Effect of Elicitation with Iron Chelate and Sodium Metasilicate on Phenolic Compounds in Legume Sprouts
Abstract
:1. Introduction
2. Results
3. Discussion
4. Material and Methods
4.1. Materials and Preparation of Sprouts
4.1.1. Sprouting
4.1.2. Elicitor Composition
4.2. Analyses of Free and Derivatives of Flavonoids and Phenolic Acids
4.3. Statistics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Shakuntala, S.; Naik, J.P.; Jeyarani, T.; Naidu, M.M.; Srinivas, P. Characterisation of germinated fenugreek (Trigonella foenum-graecum L.) seed fractions. Int. J. Food Sci. Technol. 2011, 46, 2337–2343. [Google Scholar] [CrossRef]
- Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galieni, A. Sprouted Grains: A Comprehensive Review. Nutrients 2019, 11, 421. [Google Scholar] [CrossRef] [Green Version]
- Dębski, H.; Wiczkowski, W.; Szawara-Nowak, D.; Horbowicz, M. Elicitation with sodium silicate and iron chelate affects the contents of phenolic compounds and minerals in buckwheat sprouts. Pol. J. Food Nutr. Sci. 2021, 71. in press. [Google Scholar]
- Choe, U.; Yu, L.L.; Wang, T.T.Y. The science behind microgreens as an exciting new food for the 21st Century. J. Agric. Food Chem. 2018, 66, 11519–11530. [Google Scholar] [CrossRef] [PubMed]
- Kyriacou, M.C.; El-Nakhel, C.; Graziani, G.; Pannico, A.; Soteriou, G.A.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chem. 2019, 277, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Cevallos-Casals, B.A.; Cisneros-Zevallos, L. Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chem. 2010, 119, 1485–1490. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Tkacz, K.; Turkiewicz, I.P. Sprouts vs. microgreens as novel functional foods: Variation of nutritional and phytochemical profiles and their in vitro bioactive properties. Molecules 2020, 25, 4648. [Google Scholar] [CrossRef] [PubMed]
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Hooda, S.; Jood, S. Effect of soaking and germination on nutrient and antinutrient contents of fenugreek (Trigonella foenum-graecum L.). J. Food Biochem. 2007, 27, 165–176. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Swieca, M.; Dziki, D.; Sugier, D. Improvement of nutraceutical value of broccoli sprouts by natural elicitors. Acta Sci. Pol.-Hortorum 2013, 12, 129–140. [Google Scholar]
- Baenas, N.; García-Viguera, C.; Morena, D.A. Elicitation: A tool for enriching the bioactive composition of foods. Molecules 2014, 19, 13541–13563. [Google Scholar] [CrossRef] [Green Version]
- Horbowicz, M.; Wiczkowski, W.; Szawara-Nowak, D.; Sawicki, T.; Kosson, R.; Sytykiewicz, H. The level of flavonoids and amines in de-etiolated and methyl jasmonate treated seedlings of common buckwheat. Phytochem. Lett. 2015, 13, 15–19. [Google Scholar] [CrossRef]
