchenkova, P. V., & Tugarova, A. V. (2021). Fourier Transform Infrared (FTIR) Spectroscopic Analyses of Microbiological Samples and Biogenic Selenium Nanoparticles of Microbial Origin: Sample Preparation Effects. Molecules, 26(4), 1146. https://doi.org/10.3390/molecules26041146