Selenium Biofortification: Roles, Mechanisms, Responses and Prospects
Abstract
:1. Introduction
2. The Natural Form of Selenium and Its Deficiency and Toxicity Symptoms
2.1. Natural Form
2.2. Selenium Deficiency Symptoms
2.2.1. Symptoms in Human
2.2.2. Symptoms in Animals
2.3. Selenium Toxicity
2.3.1. Toxicity in Humans and Animals
2.3.2. Selenium Phytotoxicity
3. Importance of Selenium for Global Human Nutritional Security in the 21st Century
3.1. Health Benefits of Selenium for Humans
3.1.1. Selenium is a Strong Antioxidant
3.1.2. Selenium Reduces the Risk of Some Cancers
3.1.3. Selenium Protects Against Cardiovascular Problems
3.1.4. Selenium May Improve Some Mental Illnesses
3.1.5. Selenium Is Beneficial for Thyroid Health
3.1.6. Se Strengthens Immunity and May Reduce Breathing Difficulties
3.1.7. Finland Case Study: Selenium Biofortification of Human and Livestock Feed Crops
3.2. Importance of Selenium for Both Plants and Animals
3.2.1. For Plants
3.2.2. For Animals
4. Biofortification—A Sustainable Agricultural Strategy for Reducing Micronutrient Malnutrition
Locations | Soil Types | pH (H2O) | Total Soil Se µg/kg | Se in Cereal Grain µg/kg | References |
---|---|---|---|---|---|
Yangshuo, China | Ishumiso | 8.3 | 700 | 20 | Lyons et al. [113] Zhu et al. [116] |
Minnipa, South Australia | Calcareous Xerochrepts | 8.6 | 80 | 720 | Lyons et al. [113] Williams et al. [117] |
Charlick, South Australia | Typic Natrixeralf | 6.6 | 85 | 70 | Lyons et al. [113] Thavarajah et al. [118] |
East Zimbabwe | Typic Kandiustalf (ex-granitic parent material) | 5.0 | 30.000 | 7 | Lyons et al. [113] Winkel et al. [119] Fordyce et al. [120] |
4.1. Selenium Biofortification through Agronomic Management
4.1.1. Selenium Biofortification through Direct Soil Fertilization with Inorganic Fertilizers
4.1.2. Selenium Biofortification through the Foliar Application with Inorganic Fertilizers
4.1.3. Selenium Biofortification through Organic Fertilizers
4.2. Success of Selenium Biofortification in Food Crops Depends on a Better Understanding of the Genetic Variation of Crop Cultivars
4.3. Crop Breeding Assisted by Selenium Biofortification
4.4. Molecular and Genetic Engineering for Selenium Biofortification
4.4.1. Biofortification of Selenium through Molecular Approaches
4.4.2. Biofortification of Selenium through Genetic Engineering and Transgenics
4.5. Selenium Biofortification of Crops by Beneficial Microorganisms
4.5.1. Arbuscular Mycorrhizal Fungi (AMF) and Root Endophytic Fungi
4.5.2. Plant Growth-Promoting Rhizobacteria (PGPR)
5. Mechanisms to Uptake and Accumulate Selenium in Plants
5.1. Uptake Mechanisms
5.2. Accumulation Mechanisms
6. Prospects of Selenium Biofortification
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kieliszek, M. Selenium–fascinating microelement, properties and sources in food. Molecules 2019, 24, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galan-Chilet, I.; Tellez-Plaza, M.; Guallar, E.; De Marco, G.; Lopez-Izquierdo, R.; Gonzalez-Manzano, I.; Carmen Tormos, M.; Martin-Nuñez, G.M.; Rojo-Martinez, G.; Saez, G.T.; et al. Plasma selenium levels and oxidative stress biomarkers: A gene–environment interaction population-based study. Free Radic. Biol. Med. 2014, 74, 229–236. [Google Scholar] [CrossRef]
- Duntas, L.H.; Benvenga, S. Selenium: An element for life. Endocrine 2015, 48, 756–775. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M.; Błazejak, S. Current knowledge on the importance of selenium in food for living organisms: A review. Molecules 2016, 21, 609. [Google Scholar] [CrossRef] [Green Version]
- Nothstein, A.K.; Eiche, E.; Riemann, M.; Nick, P.; Winkel, L.H.E.; Göttlicher, J.; Steininger, R.; Brendel, R.; Brasch, M.V.; Konrad, G.; et al. Tracking se assimilation and speciation through the rice plant–nutrient competition, toxicity and distribution. PLoS ONE 2016, 26, e0152081. [Google Scholar] [CrossRef] [PubMed]
- Pilon-Smits, E.A.; Le Duc, D.L. Phytoremediation of selenium using transgenic plants. Curr. Opin. Biotechnol. 2009, 20, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Ullah, H.; Liu, G.; Yousaf, B.; Ali, M.U.; Abbas, Q.; Munir, M.A.M.; Mian, M.M. Developmental selenium exposure and health risk in daily foodstuffs: A systematic review and meta-analysis. Ecotoxicol. Environ. Saf. 2018, 149, 291–306. [Google Scholar] [CrossRef]
- McCann, J.C.; Ames, B.N. Adaptive dysfunction of selenoproteins from the perspective of the triage theory: Why modest selenium deficiency may increase risk of diseases of aging. FASEB J. 2011, 25, 1793–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shreenath, A.P.; Ameer, M.A.; Dooley, J. Selenium Deficiency. In Treasure Island (FL): StatPearls Publishing; 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482260/ (accessed on 30 January 2021).
- Longchamp, M.; Angeli, N.; Castrec-Rouelle, M. Selenium uptake in Zea mays supplied with selenate or selenite under hydroponic conditions. Plant Soil 2013, 362, 107–117. [Google Scholar] [CrossRef]
- Khanam, A.; Platel, K. Bioaccessibility of selenium, selenomethionine and selenocysteine from foods and influence of heat processing on the same. Food Chem. 2016, 194, 1293–1299. [Google Scholar] [CrossRef]
- Reich, H.J.; Hondal, R.J. Why nature chose selenium? ACS Chem. Biol. 2016, 11, 821–841. [Google Scholar] [CrossRef] [PubMed]
- Mason, R.P.; Soerensen, A.L.; DiMento, B.P.; Balcom, P.H. The global marine selenium cycle: Insights from measurements and modeling. Glob. Biogeochem. Cycles 2018, 32, 1720–1737. [Google Scholar] [CrossRef]
- Fordyce, F.M. Selenium deficiency and toxicity in the environment. In Essentials of Medical Geology; Selinus, O., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 375–416. [Google Scholar]
- Winkel, L.H.; Trang, P.T.K.; Lan, V.M.; Stengel, C.; Amini, M.; Ha, N.T.; Viet, P.H.; Berg, M. Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. Proc. Natl. Acad. Sci. USA 2011, 108, 1246–1251. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.; Niazi, N.K.; Khalid, S.; Murtaza, B.; Bibi, I.; Rashid, M.I. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ. Pollut. 2018, 234, 915–934. [Google Scholar]
- Söderlund, M.; Virkanen, J.; Holgersson, S.; Lehto, J. Sorption and speciation of selenium in boreal forest soil. J. Environ. Radioact. 2016, 164, 220–231. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Xiang, Y.; Zhou, Y.; Yang, Y.; Zhang, J.; Huang, H.; Shang, C.; Luo, L.; Gao, J.; Tang, L. Selenium contamination, consequences and remediation techniques in water and soils: A review. Environ. Res. 2018, 164, 288–301. [Google Scholar] [CrossRef] [PubMed]
- Tomza-Marciniak, A.; Bąkowska, M.; Pilarczyk, B.; Semeniuk, M.; Hendzel, D.; Udała, J.; Balicka-Ramisz, A.; Tylkowska, A. Concentration of selenium in the soil and in selected organs of roe deer (Capreolus capreolus) from the Greater Poland Voivodeship. Acta Sci. Pol. Zootech. 2010, 9, 251–260. [Google Scholar]
- Chilimba, A.D.; Young, S.D.; Black, C.R.; Meacham, M.C.; Lammel, J.; Broadley, M.R. Agronomic biofortification of maize with selenium (Se) in Malawi. Field Crop. Res. 2012, 125, 118–128. [Google Scholar] [CrossRef]
- Lopes, G.; Ávila, F.W.; Guilherme, L.R.G. Selenium behavior in the soil environment and its implication for human health. Ciência Agrotecnologia 2017, 41, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Stroud, J.; Broadley, M.; Foot, I.; Fairweather-Tait, S.; Hart, D.; Hurst, R.; Knott, P.; Mowat, H.; Norman, K.; Scott, P. Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilisers applied to soil. Plant Soil 2010, 332, 19–30. [Google Scholar] [CrossRef]
- Paikaray, S. Origin, mobilization and distribution of selenium in a soil/water/air system: A global perspective with special reference to the Indian scenario. Clean 2016, 44, 474–487. [Google Scholar] [CrossRef]
- WHO. Selenium in Drinking-Water. In Background Document for Preparation of WHO Guidelines for Drinking-Water Quality; World Health Organization (WHO/SDE/WSH/03.04/13): Geneva, Switzerland, 2003. [Google Scholar]
- Oropeza-Moe, M.; Wisløff, H.; Bernhoft, A. Selenium deficiency associated porcine and human cardiomyopathies. J. Trace Elem. Med. Biol. 2015, 31, 148–156. [Google Scholar] [CrossRef]
- Steinbrenner, H.; Sies, H. Selenium homeostasis and antioxidant selenoproteins in brain: Implications for disorders in the central nervous system. Arch. Biochem. Biophys. 2013, 536, 152–157. [Google Scholar] [CrossRef]
- Pillai, R.; Uyehara-Lock, J.H.; Bellinger, F.P. Selenium and selenoprotein function in brain disorders. IUBMB Life 2014, 66, 229–239. [Google Scholar] [CrossRef]
- Lipinski, B. Rationale for the treatment of cancer with sodium selenite. Med. Hypotheses 2005, 64, 806–810. [Google Scholar] [CrossRef] [PubMed]