- Falcinelli, B.; Sileoni, V.; Marconi, O.; Perretti, G.; Quinet, M.; Lutts, S.; Benincasa, P. Germination under moderate salinity increases phenolic content and antioxidant activity in rapeseed (Brassica napus var oleifera Del.) sprouts. Molecules 2017, 22, 1377. [Google Scholar] [CrossRef] [Green Version]
- Park, C.H.; Yeo, H.J.; Park, Y.J.; Morgan, A.M.; Valan Arasu, M.; Al-Dhabi, N.A.; Park, S.U. Influence of indole-3-acetic acid and gibberellic acid on phenylpropanoid accumulation in common buckwheat (Fagopyrum esculentum Moench) sprouts. Molecules 2017, 22, 374. [Google Scholar] [CrossRef] [Green Version]
- Ribera-Fonseca, A.; Rumpel, C.; Mora de la Luz, M.; Nikolic, M.; Cartes, P. Sodium silicate and calcium silicate differentially affect silicon and aluminium uptake, antioxidant performance and phenolics metabolism of ryegrass in an acid Andisol. Crop Pasture Sci. 2018, 69, 205–215. [Google Scholar] [CrossRef]
- Park, C.H.; Yeo, H.J.; Park, Y.E.; Chun, S.W.; Chung, Y.S.; Lee, S.Y.; Park, S.U. Influence of chitosan, salicylic acid and jasmonic acid on phenylpropanoid accumulation in germinated buckwheat (Fagopyrum esculentum Moench). Foods 2019, 8, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar] [PubMed]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Przybysz, A.; Wrochna, M.; Małecka-Przybysz, M.; Gawrońska, H.; Gawroński, S.W. Vegetable sprouts enriched with iron: Effects on yields, ROS generation and antioxidant system. Sci. Hort. 2016, 203, 110–117. [Google Scholar] [CrossRef]
- Chmielowska-Bąk, J.; Zinicovscaia, I.; Frontasyeva, M.; Milczarek, A.; Micheli, S.; Vysochanska, M.; Deckert, J. Soybean seedlings enriched with iron and magnesium - impact on germination, growth and antioxidant properties. Ecol. Chem. Eng. S 2018, 25, 631–641. [Google Scholar] [CrossRef] [Green Version]
- Zielińska-Dawidziak, M.; Siger, A. Effect of elevated accumulation of iron and ferritin on the antioxidants content in soybean sprouts. Eur. Food Res. Technol. 2012, 234, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Pająk, P.; Socha, R.; Broniek, J.; Królikowska, K.; Fortuna, T. Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chem. 2019, 275, 69–76. [Google Scholar] [CrossRef]
- Singletary, K.W. Fenugreek. Nutr. Today 2017, 52, 93–111. [Google Scholar] [CrossRef]
- Kumar, P.; Bhandari, U. Common medicinal plants with antiobesity potential: A special emphasis on fenugreek. Anc. Sci. Life 2015, 35, 58–63. [Google Scholar] [CrossRef]
- Hong, Y.H.; Chao, W.W.; Chen, M.L.; Lin, B.F. Ethyl acetate extracts of alfalfa (Medicago sativa L.) sprouts inhibit lipopolysaccharide-induced inflammation in vitro and in vivo. J. Biomed. Sci. 2009, 16, 64. [Google Scholar] [CrossRef] [Green Version]
- Seida, A.; El-Hefnawy, H.; Abou-Hussein, D.; Mokhtar, F.A.; Abdel-Naim, A. Evaluation of Medicago sativa L. sprouts as antihyperlipidemic and antihyperglycemic agent. Pak. J. Pharm. Sci. 2015, 28, 2061–2074. [Google Scholar] [PubMed]
