Improvement of Phase Change Materials (PCM) Used for Solar Process Heat Applications
Abstract
:1. Introduction
2. Results
2.1. Composite Production
2.2. Effective Thermal Conductivity Evaluation
2.3. Behavior of the Metal Wool under an Inert Atmosphere
3. Materials and Methods
3.1. Material
3.2. Production of the Metal Wool Composite
3.3. Effective Thermal Conductivity Evaluation
3.4. Behavior of the Metal Wool under an Inert Atmosphere
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Crespo, A.; Barreneche, C.; Ibarra, M.; Platzer, W. Latent thermal energy storage for solar process heat applications at medium-high temperatures—A review. Sol. Energy 2019, 192, 3–34. [Google Scholar] [CrossRef]
- Yang, G.; Yim, Y.-J.; Lee, J.W.; Heo, Y.-J.; Park, S.-J. Carbon-Filled Organic Phase-Change Materials for Thermal Energy Storage: A Review. Molecules 2019, 24, 2055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AboKersh, M.H.; Osman, M.; El-Baz, O.; El-Morsi, M.; Sharaf, O. Review of the phase change material (PCM) usage for solar domestic water heating systems (SDWHS). Int. J. Energy Res. 2018, 42, 329–357. [Google Scholar] [CrossRef]
- Kee, S.Y.; Munusamy, Y.; Ong, K.S. Review of solar water heaters incorporating solid-liquid organic phase change materials as thermal storage. Appl. Therm. Eng. 2018, 131, 455–471. [Google Scholar] [CrossRef]
- Pandey, A.; Hossain, M.; Tyagi, V.; Rahim, N.A.; Selvaraj, J.A.; Sari, A. Novel approaches and recent developments on potential applications of phase change materials in solar energy. Renew. Sustain. Energy Rev. 2018, 82, 281–323. [Google Scholar] [CrossRef]
- Prieto, C.; Cabeza, L.F. Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance. Appl. Energy 2019, 254, 113646. [Google Scholar] [CrossRef]
- Sharan, P.; Turchi, C.; Kurup, P. Optimal design of phase change material storage for steam production using annual simulation. Sol. Energy 2019, 185, 494–507. [Google Scholar] [CrossRef]
- Abujas, C.R.; Jové, A.; Prieto, C.; Gallas, M.; Cabeza, L.F. Performance comparison of a group of thermal conductivity enhancement methodology in phase change material for thermal storage application. Renew. Energy 2016, 97, 434–443. [Google Scholar] [CrossRef] [Green Version]
- Gasia, J.; Miró, L.; Cabeza, L.F. Materials and system requirements of high temperature thermal energy storage systems: A review. Part 2: Thermal conductivity enhancement techniques. Renew. Sustain. Energy Rev. 2016, 60, 1584–1601. [Google Scholar] [CrossRef] [Green Version]
- Steinmann, W.-D.; Laing, D.; Tamme, R. Latent Heat Storage Systems for Solar Thermal Power Plants and Process Heat Applications. J. Sol. Energy Eng. 2010, 132, 021003. [Google Scholar] [CrossRef]
- Ikutegbe, C.A.; Farid, M.M. Application of phase change material foam composites in the built environment: A critical review. Renew. Sustain. Energy Rev. 2020, 131, 110008. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Ibáñez, M.; Solé, C.; Roca, J.; Nogués, M. Experimentation with a water tank including a PCM module. Sol. Energy Mater. Sol. Cells 2006, 90, 1273–1282. [Google Scholar] [CrossRef]
- Mahdi, J.M.; Nsofor, E.C. Multiple-segment metal foam application in the shell-and-tube PCM thermal energy storage system. J. Energy Storage 2018, 20, 529–541. [Google Scholar] [CrossRef]
- Gasia, J.; Maldonado, J.M.; Galati, F.; De Simone, M.; Cabeza, L.F. Experimental evaluation of the use of fins and metal wool as heat transfer enhancement techniques in a latent heat thermal energy storage system. Energy Convers. Manag. 2019, 184, 530–538. [Google Scholar] [CrossRef]
- Yousef, M.S.; Hassan, H. An experimental work on the performance of single slope solar still incorporated with latent heat storage system in hot climate conditions. J. Clean. Prod. 2019, 209, 1396–1410. [Google Scholar] [CrossRef]
- Yousef, M.S.; Hassan, H. Energetic and exergetic performance assessment of the inclusion of phase change materials (PCM) in a solar distillation system. Energy Convers. Manag. 2019, 179, 349–361. [Google Scholar] [CrossRef]