- Okunade, K.S.; Olowoselu, O.F.; Osanyin, G.E.; John-Olabode, S.; Akanmu, S.A.; Anorlu, R.I. Selenium deficiency and pregnancy outcome in pregnant women with HIV in Lagos, Nigeria. Int. J. Gynecol. Obstet. 2018, 142, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.; Melo, M.; Carrilho, F. Selenium and thyroid disease: From pathophysiology to treatment. Int. J. Endocrinol. 2017, 1297658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yim, S.H.; Clish, C.B.; Gladyshev, V.N. Selenium deficiency is associated with pro-longevity mechanisms. Cell Rep. 2019, 27, 2785–2797. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Gupta, S. An overview of selenium uptake, metabolism, and toxicity in plants. Front. Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef] [Green Version]
- Underwood, E.J.; Suttle, N.F. The mineral nutrition of livestock. In Selenium; Underwood, E.J., Suttle, N.F., Eds.; CABI Publishing: New York, NY, USA, 1999; pp. 421–475. [Google Scholar]
- Whanger, P.D.; Weswig, P.H.; Oldfield, J.E.; Cheeke, P.R.; Muth, O.H. Factors influencing selenium and white muscle disease: Forage types, salts, amino acids and dimethyl sulfoxide. Nutr. Rep. Int. 1972, 6, 21–37. [Google Scholar]
- Turner, R.J.; Finch, J.M. Selenium and the immune response. Proc. Nutr. Soc. 1991, 50, 275–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combs, G.F., Jr.; Combs, S.B. The Role of Selenium in Nutrition; Academic Press: Cambridge, MA, USA, 1986; p. 532. [Google Scholar]
- Andrews, E.D.; Hartley, W.J.; Grant, A.B. Selenium- responsive diseases of animals in New Zealand. New Zealand Vet. J. 1968, 16, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Alarcon, M.; Cabrera-Vique, C. Selenium in food and the human body: A review. Sci. Total. Environ. 2008, 400, 115–141. [Google Scholar] [CrossRef]
- Vinceti, M.; Mandrioli, J.; Borella, P.; Michalke, B.; Tsatsakis, A.; Finkelstein, Y. Selenium neurotoxicity in humans: Bridging laboratory and epidemiologic studies. Toxicol. Lett. 2014, 230, 295–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franke, K.W. A new toxicant occurring naturally in certain samples of plant foodstuffs. 1. Results obtained in preliminary feeding trials. J. Nutr. 1934, 8, 597–609. [Google Scholar] [CrossRef]
- IMFNB. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academy Press: Cambridge, MA, USA, 2000; pp. 1–20. [Google Scholar]
- Silva Junior, E.C.; Wadt, L.H.O.; Silva, K.E.; Lima, R.M.B.; Batista, K.D.; Guedes, M.C.; Carvalho, G.S.; Carvalho, T.S.; Reis, A.R.; Lopes, G.; et al. Natural variation of selenium in Brazil nuts and soils from the Amazon region. Chemosphere 2017, 188, 650–658. [Google Scholar] [CrossRef] [Green Version]
- Post, M.; Lubiński, W.; Lubiński, J.; Krzystolik, K.; Baszuk, P.; Muszyńska, M.; Marciniak, W. Serum selenium levels are associated with age-related cataract. Ann. Agric. Environ. Med. 2018, 25, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Pophaly, S.D.; Singh, P.; Kumar, H.; Tomar, S.K.; Singh, R. Selenium enrichment of lactic acid bacteria and bifidobacteria: A functional food perspective. Trends Food Sci. Tech. 2014, 39, 135–145. [Google Scholar] [CrossRef]
- USDA-ARS. USDA National Nutrient Database for Standard Reference; Release 25; USDA-ARS: Washington, DC, USA, 2002. Available online: http://www.nal.usda.gov/fnic/selenium (accessed on 30 January 2021).
- WHO. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. 2009. Available online: http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_reportannex.pdf (accessed on 28 January 2021).
- Ríos, J.J.; Rosales, M.A.; Blasco, B.; Cervilla, L.M.; Romero, L.; Ruiz, J.M. Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Sci. Hortic. 2008, 116, 248–255. [Google Scholar] [CrossRef]
- Hawrylak-Nowak, B. Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant. Growth Regul. 2013, 70, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Ríos, J.J.; Blasco, B.; Leyva, R.; Sanchez-Rodriguez, E.; Rubio-Wilhelmi, M.M.; Romero, L.; Ruiz, J.M. Nutritional balance changes in lettuce plant grown under different doses and forms of selenium. J. Plant. Nutr. 2013, 36, 1344–1354. [Google Scholar] [CrossRef]
- Reilly, C. Selenium in Food and Health; Blackie: London, UK, 1996. [Google Scholar]
- Shrift, A. Aspects of selenium metabolism in higher plants. Ann. Rev. Plant Physiol. 1969, 20, 475–494. [Google Scholar] [CrossRef]
- Lyons, G.H.; Stangoulis, J.C.R.; Graham, R.D. High-selenium wheat: Biofortification for better health. Nutr. Res. Rev. 2003, 16, 45–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Wang, P.; Yamaji, N.; Ma, J.F. Plant nutrition for human nutrition: Hints from rice research and future perspectives. Mol. Plant 2020, 13, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Lyons, M.P.; Papazyan, T.T.; Surai, P.F. Selenium in food chain and animal nutrition: Lessons from nature. Asian-Australas. J. Anim. Sci. 2007, 20, 1135–1155. [Google Scholar] [CrossRef]
- Kipp, A.P.; Strohm, D.; Brigelius-Flohé, R.; Schomburg, L.; Bechthold, A.; Leschik-Bonnet, E.; Heseker, H.; DGE, G.N.S. Revised reference values for selenium intake. J. Trace Elem. Med. Biol. 2015, 32, 195–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamari, Y.; Kim, E.S. Longitudinal study of the dietary selenium intake of exclusively breast-fed infants during early lactation in Korea and Japan. J. Trace Elem. Med. Biol. 1999, 13, 129–133. [Google Scholar] [CrossRef]
- Hsueh, Y.M.; Su, C.T.; Shiue, H.S.; Chen, W.J.; Pu, Y.S.; Lin, Y.C.; Tsai, C.S.; Huang, C.Y. Levels of plasma selenium and urinary total arsenic interact to affect the risk for prostate cancer. Food Chem. Toxicol. 2017, 107, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Bampidis, V.; Azimonti, G.; Bastos, M.D.L.; Christensen, H.; Dusemund, B.; Kouba, M.; Durjava, M.K.; López-Alonso, M.; Puente, S.L.; Marcon, F.; et al. Assessment of the application for renewal of authorisation of selenomethionine produced by Saccharomyces cerevisiae CNCM I-3060 (selenised yeast inactivated) for all animal species. EFSA J. 2018, 16, e05386. [Google Scholar]
- Fraczek, A.; Pasternak, K. Selenium in medicine and treatment. J. Elem. 2013, 18, 145–163. [Google Scholar] [CrossRef]
- Kieliszek, M.; Błażejak, S.; Kurek, E. Binding and conversion of selenium in Candida utilis ATCC 9950 yeasts in bioreactor culture. Molecules 2017, 22, 352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwolak, I.; Zaporowska, H. Selenium interactions and toxicity: A review. Selenium interactions and toxicity. Cell Biol. Toxicol. 2012, 28, 31–46. [Google Scholar] [CrossRef]
- Stoffaneller, R.; Morse, N.L. A review of dietary selenium intake and selenium status in Europe and the Middle East. Nutrients 2015, 7, 1494–1537. [Google Scholar] [CrossRef]
- Kieliszek, M.; Błażejak, S. Selenium: Significance, and outlook for supplementation. Nutrition 2013, 29, 713–718. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.J.; Bao, Y.; Broadley, M.R.; Collings, R.; Ford, D.; Hesketh, J.E.; Hurst, R. Selenium in human health and disease. Antioxid. Redox Signal. 2011, 14, 1337–1383. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Food-chain selenium and human health: Emphasis on intake. Br. J. Nutr. 2008, 100, 254–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayman, M.P. The argument for increasing Se intake. Proc. Nutr. Soc. 2002, 61, 203–215. [Google Scholar] [CrossRef]
- Combs, G.F.; Lü, J. Selenium as a cancer preventive agent. In Selenium; Hatfield, D.L., Berry, M.J., Gladyshev, V.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Zoidis, E.; Seremelis, I.; Kontopoulos, N.; Danezis, G.P. Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins. Antioxidants 2018, 7, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Q.; Zhang, B.; Xu, R.; Wang, Y.; Ding, X.; Li, P. Antioxidant activity in vitro of the selenium-contained protein from the Se-enriched Bifidobacterium animalis 01. Anaerobe 2010, 16, 380–386. [Google Scholar] [CrossRef]
- Elahi, M.M.; Kong, Y.X.; Matata, B.M. Oxidative stress as a mediator of cardiovascular disease. Oxidative Med. Cell. Longev. 2009, 5, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Lippman, S.M.; Klein, E.A.; Goodman, P.J.; Lucia, M.S.; Thompson, I.M.; Ford, L.G.; Parnes, H.L.; Minasian, L.M.; Gaziano, J.M.; Hartline, J.A.; et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The Selenium and Vitamin E Cancer Prevention Trial (SELECT). Jama 2009, 301, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Klein, E.A.; Thompson, I.M.; Tangen, C.M.; Crowley, J.J.; Lucia, M.S.; Goodman, P.J.; Minasian, L.M.; Ford, L.G.; Parnes, H.L.; Gaziano, J.M.; et al. Vitamin E and the risk of prostate cancer: The Selenium and Vitamin E Cancer Prevention Trial (SELECT). Jama 2011, 306, 1549–1556. [Google Scholar] [CrossRef] [PubMed]
- Dennert, G.; Horneber, M. Selenium for alleviating the side effects of chemotherapy, radiotherapy and surgery in cancer patients. Cochrane Database Syst. Rev. 2006, 3, CD005037. [Google Scholar] [CrossRef] [PubMed]