- Bora, K.S.; Sharma, A. Phytochemical and pharmacological potential of Medicago sativa: A review. Pharm. Biol. 2011, 49, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Fouad, A.A.; Rehab, F.M. Effect of germination time on proximate analysis, bioactive compounds and antioxidant activity of lentil (Lens culinaris Medik.) sprouts. Acta Sci. Pol. Technol. Aliment. 2015, 14, 233–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganesan, K.; Xu, B. Polyphenol-rich lentils and their health promoting effects. Int. J. Mol. Sci. 2017, 18, 2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Świeca, M.; Baraniak, B.; Gawlik-Dziki, U. Effect of selected divalent cations on protein mobilization in lentil (Lens culinaris) sprouts. J. Elem. 2014, 19, 577–585. [Google Scholar] [CrossRef]
- Świeca, M.; Baraniak, B. Nutritional and antioxidant potential of lentil sprouts affected by elicitation with temperature stress. J. Agric. Food Chem. 2014, 62, 3306–3313. [Google Scholar] [CrossRef]
- Świeca, M. Elicitation with abiotic stresses improves pro-health constituents, antioxidant potential and nutritional quality of lentil sprouts. Saudi J. Biol. Sci. 2015, 22, 409–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peñas, E.; Limón, R.I.; Martínez-Villaluenga, C.; Restani, P.; Pihlanto, A.; Frias, J. Impact of elicitation on antioxidant and potential antihypertensive properties of lentil sprouts. Plant Foods Hum. Nutr. 2015, 70, 401–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troszynska, A.; Estrella, I.; Lamparski, G.; Hernandez, T.; Amarowicz, R.; Pegg, R.B. Relationship between the sensory quality of lentil (Lens culinaris) sprouts and their phenolic constituents. Food Res. Int. 2011, 44, 3195–3201. [Google Scholar] [CrossRef]
- Świeca, M.; Baraniak, B. Influence of elicitation with H2O2 on phenolics content, antioxidant potential and nutritional quality of Lens culinaris sprouts. J. Sci. Food Agric. 2014, 94, 489–496. [Google Scholar] [CrossRef]
- Gharachorloo, M.; Tarzil, B.G.; Baharinia, M.; Hemaci, A.H. Antioxidant activity and phenolic content of germinated lentil (Lens culinaris). J. Med. Plants Res. 2012, 6, 4562–4566. [Google Scholar] [CrossRef]
- Oroian, M.; Escriche Roberto, M.I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res. Int. 2015, 74, 10–36. [Google Scholar] [CrossRef] [PubMed]
- Lapuente, M.; Estruch, R.; Shahbaz, M.; Casas, R. Relation of fruits and vegetables with major cardiometabolic risk factors, markers of oxidation, and inflammation. Nutrients 2019, 11, 2381. [Google Scholar] [CrossRef] [Green Version]
- Katz, D.L.; Doughty, K.; Ali, A. Cocoa and chocolate in human health and disease. Antioxid. Redox Signal. 2011, 15, 2779–2811. [Google Scholar] [CrossRef] [Green Version]
- Ried, K.; Sullivan, T.R.; Fakler, P.; Frank, O.R.; Stocks, N.P. Effect of cocoa on blood pressure. Cochrane Database Syst. Rev. 2012, 15, CD008893. [Google Scholar] [CrossRef]