- Prieto, C.; Rubio, C.; Cabeza, L.F. New phase change material storage concept including metal wool as heat transfer enhancement method for solar heat use in industry. J. Energy Storage 2021, 33, 101926. [Google Scholar] [CrossRef]
- Yang, J.; Yang, W.; Chen, W.; Tao, X. An elegant coupling: Freeze-casting and versatile polymer composites. Prog. Polym. Sci. 2020, 109, 101289. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, F.; Su, W.; Zhao, H.; Wang, C.-A. Impregnation of porous mullite with Na2SO4 phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 2015, 134, 268–274. [Google Scholar] [CrossRef]
- Maldonado, J.M.; Fernández, Á.G.; Cabeza, L.F. Corrosion assessment of myo-inositol sugar alcohol as a phase change material in storage systems connected to Fresnel solar plants. Molecules 2019, 24, 1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Gao, X. Directional dependence of electrical and thermal properties in graphene-nanoplatelet-based composite materials. Results Phys. 2019, 15, 102608. [Google Scholar] [CrossRef]
- Martín, M.; Centelles, X.; Solé, A.; Barreneche, C.; Fernández, A.I.; Cabeza, L.F. Polymeric interlayer materials for laminated glass: A review. Constr. Build. Mater. 2020, 230, 116897. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, Y.; Bao, Z.; Yan, D.; Zhu, Z. Methods for measuring the effective thermal conductivity of metal hydride beds: A review. Int. J. Hydrogen Energy 2020, 45, 6680–6700. [Google Scholar] [CrossRef]
- Gustafsson, S.E. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 1991, 62, 797–804. [Google Scholar] [CrossRef]
- Gustavsson, M.; Karawacki, E.; Gustafsson, S.E. Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors. Rev. Sci. Instrum. 1994, 65, 3856–3859. [Google Scholar] [CrossRef]
- Biercuk, M.J.; Llaguno, M.C.; Radosavljevic, M.; Hyun, J.K.; Johnson, A.T.; Fischer, J.E. Carbon nanotube composites for thermal management. Appl. Phys. Lett. 2002, 80, 2767–2769. [Google Scholar] [CrossRef]
- Madrid, F. Thermal Conductivity and Specific Heat Measurements for Power Electronics Packaging Materials. In Effective Thermal Conductivity Steady State and Transient Thermal Parameter Identification Methods; Universitat Autònoma de Barcelona: Barcelona, Spain, 2005. [Google Scholar]
- Han, D.; Yue, K.; Cheng, L.; Yang, X.; Zhang, X. Measurement of the Thermophysical Properties of Anisotropic Insulation Materials with Consideration of the Effect of Thermal Contact Resistance. Materials 2000, 13, 1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Average |
---|---|---|---|---|---|---|
Section 1 | 4.08 | 4.62 | 4.90 | 4.84 | 4.89 | 4.66 |
Section 2 | 3.95 | 4.56 | 3.90 | 4.50 | 4.70 | 4.31 |
Sample | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Average |
---|---|---|---|---|---|---|
Section 1 | 0.80 | 0.80 | 0.73 | 0.75 | 0.72 | 0.76 |
Section 2 | 0.77 | 0.71 | 0.77 | 0.82 | 0.89 | 0.77 |
Sample | Density 1 (g/cm3) | Density 2 (g/cm3) | Density 3 (g/cm3) | Average (g/cm3) |
---|---|---|---|---|
Section 1 | 1.77 | 1.83 | 1.76 | 1.79 |
Section 2 | 1.81 | 1.77 | 1.69 | 1.76 |
Sample | Cp 1 (MJ/m3K) | Cp 2 (MJ/m3K) | Cp 3 (MJ/m3K) | Average (MJ/m3K) |
---|---|---|---|---|
Section 1 | 1.75 | 1.82 | 1.60 | 1.72 |
Section 2 | 1.55 | 1.64 | 1.6 | 1.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prieto, C.; Lopez-Roman, A.; Martínez, N.; Morera, J.M.; Cabeza, L.F. Improvement of Phase Change Materials (PCM) Used for Solar Process Heat Applications. Molecules 2021, 26, 1260. https://doi.org/10.3390/molecules26051260
Prieto C, Lopez-Roman A, Martínez N, Morera JM, Cabeza LF. Improvement of Phase Change Materials (PCM) Used for Solar Process Heat Applications. Molecules. 2021; 26(5):1260. https://doi.org/10.3390/molecules26051260
Chicago/Turabian StylePrieto, Cristina, Anton Lopez-Roman, Noelia Martínez, Josep M. Morera, and Luisa F. Cabeza. 2021. "Improvement of Phase Change Materials (PCM) Used for Solar Process Heat Applications" Molecules 26, no. 5: 1260. https://doi.org/10.3390/molecules26051260
APA StylePrieto, C., Lopez-Roman, A., Martínez, N., Morera, J. M., & Cabeza, L. F. (2021). Improvement of Phase Change Materials (PCM) Used for Solar Process Heat Applications. Molecules, 26(5), 1260. https://doi.org/10.3390/molecules26051260