- Rees, K.; Hartley, L.; Day, C.; Flowers, N.; Clarke, A.; Stranges, S. Selenium supplementation for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrokhian, A.; Bahmani, F.; Taghizadeh, M.; Mirhashemi, S.M.; Aarabi, M.H.; Raygan, F.; Aghadavod, E.; Asemi, Z. Selenium supplementation affects insulin resistance and serum hs-CRP in patients with type 2 diabetes and coronary heart disease. Horm. Metab. Res. 2016, 48, 263–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albuquerque, R.G.; Tufik, S.; Andersen, M.L. Benefits of selenium in the treatment of depression and sleep disorders. Sleep Breath. 2019, 23, 933–934. [Google Scholar] [CrossRef]
- Triggiani, V.; Tafaro, E.; Giagulli, V.A.; Sabbà, C.; Resta, F.; Licchelli, B.; Guastamacchia, E. Role of iodine, selenium and other micronutrients in thyroid function and disorders. Endocr. Metab. Immune Disord. Drug Targets 2009, 9, 277–294. [Google Scholar] [CrossRef]
- Schomburg, L. Selenium, selenoproteins and the thyroid gland: Interactions in health and disease. Nat. Rev. Endocrinol. 2012, 8, 160–171. [Google Scholar] [CrossRef]
- Köhrle, J. Selenium and the thyroid. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 392–401. [Google Scholar] [CrossRef]
- Drutel, A.; Archambeaud, F.; Caron, P. Selenium and the thyroid gland: More good news for clinicians. Clin. Endocrinol. 2013, 78, 155–164. [Google Scholar] [CrossRef]
- Stuss, M.; Michalska-Kasiczak, M.; Sewerynek, E. The role of selenium in thyroid gland pathophysiology. Endokrynol. Pol. 2017, 68, 440–465. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Riaz, M.; Mehmood, K.T. Selenium in human health and disease: A review. J. Postgrad. Med Inst. 2012, 26, 120–133. [Google Scholar]
- Brigelius-Flohé, R. Selenium in human health and disease: An overview. In Selenium; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–26. [Google Scholar]
- Shaheen, S.O.; Newson, R.B.; Rayman, M.P.; Wong, A.P.; Tumilty, M.K.; Phillips, J.M.; Potts, J.F.; Kelly, F.J.; White, P.T.; Burney, P.G. Randomised, double blind, placebo-controlled trial of selenium supplementation in adult asthma. Thorax 2007, 62, 483–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norton, G.; Duan, G.-L.; Lei, M.; Zhu, Y.G.; Meharg, A.; Price, A. Identification of quantitative trait loci for rice grain element composition on an arsenic impacted soil: Influence of flowering time on genetic loci. Ann. Appl. Biol. 2012, 161, 46–56. [Google Scholar] [CrossRef]
- Broadley, M.R.; White, P.J.; Bryson, R.J.; Meacham, M.C.; Bowen, H.C.; Johnson, S.E.; Hawkesford, M.J.; McGrath, S.P.; Zhao, F.J.; Breward, N.; et al. Biofortification of UK food crops with selenium. Proc. Nutr. Soc. 2006, 65, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Broadley, M.R.; Alcock, J.; Alford, J.; Cartwright, P.; Foot, I.; Fairweather-Tait, S.J.; Hart, D.J.; Hurst, R.; Knott, P.; McGrath, S.P.; et al. Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil 2010, 332, 5–18. [Google Scholar] [CrossRef]
- Aro, A.; Alfthan, G.; Varo, P. Effects of supplementation of fertilizers on human selenium status in Finland. Analyst 1995, 120, 841–843. [Google Scholar] [CrossRef] [PubMed]
- Eurola, M.; Ekholm, P.; Ylinen, M.; Koivistoinen, P.; Varo, P. Effects of Selenium Fertilization on the Selenium Content of Selected Finnish Fruits and Vegetables. Acta Agric. Scand. 1989, 39, 345–350. [Google Scholar] [CrossRef]
- Mäkelä, A.L.; Wang, W.C.; Hämäläinen, M.; Näntö, V.; Laihonen, P.; Kotilainen, H.; Meng, L.X.; Mäkelä, P. Environmental effects of nationwide selenium fertilization in Finland. Biol. Trace Elem. Res. 1995, 47, 289–298. [Google Scholar] [CrossRef]
- Varo, P.; Alfthan, G.; Huttunen, J.K.; Aro, A. Nationwide selenium supplementation in Finland: Effects on diet, blood and tissue levels, and health. In Selenium in Biology and Human Health; Burk, R.F., Ed.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 197–218. [Google Scholar]
- Hart, D.; Fairweather-Tait, S.; Broadley, M.; Dickinson, S.; Foot, I.; Knott, P.; McGrath, S.; Mowat, H.; Norman, K.; Scott, P. Selenium concentration and speciation in biofortified flour and bread: Retention of selenium during grain biofortification, processing and production of Se-enriched food. Food Chem. 2011, 126, 1771–1778. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Hossain, M.A.; Fujita, M. Selenium in higher plants: Physiological role, antioxidant metabolism and abiotic stress tolerance. J. Plant. Sci. 2010, 5, 354–375. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Wei, C.; Tu, S. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 2013, 87, 58–68. [Google Scholar] [CrossRef]
- Hladun, K.R.; Parker, D.R.; Tran, K.D.; Trumble, J.T. Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.). Environ. Pollut. 2013, 172, 70–75. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, R.; Proietti, P.; Nasini, L.; Del Buono, D.; Tedeschini, E.; Businelli, D. Increase in the selenium content of extra virgin olive oil: Quantitative and qualitative implications. Grasas Aceites 2014, 65, e025. [Google Scholar] [CrossRef] [Green Version]
- Pezzarossa, B.; Remorini, D.; Gentile, M.L.; Massai, R. Effects of foliar and fruit addition of sodium selenate on selenium accumulation and fruit quality. J. Sci. Food Agric. 2012, 92, 781–786. [Google Scholar] [CrossRef]
- Hsu, F.C.; Wirtz, M.; Heppel, S.C.; Bogs, J.; Krämer, U.; Khan, M.S.; Bub, A.; Hell, R.; Rausch, T. Generation of Se-fortified broccoli as functional food: Impact of Se fertilization on S metabolism. Plant Cell Environ. 2011, 34, 192–207. [Google Scholar] [CrossRef] [PubMed]
- Moulick, D.; Ghosh, D.; Chandra Santra, S. Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant. Physiol. Biochem. 2016, 109, 571–578. [Google Scholar] [CrossRef]
- Moulick, D.; Santra, S.C.; Ghosh, D. Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain. Ecotoxicol. Environ. Saf. 2018, 152, 67–77. [Google Scholar] [CrossRef]
- Moulick, D.; Santra, S.C.; Ghosh, D. Seed priming with Se mitigates As-induced phytotoxicity in rice seedlings by enhancing essential micronutrient uptake and translocation and reducing As translocation. Environ. Sci. Pollut. Res. 2018, 25, 26978. [Google Scholar] [CrossRef] [PubMed]
- Moulick, D.; Santra, S.C.; Ghosh, D. Seed priming with Se alleviate As induced phytotoxicity during germination and seedling growth by restricting As translocation in rice (Oryza sativa L c.v. IET-4094). Ecotoxicol. Environ. Saf. 2017, 145, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Gao, J.; Huang, K. Effects of different selenium sources on tissue selenium concentrations, blood GSH-Px activities and plasma interleukin levels in finishing lambs. Biol. Trace Elem. Res. 2007, 116, 91–102. [Google Scholar] [CrossRef]
- Shiobara, Y.; Yoshida, T.; Suzuki, K.T. Effects of dietary selenium species on Se concentrations in hair, blood, and urine. Toxicol. Appl. Pharmacol. 1998, 152, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Swanson, C.; Patterson, B.; Levander, O.; Veillon, C.; Taylor, P.; Helzlsouer, K.; McAdam, P.; Zech, L. Human [74Se] selenomethionine metabolism: A kinetic model. Am. J. Clin. Nutr. 1991, 54, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.A.; Bobe, G.; Hunter, J.K.; Vorachek, W.R.; Stewart, W.C.; Vanegas, J.A.; Estill, C.T.; Mosher, W.D.; Pirelli, G.J. Effect of feeding selenium-fertilized alfalfa hay on performance of weaned beef calves. PLoS ONE 2013, 8, e58188. [Google Scholar] [CrossRef] [Green Version]
- Benes, S.E.; Robinson, P.H.; Cun, G.S. Depletion of selenium in blood, liver and muscle from beef heifers previously fed forages containing high levels of selenium. Sci. Total Environ. 2015, 536, 603–608. [Google Scholar] [CrossRef]
- Quijano, M.; Moreno, P.; Gutiérrez, A.M.; Pérez-Conde, M.C.; Camara, C. Selenium speciation in animal tissues after enzymatic digestion by high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. J. Mass Spectrom. 2000, 35, 878–884. [Google Scholar] [CrossRef]
- Ralston, N.V.; Ralston, C.R.; Blackwell, J.L.; Raymond, L.J. Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicology 2008, 29, 802–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combs, G.F., Jr. Selenium in global food systems. Brit. J. Nutr. 2001, 85, 517–547. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.Q. Uptake and accumulation of selenium in plants in relation to chemical soeciationa nd biotransformation. In Development and Uses of Biofortified Agricultural Products; Banuelos, G., Lin, Z.-Q., Eds.; CRC: Boca Raton, FL, USA, 2008; pp. 45–56. [Google Scholar]
- Lyons, G.H.; Genc, Y.; Graham, R. Biofortication in the food chain, and use of selenium and phyto-compounds in risk reduction and control of prostate cancer. In Development and Uses of Biofortified Agricultural Products; Banuelos, G., Lin, Z.-Q., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 17–44. [Google Scholar]
- ODS. Selenium: Dietary Supplement Fact Sheet. Health Information. US Department of Health and Human Services, National Institutes of Health; Office of Dietary Supplements: Washington, DC, USA, 2016.