- Grassi, D.; Desideri, G.; Ferri, C. Protective effects of dark chocolate on endothelial function and diabetes. Curr. Opin. Clin. Nutr. 2013, 16, 662–668. [Google Scholar] [CrossRef]
- Grassi, D.; Desideri, G.; Di Giosia, P.; De Feo, M.; Fellini, E.; Cheli, P.; Ferri, L.; Ferri, C. Tea, flavonoids, and cardiovascular health: Endothelial protection. Am. J. Clin. Nutr. 2013, 98, 1660S–1666S. [Google Scholar] [CrossRef] [Green Version]
- Sansone, R.; Rodriguez-Mateos, A.; Heuel, J.; Falk, D.; Schuler, D.; Wagstaff, R.; Kuhnle, G.G.; Spencer, J.P.; Schroeter, H.; Merx, M.W.; et al. Flaviola Consortium, European Union 7th Framework Program. Cocoa flavanol intake improves endothelial function and Framingham Risk Score in healthy men and women: A randomised, controlled, double-masked trial: The Flaviola Health Study. Br. J. Nutr. 2015, 114, 1246–1255. [Google Scholar] [CrossRef]
- Ottaviani, J.I.; Momma, T.Y.; Heiss, C.; Kwik-Uribe, C.; Schroeter, H.; Keen, C.L. The stereochemical configuration of flavanols influences the level and metabolism of flavanols in humans and their biological activity in vivo. Free Radic. Biol. Med. 2011, 50, 237–244. [Google Scholar] [CrossRef]
- Maskarinec, G.; Jacobs, S.; Shvetsov, Y.; Boushey, C.J.; Setiawan, V.W.; Kolonel, L.N.; Haiman, C.A.; Le Marchand, L. Intake of cocoa products and risk of type-2 diabetes: The multiethnic cohort. Eur. J. Clin. Nutr. 2019, 73, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Yeo, J.; Shahidi, F. Critical evaluation of changes in the ratio of insoluble bound to soluble phenolics on antioxidant activity of lentils during germination. J. Agric. Food Chem. 2015, 63, 379–381. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Yeo, J.D. Insoluble-bound phenolics in food. Molecules 2016, 21, 1216. [Google Scholar] [CrossRef] [PubMed]
- Kajdzanoska, M.; Petreska, J.; Stefova, M. Comparison of different extraction solvent mixtures for characterization of phenolic compounds in strawberries. J. Agric. Food Chem. 2011, 59, 5272–5278. [Google Scholar] [CrossRef] [PubMed]
- Perez-Jimenez, J.; Torres, J.L. Analysis of nonextractable phenolic compounds in foods: The current state of the art. J. Agric. Food Chem. 2011, 59, 12713–12724. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Zhang, R.; Hou, F.; Zhang, M.; Guo, J.; Huang, F.; Deng, Y.; Wei, Z. Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents. BMC Complement. Altern. Med. 2014, 14, 9. [Google Scholar] [CrossRef] [Green Version]
- Artyszak, A. Effect of silicon fertilization on crop yield quantity and quality—A literature review in Europe. Plants 2018, 7, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shetty, R.; Fretté, X.; Jensen, B.; Shetty, N.P.; Jensen, J.D.; Jørgensen, H.J.L.; Newman, M.-A.; Christensen, L.P. Silicon-induced changes in antifungal phenolic acids, flavonoids, and key phenylpropanoid pathway genes during the interaction between miniature roses and the biotrophic pathogen Podosphaera pannosa. Plant Physiol. 2011, 157, 2194–2205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savvas, D.; Ntatsi, G. Biostimulant activity of silicon in horticulture. Sci. Hort. 2015, 196, 66–81. [Google Scholar] [CrossRef]
- Fawe, A.; Abou-Zaid, M.; Menzies, J.G.; Bélanger, R.R. Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology 1998, 88, 396–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chérif, M.; Asselin, A.; Belanger, R.R. Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 1994, 84, 236–242. [Google Scholar] [CrossRef]
- Dixit, P.; Ghaskadbi, S.; Mohan, H.; Devasagyam, P.A. Antioxidant properties of germinated fenugreek seeds. Phytother. Res. 2005, 19, 977–983. [Google Scholar] [CrossRef]
- Benayad, Z.; Gómez-Cordovés, C.; Es-Safi, N.E. Identification and quantification of flavonoid glycosides from fenugreek (Trigonella foenum-graecum) germinated seeds by LC–DAD–ESI/MS analysis. J. Food Comp. Anal. 2014, 35, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Oufquir, S.; Ait Laaradia, M.A.; El Gabbas, Z.; Bezza, K.; Laadraoui, J.; Aboufatima, R.; Sokar, Z.; Chait, A. Trigonella foenum-graecum L. sprouted seed extract: Its chemical HPLC analysis, abortive effect, and neurodevelopmental toxicity on mice. Evid. Based Complement. Altern. Med. 2020, 1615794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, M. Catechins as antioxidants from buckwheat (Fagopyrum esculentum Moench) groats. J. Agric. Food Chem. 1998, 46, 839–845. [Google Scholar] [CrossRef]
- Simos, Y.V.; Verginadis, I.I.; Toliopoulos, I.K.; Velalopoulou, A.P.; Karagounis, I.V.; Karkabounas, S.C.; Evangelou, A.M. Effects of catechin and epicatechin on superoxide dismutase and glutathione peroxidase activity, in vivo. Redox Rep. 2012, 17, 181–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oszmiański, J.; Kolniak-Ostek, J.; Wojdyło, A. Application of ultra performance liquid chromatography photodiode detector-quadrupole/time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS) method for the characterization of phenolic compounds of Lepidium sativum L. sprouts. Eur. Food Res. Technol. 2013, 236, 699–706. [Google Scholar] [CrossRef] [Green Version]
- Amarowicz, R.; Estrella, I.; Hernández, T.; Dueñas, M.; Troszyńska, A.; Kosińska, A.; Pegg, R.B. Antioxidant activity of a red lentil extract and its fractions. Int. J. Mol. Sci. 2009, 10, 5513–5527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiriac, E.R.; Chitescu, C.L.; Borda, D.; Lupoae, M.; Gird, C.E.; Geana, E.-I.; Blaga, G.-V.; Boscencu, R. Comparison of the polyphenolic profile of Medicago sativa L. and Trifolium pratense L. sprouts in dfferent germination stages using the UHPLC-Q exactive hybrid quadrupole orbitrap high-resolution mass spectrometry. Molecules 2020, 25, 2321. [Google Scholar] [CrossRef]