- Saltzman, A.; Birol, E.; Bouis, H.E.; Boy, E.; De Moura, F.F.; Islam, Y.; Pfeiffer, W.H. Biofortification: Progress toward a more nourishing future. Glob. Food Secur. 2013, 2, 9–17. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, N.; Li, S.; Li, L.; Su, H.; Liu, C. Distribution and transport of selenium in Yutangba, China: Impact of human activities. Sci. Total Environ. 2008, 392, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.N.; Lombi, E.; Sun, G.X.; Scheckel, K.; Zhu, Y.G.; Feng, X.; Zhu, J.; Carey, A.M.; Adomako, E.; Lawgali, Y.; et al. Selenium characterization in the global rice supply chain. Environ. Sci. Technol. 2009, 43, 6024–6030. [Google Scholar] [CrossRef] [PubMed]
- Thavarajah, P.; Sarker, A.; Materne, M.; Vandemark, G.; Shrestha, R.; Idrissi, O.; Hacikamiloglu, O.; Bucak, B.; Vandenberg, A. A global survey of effects of genotype and environment on selenium concentration in lentils (Lens culinaris L.): Implications for nutritional fortification strategies. Food Chem. 2011, 125, 72–76. [Google Scholar] [CrossRef]
- Winkel, L.H.; Johnson, C.A.; Lenz, M.; Grundl, T.; Leupin, O.X.; Amini, M.; Charlet, L. Environmental selenium research: From microscopic processes to global understanding. Environ. Sci. Technol. 2012, 46, 571–579. [Google Scholar] [CrossRef]
- Fordyce, F.M.; Brereton, N.; Hughes, J.; Luo, W.; Lewis, J. An initial study to assess the use of geological parent materials to predict the Se concentration in overlying soils and in five staple foodstuffs produced on them in Scotland. Sci. Total Environ. 2010, 408, 5295–5305. [Google Scholar] [CrossRef] [Green Version]
- Goicoechea, N.; Garmendia, I.; Fabbrin, E.G.; Bettoni, M.M.; Palop, J.A.; Sanmartín, C. Selenium fertilization and mycorrhizal technology may interfere in enhancing bioactive compounds in edible tissues of lettuces. Sci. Hortic. 2015, 195, 163–172. [Google Scholar] [CrossRef]
- Mahn, A. Modelling of the effect of selenium fertilization on the content of bioactive compounds in broccoli heads. Food Chem. 2017, 233, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Germ, M.; Stibilj, V. Selenium and plants. Acta Agric. Slov. 2008, 89. [Google Scholar] [CrossRef]
- Haug, A.; Graham, R.; Christophersen, O.; Lyons, G. How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microb. Ecol. Health Dis. 2007, 19, 209–228. [Google Scholar]
- Sillanpaeae, M.; Jansson, H. Status of cadmium, lead, cobalt and selenium in soils and plants of thirty countries. FAO Soils Bull. 1992, 195. [Google Scholar]
- Ros, G.H.; van Rotterdam, A.M.D.; Bussink, D.W.; Bindraban, P.S. Selenium fertilization strategies for bio-fortification of food: An agro-ecosystem approach. Plant Soil 2016, 404, 99–112. [Google Scholar] [CrossRef]
- Wen, H.; Carignan, J. Reviews on atmospheric selenium: Emissions, speciation and fate. Atmos. Environ. 2007, 41, 7151–7165. [Google Scholar] [CrossRef]
- Chasteen, T.G.; Bentley, R. Biomethylation of selenium and tellurium: Microorganisms and plants. Chem. Rev. 2003, 103, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Bañuelos, G.S.; Ajwa, H.A.; Wu, L.; Guo, X.; Akohoue, S.; Zambrzuski, S. Selenium-induced growth reduction in Brassica land races considered for phytoremediation. Ecotoxicol. Environ. Saf. 1997, 36, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Poblaciones, M.J.; Rodrigo, S.; Santamaria, O.; Chen, Y.; McGrath, S.P. Selenium accumulation and speciation in biofortified chickpea (Cicer arietinum L.) under Mediterranean Plant Soil conditions. J. Sci. Food Agric. 2014, 94, 1101–1106. [Google Scholar] [CrossRef]
- Premarathna, L.; McLaughlin, M.J.; Kirby, J.K.; Hettiarachchi, G.M.; Stacey, S.; Chittleborough, D.J. Selenate-enriched urea granules are a highly Effective fertilizer for selenium biofortification of paddy rice grain. J. Agric. Food Chem. 2012, 60, 6037–6044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiavon, M.; dall’Acqua, S.; Mietto, A.; Pilon-Smits, E.A.H.; Sambo, P.; Masi, A.; Malagoli, M. Impact of selenium fertilization on chemical composition and Antioxidant constituents of tomato (Solanum lycopersicon L.). J. Agric. Food Chem. 2013, 61, 10542–10554. [Google Scholar] [CrossRef]
- Ramos, S.J.; Faquin, V.; Guilherme, L.R.G.; Castro, E.M.; Avila, F.W.; Carvalho, G.S.; Bastos, C.E.A.; Oliveira, C. Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant Soil Environ. 2010, 56, 584–588. [Google Scholar] [CrossRef] [Green Version]
- Alfthan, G.; Aspila, P.; Ekholm, P.; Eurola, M.; Hartikainen, H.; Hero, H.; Hietaniemi, V.; Root, T.; Salminen, P.; Venäläinen, E.-R.; et al. Nationwide Supplementation of Sodium Selenate to Commercial Fertilizers: History and 25-Year Results from the Finnish Selenium Monitoring Programme; CAB International and Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2011. [Google Scholar]
- Winkler, J. Biofortification: Improving the nutritional quality of staple crops. In Access not Excess; Pasternak, C., Ed.; Smith-Gordon Publishing: London, UK, 2011; pp. 100–112. [Google Scholar]
- Dhillon, S.K.; Hundal, B.K.; Dhillon, K.S. Bioavailability of selenium to forage crops in a sandy loam soil amended with Se-rich plant materials. Chemosphere 2007, 66, 1734–1743. [Google Scholar] [CrossRef]
- Bruulsema, T.W.; Heffer, P.; Welch, R.M.; Cakmak, I.; Moran, K. Fertilizing Crops to Improve Human Health: A Scientific Review Volume 1 Food and Nutrition Security Editorial Committee. Better Crop. Plant Food 2012, 96, 29–31. [Google Scholar]
- Ramkissoon, C.; Degryse, F.; da Silva, R.C.; Baird, R.; Young, S.D.; Bailey, E.H.; McLaughlin, M.J. Improving the efficacy of selenium fertilizers for wheat biofortification. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.L.; Wang, S.C.; Gu, B.Q.; Yang, Y.X.; Song, H.B.; Xue, W.L.; Liang, W.S.; Zhang, P.Y. Further investigation on the role of selenium deficiency in the aetiology and pathogenesis of Keshan disease. Biomed. Environ. Sci. 1997, 10, 316–326. [Google Scholar] [PubMed]
- Lyons, G. Selenium in cereals: Improving the efficiency of agronomic biofortification in the UK. Plant Soil 2010, 332, 1–4. [Google Scholar] [CrossRef]
- Boldrin, P.F.; de Figueiredo, M.A.; Yang, Y.; Luo, H.; Giri, S.; Hart, J.J.; Faquin, V.; Guilherme, L.R.G.; Thannhauser, T.W.; Li, L. Selenium promotes sulfur accumulation and plant growth in wheat ( Triticum aestivum ). Physiol. Plant 2016, 158, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Pilon-Smits, E.A.; Winkel, L.H.; Lin, Z.Q. Selenium in Plants: Molecular, Physiological, Ecological and Evolutionary Aspects; Springer: Berlin/Heidelberg, Germany, 2017; Volume 11, p. 324. [Google Scholar]
- Thavarajah, D.; Abare, A.; Mapa, I.; Coyne, C.J.; Thavarajah, P.; Kumar, S. Selecting lentil accessions for global selenium biofortification. Plants 2017, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Ekanayake, L.J.; Thavarajah, D.; Vial, E.; Schatz, B.; McGee, R.; Thavarajah, P. Selenium fertilization on lentil (Lens culinaris Medikus) grain yield, seed selenium concentration, and antioxidant activity. Field Crop. Res. 2015, 177, 9–14. [Google Scholar] [CrossRef]
- Eich-Greatorex, A.; Sogn, T.A.; Øgaard, A.F.; Aasen, I. Plant availability of inorganic and organic selenium fertilizer as influenced by soil organic matter content and pH. Nutr. Cycl. Agroecosystems 2007, 79, 221–231. [Google Scholar] [CrossRef]
- Christophersen, O.A.; Lyons, G.; Haug, A.; Steinnes, E. Selenium; Springer: Berlin/Heidelberg, Germany, 2013; pp. 429–463. [Google Scholar]
- Hartfiel, W.; Bahners, N. Selenium deficiency in the Federal Republic of Germany. Biol. Trace Elem. 1988, 15, 1–12. [Google Scholar] [CrossRef]
- Hu, Q.; Chen, L.; Xu, J.; Zhang, Y.; Pan, G. Determination of selenium concentration in rice and the effect of foliar application of Se-enriched fertiliser or sodium selenite on the selenium content of rice. J. Sci. Food Agric. 2002, 82, 869–872. [Google Scholar] [CrossRef]