- Park, S.A.; Grusak, M.A.; Oh, M.M. Concentrations of minerals and phenolic compounds in three edible sprout species treated with iron-chelates during imbibition. Hortic. Environ. Biotechnol. 2014, 55, 471–478. [Google Scholar] [CrossRef]
- Płatosz, N.; Sawicki, T.; Wiczkowski, W. Profile of phenolic acids and flavonoids of red beet and its fermentation products. Does long-term consumption of fermented beetroot juice affect phenolics profile in human blood plasma and urine? Pol. J. Food Nutr. Sci. 2020, 70, 55–65. [Google Scholar] [CrossRef]
Treatment | Free | Esters | Glycosides | Total |
---|---|---|---|---|
Epicatechin (EC) | ||||
Fenugreek | ||||
Control | 2041 ± 27 a | 5045 ± 27 c | nd | 7086 ± 54 c |
Fe-EDTA–Na-Sil | 1570 ±15 b | 6635 ± 44 b | nd | 8305 ± 59 a |
Na-Sil | 319 ± 13 c | 8920 ± 48 a | nd | 9239 ± 61 a |
Lentil | ||||
Control | nd | 26.4 ± 2.0 a | nd | 26.4 ± 2.0 a |
Fe-EDTA–Na-Sil | nd | 30.3 ± 2.1 a | nd | 30.3 ± 2.1 a |
Na-Sil | nd | 35.3 ± 2.5 a | nd | 35.3 ± 2.5 a |
Alfalfa | ||||
Control | 112.5 ± 3.1 a | 316 ± 17 c | nd | 428 ± 20 c |
Fe-EDTA–Na-Sil | 47.7 ± 2.0 b | 465 ± 24 b | nd | 513 ± 26 bc |
Na-Sil | 34.2 ± 1.3 c | 626 ± 37 a | nd | 660 ± 38 ab |
Naringenin | ||||
Fenugreek | ||||
Control | 1.4 ± 0.9 a | 1.4 ± 0.9 a | 6.3 ± 1.3 b | 9.6 ± 2.1 a |
Fe-EDTA–Na-Sil | 1.5 ± 0.9 a | 1.0 ± 0.9 a | 16.8 ± 1.9 a | 5.3 ± 1.8 a |
Na-Sil | 1.6 ± 0.9 a | 1.0 ± 0.9 a | 10.7 ± 1.4 ab | 3.5 ± 1.4 a |
Lentil | ||||
Control | 2.8 ± 1.0 a | 1.0 ± 1.0 a | 10.7 ± 1.3 a | 14.5 ± 3.3 a |
Fe-EDTA–Na-Sil | 3.2 ± 1.0 a | 1.0 ± 0.9 a | 10.6 ± 1.2 a | 14.8 ± 3.1 a |
Na-Sil | 7.5 ± 1.2 a | 1.9 ± 1.0 a | 17.2 ± 2.2 a | 26.6 ± 4.4 a |
Alfalfa | ||||
Control | 10.1 ± 1.4 b | 1.3 ± 1.0 a | 8.7 ± 1.0 a | 20.1 ± 3.4 a |
Fe-EDTA–Na-Sil | 20.5 ± 1.8 a | 3.1 ± 1.0 a | 7.5 ± 1.0 a | 31.1 ± 3.8 a |
Na-Sil | 12.6 ± 1.0 b | 1.0 ± 0.9 a | 16.4 ± 2.3 a | 30.0 ± 4.2 a |
Treatment | Free | Esters | Glycosides | Total |
---|---|---|---|---|
Quercetin | ||||
Fenugreek | ||||
Control | 1.4 ± 0.9 a | 3.4 ± 1.2 a | 101 ± 5.1 a | 106 ± 7.2 a |
Fe-EDTA–Na-Sil | 2.0 ± 1.0 a | 4.7 ± 1.0 a | 41.1 ± 5.2 b | 47.8 ± 7.2 b |
Na-Sil | 2.0 ± 0.9 a | 3.7 ± 1.1 a | 63.5 ± 4.3 b | 69.2 ± 6.3 b |
Lentil | ||||
Control | 3.0 ± 0.9 a | nd | 345 ± 5.9 a | 348 ± 6.8 a |
Fe-EDTA–Na-Sil | 3.3 ± 1.3 a | nd | 153 ± 3.7 b | 156 ± 5.0 b |
Na-Sil | 3.9 ± 1.2 a | nd | 8.4 ± 1.9 c | 12.3 ± 3.1 c |
Alfalfa | ||||
Control | 31.8 ± 1.3 a | 58.3 ± 3.5 a | 165 ± 3.9 b | 255 ± 8.7 b |
Fe-EDTA–Na-Sil | 35.3 ± 2.1 a | 37.4 ± 2.7 b | 177 ±2.6 b | 250 ± 6.4 b |
Na-Sil | 23.0 ± 1.0 b | 42.8 ± 2.5 b | 344 ± 6.7 a | 410 ± 10.2 a |
Kaempferol | ||||
Fenugreek | ||||
Control | nd | nd | 32.5 ± 2.2 a | 32.5 ± 2.2 a |
Fe-EDTA–Na-Sil | nd | nd | 30.9 ± 1.2 a | 30.9 ± 1.2 a |
Na-Sil | nd | nd | 31.3 ± 2.4 a | 31.3 ± 2.4 a |
Lentil | ||||
Control | nd | 3.3 ± 0.9 a | 122 ± 3.9 b | 125 ± 4.8 b |
Fe-EDTA–Na-Sil | nd | 3.5 ± 1.1 a | 157 ± 4.9 a | 160 ± 6.0 a |
Na-Sil | nd | 4.7 ± 1.0 a | 98.7 ± 2.8 c | 102 ± 3.8 b |
Alfalfa | ||||
Control | 3.6 ± 0.9 a | 1.0 ± 0.9 a | 29.1 ± 1.9 c | 33.7 ± 3.7 b |
Fe-EDTA–Na-Sil | 5.4 ± 1.2 a | 1.2 ± 0.9 a | 45.2 ± 3.5 b | 51.8 ± 5.6 ab |
Na-Sil | 1.5 ± 0.9 a | 1.7 ± 0.9 a | 71.2 ± 4.4 a | 74.4 ± 6.2 a |
Treatment | Free | Esters | Glycosides | Total |
---|---|---|---|---|
Apigenin | ||||
Fenugreek | ||||
Control | 1.9 ± 0.4 a | 3.3 ± 0.8 a | 95.1 ± 1.4 a | 100 ± 2.6 a |
Fe-EDTA–Na-Sil | 1.7 ± 0.4 a | 3.8 ± 0.4 a | 93.5 ± 1.8 a | 99.0 ± 2.8 a |
Na-Sil | 3.7 ± 0.8 a | 4.2 ± 0.3 a | 95.3 ± 1.2 a | 103 ± 2.4 a |
Lentil | ||||
Control | nd | nd | nd | nd |
Fe-EDTA–Na-Sil | nd | nd | nd | nd |
Na-Sil | nd | nd | nd | nd |
Alfalfa | ||||
Control | 238 ± 2.8 a | 4.7 ± 0.7 a | 252 ± 2.9 c | 495 ± 6.4 c |
Fe-EDTA–Na-Sil | 181 ± 2.4 b | 5.4 ± 0.9 a | 345 ± 2.8 b | 531 ± 5.1 b |
Na-Sil | 105 ± 1.6 c | 6.8 ± 0.7 a | 535 ± 4.8 a | 646 ± 7.1 a |
Vitexin (apigenin-8-C-glucoside) | ||||
Fenugreek | ||||
Control | nd | 10.5 ± 1.0 a | nd | 10.5 ± 1.0 a |
Fe-EDTA–Na-Sil | nd | 9.8 ± 1.2 a | nd | 9.8 ± 1.2 a |
Na-Sil | nd | 5.2 ± 1.0 a | nd | 5.2 ± 1.0 a |
Lentil | ||||
Control | nd | nd | nd | nd |
Fe-EDTA–Na-Sil | nd | nd | nd | nd |
Na-Sil | nd | nd | nd | nd |
Alfalfa | ||||
Control | nd | nd | nd | nd |
Fe-EDTA–Na-Sil | nd | nd | nd | nd |
Na-Sil | nd | nd | nd | nd |
Luteolin | ||||
Fenugreek | ||||
Control | 1.7 ± 1.2 a | nd | 28.1 ± 2.7 a | 29.8 ± 3.9 a |
Fe-EDTA–Na-Sil | 1.3 ± 1.2 a | nd | 17.5 ± 1.9 a | 18.8 ± 3.1 a |
Na-Sil | 1.1± 1.1 a | nd | 19.1 ± 2.2 a | 20.2 ± 3.3 a |
Lentil | ||||
Control | 5.4 ± 1.0 a | nd | 29.9 ± 2.3 a | 35.3 ± 3.3 a |
Fe-EDTA–Na-Sil | 5.8 ± 1.1 a | nd | 28.3 ± 1.5 a | 34.1 ± 2.6 a |
Na-Sil | 5.8 ± 1.2 a | nd | 20.1 ± 1.9 a | 25.9 ± 3.1 a |
Alfalfa | ||||
Control | 50.2 ± 3.5 a | 7.8 ± 1.5 a | 27.4 ± 2.9 b | 85.4 ± 7.9 a |
Fe-EDTA–Na-Sil | 62.9 ± 5.5 a | 7.5 ± 1.0 a | 31.6 ± 3.1 b | 102 ± 9.6 a |
Na-Sil | 20.9 ± 2.2 b | 2.8 ± 1.1 a | 58.6 ± 4.7 a | 82.3 ± 8.0 a |
Orientin (luteolin-8-C-glucoside) | ||||
Fenugreek | ||||
Control | nd | 9.6 ± 2.1 a | nd | 9.6 ± 2.1 a |
Fe-EDTA–Na-Sil | nd | 5.3 ± 1.8 a | nd | 5.3 ± 1.8 a |
Na-Sil | nd | 3.5 ± 1.4 a | nd | 3.5 ± 1.4 a |
Lentil | ||||
Control | nd | nd | nd | nd |
Fe-EDTA–Na-Sil | nd | nd | nd | nd |
Na-Sil | nd | nd | nd | nd |
Alfalfa | ||||
Control | nd | nd | nd | nd |
Fe-EDTA–Na-Sil | nd | nd | nd | nd |
Na-Sil | nd | nd | nd | nd |
Treatment | Free | Esters | Glycosides | Total |
---|---|---|---|---|
p-hydroxybenzoic acid (PHB) | ||||
Fenugreek | ||||
Control | 217 ± 1.2 c | 265 ± 4.4 a | 1129 ± 4.2 b | 1611 ± 9.8 b |
Fe-EDTA–Na-Sil | 233 ± 3.5 b | 276 ± 2.0 a | 1071 ± 7.3 c | 1580 ± 12.8 b |
Na-Sil | 334 ± 3.4 a | 273 ± 1.5 a | 1434 ± 4.5 a | 2041 ± 9.4 a |