- Smrkolj, P.; Stibilj, V.; Kreft, I.; Germ, M. Selenium species in buckwheat cultivated with foliar addition of Se (VI) and various levels of UV-B radiation. Food Chem. 2006, 96, 675–681. [Google Scholar] [CrossRef]
- Poggi, V.; Arcioni, A.; Filippini, P.; Pifferi, P.G. Foliar application of selenite and selenate to potato (Solanum tuberosum): Effect of a ligand agent on selenium content of tubers. J. Agric. Food Chem. 2000, 48, 4749–4751. [Google Scholar] [CrossRef]
- Yang, F.; Chen, L.; Hu, Q.; Pan, G. Effect of the application of selenium on selenium content of soybean and its products. Biol. Trace Elem. Res. 2003, 93, 249–256. [Google Scholar] [CrossRef]
- Xia, Q.; Yang, Z.; Shui, Y.; Liu, X.; Chen, J.; Khan, S.; Wang, J.; Gao, Z. Methods of Selenium Application Differentially Modulate Plant Growth, Selenium Accumulation and Speciation, Protein, Anthocyanins and Concentrations of Mineral Elements in Purple-Grained Wheat. Front. Plant. Sci. 2020, 11, 1114. [Google Scholar] [CrossRef]
- Mao, H.; Wang, J.; Wang, Z.; Zan, Y.; Lyons, G.; Zou, C. Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plateau in China. J. Soil Sci. Plant. Nutr. 2014, 14, 459–470. [Google Scholar] [CrossRef] [Green Version]
- Tveitnes, S.; Singh, B.R.; Ruud, L. Selenium concentration in spring wheat as influenced by basal application and top dressing of selenium-enriched fertilizers. Fertil. Res. 1995, 45, 163–167. [Google Scholar] [CrossRef]
- Fernández-Martínez, A.; Charlet, L. Selenium environmental cycling and bioavailability: A structural chemist point of view. Rev. Environ. Sci. Biotechnol. 2009, 8, 81–110. [Google Scholar] [CrossRef]
- Freeman, J.L.; Bañuelos, G.S. Selection of salt and boron tolerant selenium hyperaccumulator Stanleya pinnata genotypes and characterization of Se phytoremediation from agricultural drainage sediments. Environ. Sci. Technol. 2011, 45, 9703–9710. [Google Scholar] [CrossRef]
- Bañuelos, G.S.; Arroyo, I.; Pickering, I.J.; Yang, S.I.; Freeman, J.L. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem. 2015, 166, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Kikkert, J.; Berkelaar, E. Plant uptake and translocation of inorganic and organic forms of selenium. Arch. Environ. Contam. Toxicol. 2013, 65, 458–465. [Google Scholar] [CrossRef]
- Bhatia, P.; Aureli, F.; D’Amato, M.; Prakash, R.; Cameotra, S.S.; Nagaraja, T.P.; Cubadda, F. Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues. Food Chem. 2013, 140, 225–230. [Google Scholar] [CrossRef]
- Bañuelos, G.S.; Lin, Z.Q.; Broadley, M. Selenium biofortification. In Selenium in Plants; Springer: Berlin/Heidelberg, Germany, 2017; pp. 231–255. [Google Scholar] [CrossRef]
- Li, Z.; Liang, D.; Peng, Q.; Cui, Z.; Huang, J.; Lin, Z. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review. Geoderma 2017, 295, 69–79. [Google Scholar] [CrossRef]
- Serafin Muñoz, A.H.; Kubachka, K.; Wrobel, K.; Gutierrez Corona, J.F.; Yathavakilla, S.K.; Caruso, J.A.; Wrobel, K. Se-enriched mycelia of Pleurotus ostreatus: Distribution of selenium in cell walls and cell membranes/cytosol. J. Agric. Food Chem. 2006, 54, 3440–3444. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Yamada, H.; Kyuma, K.; Hattori, T.; Kigasawa, S. Selenium in soil humic acid. Soil Sci. Plant. Nutr. 1991, 37, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Lamb, D.; Paneerselvam, P.; Choppala, G.; Bolan, N.; Chung, J.W. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater. 2011, 185, 549–574. [Google Scholar] [CrossRef]
- Dhillon, K.S.; Dhillon, S.K.; Dogra, R. Selenium accumulation by forage and grain crops and volatilization from seleniferous soils amended with different organic materials. Chemosphere 2010, 78, 548–556. [Google Scholar] [CrossRef]
- Sharma, S.; Bansal, A.; Dogra, R.; Dhillon, S.K.; Dhillon, K.S. Effect of organic amendments on uptake of selenium and biochemical grain composition of wheat and rape grown on seleniferous soils in northwestern India. J. Plant. Nutr. Soil Sci. 2011, 174, 269–275. [Google Scholar] [CrossRef]
- Bhatia, P.; Prakash, R.; Prakash, N.T. Enhanced antioxidant properties as a function of selenium uptake by edible mushrooms cultivated on selenium-accumulated waste post-harvest wheat and paddy residues. Int. J. Recycl. Org. Waste Agric. 2014, 3, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Bañuelos, G.S.; Lin, Z.Q.; Liu, Y.; Yuan, L.; Yin, X.; Li, M. Biofortification and phytoremediation of selenium in China. Front. Plant. Sci. 2015, 6, 136. [Google Scholar] [CrossRef]
- Bañuelos, G.S.; Lin, Z.-Q. Cultivation of the Indian fig Opuntia in selenium-rich drainage sediments under field conditions. Soil Use Manag. 2010, 26, 167–175. [Google Scholar] [CrossRef]
- De Feudis, M.; D’Amato, R.; Businelli, D.; Guiducci, M. Fate of selenium in soil: A case study in a maize (Zea mays L.) field under two irrigation regimes and fertilized with sodium selenite. Sci. Total Environ. 2019, 659, 131–139. [Google Scholar] [CrossRef]
- El-Ramady, H.R.; Domokos-Szabolcsy, É.; Shalaby, T.A.; Prokisch, J.; Fári, M. Selenium in agriculture: Water, air, soil, plants, food, animals and nanoselenium. In CO2 Sequestration, Biofuels and Depollution; Springer: Berlin/Heidelberg, Germany, 2015; pp. 153–232. [Google Scholar]
- Kaur, S.; Kaur, N.; Siddique, K.H.; Nayyar, H. Beneficial elements for agricultural crops and their functional relevance in defence against stresses. Arch. Agron. Soil Sci. 2016, 62, 905–920. [Google Scholar] [CrossRef]
- Sogn, L.; Skorge, P.; Frøslie, A.; Aasen, I.; Stabbetorp, H.; Ruud, L. Effects of selenium enriched complex fertilizers on selenium concentration of small grains. In Human and Animal Health in Relation to Circulation Processes of Selenium and Cadmium; The Norwegian Academy of Science and Letters: Oslo, Norway, 1991; pp. 199–211. [Google Scholar]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral Elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, Se and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.; Schneberg, K.A.; Pilon-Smits, E.A. Sulfur–selenium–molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae). Planta 2014, 239, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Barberon, M.; Berthomieu, P.; Clairotte, M.; Shibagaki, N.; Davidian, J.C.; Gosti, F. Unequal functional redundancy between the two Arabidopsis thaliana high-affinity sulphate transporters SULTR1;1 and SULTR1;2. New Phytol. 2008, 180, 608–619. [Google Scholar] [CrossRef]
- Pu, Z.E.; Yu, M.; He, Q.Y.; Chen, G.Y.; Wang, J.R.; Liu, Y.X.; Jiang, Q.; Li, W.; Dai, S.; Wei, Y.; et al. Quantitative trait loci associated with micronutrient concentrations in two recombinant inbred wheat lines. J. Integr. Agric. 2014, 13, 2322–2329. [Google Scholar] [CrossRef]
- BuN, M.; Hui, L.; Lashari, M.S.; Shah, A.N.; Licao, C.; Weining, S. Nutritional characteristics and starch properties of Tibetan barley. Int. J. Agric. Policy Res. 2015, 3, 293–299. [Google Scholar]
- Eurola, M.; Hietaniemi, V.; Kontturi, M. Selenium content of Finnish oats in 1997–1999, effect of cultivars and cultivation techniques. Agric. Food Sci. 2004, 13, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Jha, A.B.; Warkentin, T.D. Biofortification of pulse crops: Status and future perspectives. Plants 2020, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Ray, H.; Bett, K.; Tar’an, B.; Vandenberg, A.; Thavarajah, D.; Warkentin, T. Mineral micronutrient content of cultivars of field pea, chickpea, common bean, and lentil grown in Saskatchewan, Canada. Crop. Sci. 2014, 54, 1698–1708. [Google Scholar] [CrossRef]
- Nair, R.M.; Thavarajah, P.; Giri, R.R.; Ledesma, D.; Yang, R.Y.; Hanson, P.; Easdown, W.; Hughes, J.A. Mineral and phenolic concentrations of mungbean [Vigna radiata (L.) R. Wilczek var. radiata] grown in semi-arid tropical India. J. Food Compos. Anal. 2015, 39, 23–32. [Google Scholar] [CrossRef]
- Ramamurthy, R.K.; Jedlicka, J.; Graef, G.L.; Waters, B.M. Identification of new QTLs for seed mineral, cysteine, and methionine concentrations in soybean [Glycine max (L.) Merr.]. Mol. Breed. 2014, 34, 431–445. [Google Scholar] [CrossRef]
- Kopsell, D.A.; Randle, W.M. Short-day onion cultivars differ in bulb selenium and sulphur accumulation which can affect bulb pungency. Euphytica 1997, 96, 385–390. [Google Scholar] [CrossRef]
- Kopsell, D.A.; Randle, W.M. Genetic variances and selection potential for selenium accumulation in a rapid-cycling Brassica oleracea population. J. Am. Soc. Hortic. Sci. 2001, 126, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Meenakshi, J.V.; Johnson, N.L.; Manyong, V.M.; DeGroote, H.; Javelosa, J. How cost effective is biofortification in combating micronutrient malnutrition? World Dev. 2010, 38, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Pilon-Smits, E.A.H. Selenium in Plants. In Progress in Botany. Progress in Botany (Genetics—Physiology—Systematics—Ecology); Lüttge, U., Beyschlag, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 76. [Google Scholar] [CrossRef]
- White, P.J. Selenium accumulation by plants. Ann. Bot. 2015, 117, 217–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sors, T.G.; Ellis, D.R.; Na, G.N.; Lahner, B.; Lee, S.; Leustek, T.; Pickering, I.J.; Salt, D.E. Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J. 2005, 42, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Bañuelos, G.S.; Terry, N.; Leduc, D.L.; Pilon-Smits, E.A.H.; Mackey, B. Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ. Sci. Technol. 2005, 39, 1771–1777. [Google Scholar] [CrossRef]
- Zhang, L.; Byrne, P.F.; Pilon-Smits, E.A. Mapping quantitative trait loci associated with selenate tolerance in Arabidopsis thaliana. New Phytol. 2006, 170, 33–42. [Google Scholar] [CrossRef]
- Ates, D.; Sever, T.; Aldemir, S.; Yagmur, B.; Temel, H.Y.; Kaya, H.B.; Alsaleh, A.; Kahraman, A.; Ozkan, H.; Vandenberg, A.; et al. Identification QTLs Controlling Genes for Se Uptake in Lentil Seeds. PLoS ONE 2016, 11, e0149210. [Google Scholar]
- Wang, J.; Zhou, C.; Xiao, X.; Xie, Y.; Zhu, L.; Ma, Z. Enhanced Iron and Selenium Uptake in Plants by Volatile Emissions of Bacillus amyloliquefaciens (BF06). Appl. Sci. 2017, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Sun, C.; Min, J.; Chen, Y.; Tong, C.; Bao, J. Association mapping of quantitative trait loci for mineral element contents in whole grain rice (Oryza sativa L.). J. Agric. Food Chem. 2015, 63, 10885–10892. [Google Scholar] [CrossRef]
- Yang, R.; Wang, R.; Xue, W.; Yan, J.; Zhao, G.; Fahima, T.; Cheng, J. QTL location and analysis of selenium content in tetraploid wheat grain. Guizhou Agric. Sci. 2013, 10, 1–4. [Google Scholar]
- Terry, N.; Zayed, A.M.; de Souza, M.P.; Tarun, A.S. Selenium in greater plants. Annu. Rev. Plant. Physiol. 2000, 51, 401–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raina, M.; Sharma, A.; Nazir, M.; Kumari, P.; Rustagi, A.; Hami, A.; Bhau, B.S.; Zargar, S.M.; Kumar, D. Exploring the new dimensions of selenium research to understand the underlying mechanism of its uptake, translocation, and accumulation. Physiol. Plant. 2020. [Google Scholar] [CrossRef] [PubMed]
- Agalou, A.; Roussis, A.; Spaink, H.P. The Arabidopsis selenium-binding protein confers tolerance to toxic levels of selenium. Funct Plant Biol. 2005, 32, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Zu, C.; Lu, D.; Zheng, Q.; Shen, J.; Wang, H.; Li, D. Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci. Rep. 2017, 7, 42039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Yang, J.; Liu, C.; Chen, Z.; Yao, Z.; Cao, S. Overexpression of ethylene response factor ERF96 gene enhances selenium tolerance in Arabidopsis. Plant Physiol Plant Soil with accelerated HIV disease progression among HIV-1-infected pregnant women in Tanzania. J. Nutr. 2020, 134, 2556–2560. [Google Scholar]
- Chen, M.; Zeng, L.; Luo, X.; Mehboob, M.Z.; Ao, T.; Lang, M. Identification and functional characterization of a novel selenocysteine methyltransferase from Brassica juncea L. J. Exp. Bot. 2019, 70, 6401–6416. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, B.; Deng, K.; Gao, X.; Sun, G.; Zhang, Z.; Li, P.; Wang, W.; Li, H.; Zhang, Z.; et al. NRT1.1B improves selenium concentrations in rice grains by facilitating selenomethinone translocation. Plant Biotechnol. J. 2019, 17, 1058–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poletti, S.; Sautter, C. Biofortification of the crops with micronutrients using plant breeding and/or transgenic strategies. Minerva Biotecnol. 2005, 17, 1–11. [Google Scholar]
- Carvalho, S.M.P.; Vasconcelos, M.W. Producing more with less: Strategies and novel technologies for plant-based food biofortification. Food Res. Int. 2013, 54, 961–971. [Google Scholar] [CrossRef]
- Ye, Y.; Qu, J.; Pu, Y.; Rao, S.; Xu, F.; Wu, C. Selenium Biofortification of Crop Food by Beneficial Microorganisms. J. Fungi 2020, 6, 59. [Google Scholar] [CrossRef] [PubMed]
- Yasin, M.; El-Mehdawi, A.F.; Anwar, A.; Pilon Smits, E.A.H.; Faisal, M. Microbial enhanced selenium and iron biofortification of wheat (Triticum aestivum L.) Applications in Phytoremediation and Biofortification. Int. J. Phytoremed. 2015, 17, 341–347. [Google Scholar] [CrossRef] [PubMed]
- De Souza, M.P.; Chu, D.; Zhao, M.; Zayed, A.M.; Ruzin, S.E.; Schichnes, D.; Terry, N. Rhizosphere bacteria enhance selenium accumulation and volatilization by indian mustard. Plant. Physiol. 1999, 119, 565–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Dong, T.; Ye, J.; Hou, Z. Selenium accumulation in wheat (Triticum aestivum L) as affected by coapplication of either selenite or selenate with phosphorus. Soil Sci. Plant Nutr. 2017, 63, 37–44. [Google Scholar] [CrossRef]
- Cabannes, E.; Buchner, P.; Broadley, M.R.; Hawkesford, M.J. A comparison of sulfate and selenium accumulation in relation to the expression of sulfate transporter genes in Astragalus species. Plant Physiol. 2011, 157, 2227–2239. [Google Scholar] [CrossRef] [Green Version]
- Lindblom, S.D.; Valdez-Barillas, J.R.; Fakra, S.C.; Marcus, M.A.; Wangeline, A.L.; Pilon-Smits, E.A.H. Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators. Environ. Exp. Bot. 2013, 88, 33–42. [Google Scholar] [CrossRef]
- Patharajan, S.; Raaman, N. Influence of arbuscular mycorrhizal fungi on growth and selenium uptake by garlic plants. Arch. Phytopathol. Plant. Prot. 2012, 45, 138–151. [Google Scholar] [CrossRef]
- Larsen, E.H.; Lobinski, R.; Burger-Meÿer, K.; Hansen, M.; Ruzik, R.; Mazurowska, L.; Kik, C. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate. Anal. Bioanal. Chem. 2006, 385, 1098–1108. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, S.; Wen, B.; Huang, H.; Luo, L. Accumulation and Speciation of Selenium in Plants as Affected by Arbuscular Mycorrhizal Fungus Glomus mosseae. Biol. Trace Elem. Res. 2011, 143, 1789–1798. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Li, J.; Ma, X.; Niu, H.; Hou, S.; Wu, F. Effect of arbuscular mycorrhizal fungi on uptake of selenate, selenite, and selenomethionine by roots of winter wheat. Plant Soil 2019, 438, 71–83. [Google Scholar] [CrossRef]
- Sanmartín, P.; DeAraujo, A.; Vasanthakumar, A. Melding the old with the new: Trends in methods used to identify, monitor, and control microorganisms on cultural heritage materials. Microb. Ecol. 2018, 76, 64–80. [Google Scholar] [CrossRef]
- Fordyce, F.; Masara, D.; Appleton, J. Final Report on Stream Sediment, Soil and Forage Chemistry as Indicators of Cattle Mineral Status in North-East Zimbabwe; British Geological Survey: Nottingham, UK, 1994; 70p, (WC/94/003); Available online: http://nora.nerc.ac.uk/id/eprint/8350/1/WC94003.pdf (accessed on 24 January 2021).
- Patel, P.J.; Trivedi, G.R.; Shah, R.K.; Saraf, M. Selenorhizobacteria: As biofortification tool in sustainable agriculture. Biocatal. Agric. Biotechnol. 2018, 14, 198–203. [Google Scholar] [CrossRef]
- Kloepper, J.W. Effects of Rhizosphere Colonization by Plant Growth-Promoting Rhizobacteria on Potato Plant Development and Yield. Phytopathology 1980, 70, 1078. [Google Scholar] [CrossRef]
- Kumar, A.; Maurya, B.R.; Raghuwanshi, R.; Meena, V.S.; Islam, M.T. Co-inoculation with Enterobacter and Rhizobacteria on Yield and Nutrient Uptake by Wheat (Triticum aestivum L.) in the Alluvial Soil under Indo-Gangetic Plain of India. J. Plant Growth Regul. 2017, 36, 608–617. [Google Scholar] [CrossRef]
- Raghavendra, M.P.; Nayaka, S.C.; Nuthan, B.R. Role of Rhizosphere Microflora in Potassium Solubilization. Potassium Solubilizing Microorg. Sustain. Agric. 2016, 43–59. [Google Scholar] [CrossRef]
- Durán, P.; Acuña, J.J.; Jorquera, M.A.; Azcón, R.; Paredes, C.; Rengel, Z.; de la Luz Mora, M. Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biol. Fertil. Soils 2014, 50, 983–990. [Google Scholar] [CrossRef]
- Abera Tuffa, Y. Phenotypic, Symbiotic and Plant Growth Promoting Properties of Soybean Nodulating Rhizobia under Greenhouse and Field Conditions in Ethiopia. Ph.D. Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2019. [Google Scholar]
- Nakamaru, Y.M.; Altansuvd, J. Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: A review. Chemosphere 2014, 111, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Abadin, Z.U.; Yasin, M.; Faisal, M. Bacterial-Mediated Selenium Biofortification of Triticum aestivum: Strategy for Improvement in Selenium Phytoremediation and Biofortification. Agric. Important Microbes Sustain. Agric. 2017, 299–315. [Google Scholar] [CrossRef]
- Trivedi, G.; Patel, P.; Saraf, M. Synergistic effect of endophytic selenobacteria on biofortification and growth of Glycine max under drought stress. South. Afr. J. Bot. 2019. [Google Scholar] [CrossRef]
- Durán, P.; Acuña, J.; Jorquera, M.; Azcón, R.; Borie, F.; Cornejo, P.; Mora, M. Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: A preliminary study as a potential Se biofortification strategy. J. Cereal Sci. 2013, 57, 275–280. [Google Scholar] [CrossRef]
- Wang, P.; Wang, H.; Liu, Q.; Tian, X.; Shi, Y.; Zhang, X. QTL mapping of selenium content using a RIL population in wheat. PLoS ONE 2017, 12, e0184351. [Google Scholar] [CrossRef]
- Bodnar, M.; Konieczka, P.; Namiesnik, J. The properties, functions, and use of selenium compounds in living organisms. J. Environ. Sci. Health Part C 2012, 30, 225–252. [Google Scholar] [CrossRef]
- Renkema, H.; Koopmans, A.; Kersbergen, L.; Kikkert, J.; Hale, B.; Berkelaar, E. The effect of transpiration on selenium uptake and mobility in durum wheat and spring canola. Plant Soil 2012, 354, 239–250. [Google Scholar] [CrossRef]
- Missana, T.; Alonso, U.; García-Gutiérrez, M. Experimental study and modeling of selenite sorption onto illite and smectite clays. J. Colloid Interface Sci. 2009, 334, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Li, H.F.; McGrath, S.P.; Zhao, F.J. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol. 2008, 178, 92–102. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; Bowen, H.C.; Parmaguru, P.; Fritz, M.; Spracklen, W.P.; Spiby, R.E.; Meacham, M.C.; Mead, A.; Harriman, M.; Trueman, L.J.; et al. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J. Exp. Bot. 2004, 55, 1927–1937. [Google Scholar] [CrossRef] [Green Version]
- El Kassis, E.; Cathala, E.; Rouached, H.; Fourcroy, P.; Berthomieu, P.; Terry, N.; Davidian, J.C. Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenate toxicity. Plant Physiol. 2007, 143, 1231–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, H.; Saito, K. Molecular biology and functional genomics for identification of regulatory networks of plant sulfate uptake and assimilatory metabolism. In Sulfur Metabolism in Phototrophic Organisms; Springer: Berlin/Heidelberg, Germany, 2008; pp. 149–159. [Google Scholar]
- Shibagaki, N.; Rose, A.; McDermott, J.P.; Fujiwara, T.; Hayashi, H.; Yoneyama, T.; Davies, J.P. Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J. 2002, 29, 475–486. [Google Scholar] [CrossRef]
- Ellis, D.R.; Salt, D.E. Plants, selenium, and human health. Curr. Opin. Plant Biol. 2002, 6, 273–279. [Google Scholar] [CrossRef]
- Cappa, J.J.; Cappa, P.J.; El Mehdawi, A.F.; McAleer, J.M.; Simmons, M.P.; Pilon-Smits, E.A. Characterization of selenium and sulfur accumulation across the genus Stanleya (Brassicaceae): A field survey and common-garden experiment. Am. J. Bot. 2014, 101, 830–839. [Google Scholar] [CrossRef] [Green Version]
- Ximénez-Embún, P.; Alonso, I.; Madrid-Albarrán, Y.; Cámara, C. Establishment of selenium uptake and species distribution in lupine, Indian mustard, and sunflower plants. J. Agric. Food Chem. 2004, 52, 832–838. [Google Scholar] [CrossRef]
- Mazej, D.; Osvald, J.; Stibilj, V. Selenium species in leaves of chicory, dandelion, lamb’s lettuce and parsley. Food Chem. 2008, 107, 75–83. [Google Scholar] [CrossRef]
- Gigolashvili, T.; Kopriva, S. Transporters in plant sulphur metabolism. Front. Plant Sci. 2014, 5, 422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galeas, M.L.; Zhang, L.H.; Freeman, J.L.; Wegner, M.; Pilon-Smits, E.A.H. Seasonal fluctuations of selenium and sulfur accumulation in selenium-hyperaccumulators and related non-accumulators. New Phytol. 2007, 173, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Jarzyńska, G.; Falandysz, J. Selenium and 17 other largely essential and toxic metals in muscle and organ meats of Red Deer (Cervus elaphus)—consequences to human health. Environ. Int. 2011, 37, 882–888. [Google Scholar] [CrossRef]
- D’Amato, R.; Regni, L.; Falcinelli, B.; Mattioli, S.; Benincasa, P.; Dal Bosco, A.; Pacheco, P.; Proietti, P.; Troni, E.; Santi, C.; et al. Current knowledge on selenium biofortification to improve the nutraceutical profile of food: A comprehensive review. J. Agric. Food Chem. 2020, 68, 4075–4097. [Google Scholar] [CrossRef] [PubMed]
- Pezzarossa, B.; Rosellini, I.; Borghesi, E.; Tonutti, P.; Malorgio, F. Effects of Se enrich- ment on yield, fruit composition and ripening of tomato (Solanum lycopersicum) plants grown in hydroponics. Sci. Hortic. 2014, 165, 106–110. [Google Scholar] [CrossRef]
- Bachiega, P.; Salgado, J.M.; de Carvalho, J.E.; Ruiz, A.L.T.G.; Schwarz, K.; Tezotto, T.; Morzelle, M.C. Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium. Food Chem. 2016, 190, 771–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Businelli, D.; D’Amato, R.; Onofri, A.; Tedeschin, E.; Tei, F. Se-enrichment of cucumber (Cucumis sativus L.), lettuce (Lactuca sativa L.) and tomato (Solanum lycopersicum L.) through fortification in pre-transplanting. Sci. Hortic. 2015, 197, 697–704. [Google Scholar] [CrossRef]
- Smoleń, S.; Skoczylas, L.; Ledwozyw-Smolen, I.; Rakoczy, R.; Kopec, A.; Ewa Piatkowska, E.; Biezanowska-Kopec, R.; Koronowicz, A.; Kapusta-Duch, J. Biofortification of carrot (Daucus carota L.) with iodine and selenium in a field experiment. Front. Plant. Sci. 2016, 7, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joy, E.J.M.; Kalimbira, A.A.; Gashu, D.; Ferguson, E.L.; Sturgess, J.; Dangour, A.D.; Banda, L.; Chiutsi-Phiri, G.; Bailey, E.H. Can selenium deficiency in Malawi be alleviated through consumption of agro-biofortified maize flour? Study protocol for a randomised, double-blind, controlled trial. Trials 2019, 20, 795. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.D. Nutritional interactions: Credentialing of molecular targets for cancer prevention. Exp. Biol. Med. 2007, 232, 176–183. [Google Scholar]
- Malagoli, M.; Schiavon, M.; Dall’acqua, S.; Pilon-Smits, E.A.H. Effects of selenium biofortification on crop nutritional quality. Front. Plant. Sci. 2015, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.C.; Gutenmann, W.H.; Reid, C.M.; Lisk, D.J. Selenium content of Brazil nuts from two geographic locations in Brazil. Chemosphere 1995, 30, 801–802. [Google Scholar] [CrossRef]
- Whelan, R.; Barrow, N.J. Slow-release selenium fertilizers to correct selenium sheep in Western Australia. Fertil. Res. 1994, 38, 183–188. [Google Scholar] [CrossRef]
- Schiavon, M.; Pilon-Smits, E.A. The fascinating facets of plant selenium accumulation—Biochemistry, physiology, evolution and ecology. New Phytol. 2017, 213, 1582–1596. [Google Scholar] [CrossRef] [Green Version]
- White, P.J. Selenium metabolism in plants. Biochim. Biophys. Acta Gen. Subj. 2018. [Google Scholar] [CrossRef] [PubMed]
- Van Hoewyk, D. A tale of two toxicities: Malformed selenoproteins and oxidative stress both contribute to seleni- um stress in plants. Ann. Bot. 2013, 112, 965–972. [Google Scholar] [CrossRef] [Green Version]
- Malik, J.A.; Goel, S.; Kaur, N.; Sharma, S.; Singh, I.; Nayyar, H. Selenium antagonizes the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ. Exp. Bot. 2012, 77, 242–248. [Google Scholar] [CrossRef]
- Habibi, G. Physiological, photochemical and ionic responses of sunflower seedlings to exogenous selenium sup- ply under salt stress. Acta Physiol. Plant 2017, 39, 213. [Google Scholar] [CrossRef]
- Manojlović, M.S.; Lončarić, Z.; Cabilovski, R.R.; Popović, B.; Karalić, K.; Ivezić, V.; Ademi, A.; Singh, B.R. Biofortification of wheat cultivars with selenium. Soil Plant Sci. 2019, 69, 715–724. [Google Scholar] [CrossRef]
- Sarwar, N.; Akhtar, M.; Kamran, M.A.; Imran, M.; Riaz, M.A.; Kamran, K.; Hussain, S. Selenium biofortification in food crops: Key mechanisms and future perspectives. J. Food Compos. Anal. 2020, 103615. [Google Scholar] [CrossRef]
- Mechora, Š. Selenium as a protective agent against pests: A review. Plants 2019, 8, 262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Jia, W.; Hu, C.; Nie, M.; Ming, J.; Cheng, Q.; Cai, M.; Sun, X.; Li, X.; Zheng, X.; et al. Selenium as a potential fungicide could protect oilseed rape leaves from Sclerotinia sclerotiorum infection. Environ. Pollut. 2020, 257, 113495. [Google Scholar] [CrossRef] [PubMed]
Syndrome | Clinical Features |
---|---|
White Muscle Disease | Acute onset, stiffness, skeletal or cardiac muscles affected. |
Reproductive performance | The retained fetal membrane in dairy cows. |
Abortion, Still-births | Late third trimester abortions and stillbirths |
Myodegeneration of cattle (adult) | Myocardial fibrosis, myoglobinuria weakness |
Infertility in cattle and sheep | Decreased conception rate, early embryonic death |
Diarrhoea | Diarrhoea, weight loss in young and adult cattle |
Age | Male | Female | Pregnancy | Lactation |
---|---|---|---|---|
Birth to 6 months | 15 mcg * | 15 mcg * | ||
7–12 months | 20 mcg * | 20 mcg * | ||
1–3 years | 20 mcg | 20 mcg | ||
4–8 years | 30 mcg | 30 mcg | ||
9–13 years | 40 mcg | 40 mcg | ||
14–18 years | 55 mcg | 55 mcg | 60 mcg | 70 mcg |
19–50 years | 55 mcg | 55 mcg | 60 mcg | 70 mcg |
51+ years | 55 mcg | 55 mcg |
Years | Case Study | References |
---|---|---|
1970 | East Karelia has the highest heart disease rates in the world | Aro et al. [89] |
Low available Se in soils. | ||
Se supplementation of livestock feeds commences | ||
Heart disease (especially in men) begins to decline | ||
1984 | National Se biofortification program commences | Broadley et al. [87] |
1987 | Se in spring wheat grain increases from 10 (pre-1984) to 250 µg/kg | Eurola et al. [90]. |
Human Se intake trebles | ||
Human plasma Se level doubles (55 to 107 µg/kg) | Broadley et al. [88]. | |
Heart disease continues to decline | ||
2010 | Heart disease relatively low (resulting from reduced smoking, improved diet and exercise, and possibly higher Se status) | Mäkelä et al. [91] |
No detrimental effects of Se observed | Varo et al. [92] | |
Se still added to crop fertilizers at 10 mg/kg |
Host Plants | AMF | References |
---|---|---|
Allium sativum | Glomus fasciculatum | Patharajan and Raaman [212] |
Allium sativum | Glomus irtraradices | Larsen et al. [205,213] |
Lolium perenne, Allium sativum, Medicago sativa, Glycine max, Zea mays | Glomus mosseae | Patharajan and Raaman [212]; Yu et al. [214] |
Glomus versiform | Triticum aestivum | Luo et al. [215] |
Lactuca sativa, Asparagus officinalis, Lactuca sativa, Allium cepa | Rhizophagus intraradices | Sanmartin et al. [216] |
Host Plants | Root Endophytic Fungi | References |
---|---|---|
Stanleya pinnata | Alternaria seleniiphila | Lindblom et al. [211] |
Astragalus bisulcatus | Alternaria astragali | |
Stanleya pinnata | Aspergillus leporis | |
Astragalus racemosus | Fusarium acuminatum | |
Allium cepa | Trichoderma harzianum | Sanmartin et al. [216] |
Host Plants | PGPRB | References |
---|---|---|
Triticum aestivum | Acinetobacter sp. | Durán et al. [227] |
Ricinus communis, Glycine max | Alcaligenes faecalis | Trivedi et al. [226] |
Triticum aestivum | Anabaena sp. | Abadin et al. [225] |
Arabidopsis thaliana | Bacillus amyloliquefaciens | Wang et al. [228] |
Triticum aestivum | Bacillus axarquiens | Durán et al. [227] |
Triticum aestivum | Bacillus cereus | Yasin et al. [207] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, A.; Skalicky, M.; Brestic, M.; Maitra, S.; Sarkar, S.; Ahmad, Z.; Vemuri, H.; Garai, S.; Mondal, M.; Bhatt, R.; et al. Selenium Biofortification: Roles, Mechanisms, Responses and Prospects. Molecules 2021, 26, 881. https://doi.org/10.3390/molecules26040881
Hossain A, Skalicky M, Brestic M, Maitra S, Sarkar S, Ahmad Z, Vemuri H, Garai S, Mondal M, Bhatt R, et al. Selenium Biofortification: Roles, Mechanisms, Responses and Prospects. Molecules. 2021; 26(4):881. https://doi.org/10.3390/molecules26040881
Chicago/Turabian StyleHossain, Akbar, Milan Skalicky, Marian Brestic, Sagar Maitra, Sukamal Sarkar, Zahoor Ahmad, Hindu Vemuri, Sourav Garai, Mousumi Mondal, Rajan Bhatt, and et al. 2021. "Selenium Biofortification: Roles, Mechanisms, Responses and Prospects" Molecules 26, no. 4: 881. https://doi.org/10.3390/molecules26040881
APA StyleHossain, A., Skalicky, M., Brestic, M., Maitra, S., Sarkar, S., Ahmad, Z., Vemuri, H., Garai, S., Mondal, M., Bhatt, R., Kumar, P., Banerjee, P., Saha, S., Islam, T., & Laing, A. M. (2021). Selenium Biofortification: Roles, Mechanisms, Responses and Prospects. Molecules, 26(4), 881. https://doi.org/10.3390/molecules26040881