Lentil | ||||
Control | 275 ± 2.8 b | 207 ± 1.0 b | 1045 ± 4.1 a | 1527 ± 7.9 a |
Fe-EDTA–Na-Sil | 304 ± 2.6 a | 226 ± 8.1 b | 793 ± 6.0 b | 1491 ± 17.7 a |
Na-Sil | 246 ± 3.1 c | 327 ± 3.0 a | 824 ± 6.0 b | 1264 ± 12.1 b |
Alfalfa | ||||
Control | 264 ± 2.3 a | 188 ± 0.9 c | 749 ± 7.5 b | 1200 ± 10.7 c |
Fe-EDTA–Na-Sil | 276 ± 2.6 a | 329 ± 3.3 a | 886 ± 2.0 a | 1491 ± 7.9 a |
Na-Sil | 214 ± 3.0 b | 274 ± 3.0 b | 776 ± 6.0 b | 1264 ± 12.0 b |
Ferulic acid | ||||
Fenugreek | ||||
Control | 2.4 ± 0.3 a | 14.1 ± 1.0 a | 3.3 ± 0.2 a | 19.8 ± 1.5 a |
Fe-EDTA–Na-Sil | 2.6 ± 0.7 a | 12.7 ± 1.2 a | 4.8 ± 0.9 a | 20.l ± 2.8 a |
Na-Sil | 3.2 ± 0.6 a | 12.4 ± 1.1 a | 5.1 ± 0.7 a | 20.7 ± 2.4 b |
Lentil | ||||
Control | 3.0 ± 0.9 a | 237 ± 4.4 a | 4.3 ± 0.7 a | 244 ± 5.0 a |
Fe-EDTA–Na-Sil | 2.3 ± 0.5 a | 218 ± 8.0 ab | 4.2 ± 0.5 a | 225 ± 9.0 b |
Na-Sil | 1.6 ± 0.7 a | 148 ± 4.0 b | 3.1 ± 0.6 a | 152 ± 5.3 c |
Alfalfa | ||||
Control | 3.0 ± 0.9 a | 438 ± 4.9 c | 3.6 ± 0.7 a | 449 ± 5.5 c |
Fe-EDTA–Na-Sil | 5.9 ± 0.5 a | 594 ± 9.0 a | 3.4 ± 0.5 a | 604 ± 10.0 a |
Na-Sil | 5.0 ± 0.7 a | 533 ± 4.3 b | 5.5 ± 0.6 a | 543 ± 5.6 b |
p-coumaric acid (PCA) | ||||
Fenugreek | ||||
Control | 5.1 ± 1.3 a | 117 ± 3.7 a | 10.3 ± 1.1 a | 132 ± 6.1 a |
Fe-EDTA–Na-Sil | 10.7 ± 1.7 a | 104 ± 2.2 a | 12.6 ± 0.9 a | 127 ± 4.8 a |
Na-Sil | 10.1 ± 1.6 a | 63.0 ± 1.7 b | 11.4 ± 1.2 a | 84.5 ± 4.5 b |
Lentil | ||||
Control | 5.5 ± 0.3 a | 432 ± 4.9 a | 7.3 ± 0.7 a | 445 ± 5.9 a |
Fe-EDTA–Na-Sil | 3.3 ± 0.5 a | 365 ± 12.0 b | 4.3 ± 0.5 b | 372 ± 13.0 b |
Na-Sil | 3.1 ± 0.7 a | 267 ± 4.3 c | 9.0 ± 0.6 a | 279 ± 5.6 c |
Alfalfa | ||||
Control | 5.6 ± 0.7 a | 416 ± 1.9 c | 4.8 ± 0.7 a | 426 ± 3.3 c |
Fe-EDTA–Na-Sil | 7.8 ± 1.1 a | 565 ± 2.8 b | 7.1 ± 0.6 a | 580 ± 4.5 b |
Na-Sil | 5.4 ± 1.0 a | 714 ± 3.0 a | 6.6 ± 0.7 a | 725 ± 4.7 a |
Treatment | Free | Esters | Glycosides | Total |
---|---|---|---|---|
Caffeic acid | ||||
Fenugreek | ||||
Control | 5.9 ± 1.0 a | 9.6 ± 0.7 a | 10.4 ± 1.1 a | 25.9 ± 2.8 b |
Fe-EDTA–Na-Sil | 4.6 ± 0.9 a | 7.8 ± 1.0 a | 9.4 ± 1.2 a | 21.8 ± 3.1 b |
Na-Sil | 6.3 ± 0.5 a | 17.7 ± 3.1 a | 12.6 ± 1.0a | 36.6 ± 2.5 a |
Lentil | ||||
Control | 4.1 | 102.6 ± 5.1 a | 14.6 ± 1.1 a | 121.3 ± 6.2 a |
Fe-EDTA–Na-Sil | nd | 20.9 ± 2.0 b | 9.5 ± 1.0 ab | 30.4 ± 3.0 b |
Na-Sil | nd | 6.8 ± 1.0 c | 7.3 ± 0.9 b | 14.1 ± 1.9 c |
Alfalfa | ||||
Control | nd | 93.7 ± 0.9 c | 9.7 ± 1.5 a | 103 ± 2.4 c |
Fe-EDTA–Na-Sil | nd | 164 ± 3.3 b | 10.3 ± 2.0 a | 175 ± 5.3 b |
Na-Sil | nd | 262 ± 3.0 a | 12.4± 2.0 a | 274 ± 5.0 a |
Sinapic acid | ||||
Fenugreek | ||||
Control | nd | 7.1 ± 0.7 a | 1.0 ± 0.4 a | 8.1 ± 1.1 a |
Fe-EDTA–Na-Sil | nd | 4.6 ± 1.2 a | 1.2 ± 0.5 a | 5.8 ± 1.7 a |
Na-Sil | 1.1 ± 0.4 | 5.8 ± 1.0 a | 1.4 ± 0.2 a | 8.3 ± 1.6 a |
Lentil | ||||
Control | nd | 3.7 ± 0.9 a | 1.6 ± 0.3 a | 5.3 ± 1.2 a |
Fe-EDTA–Na-Sil | nd | 3.4 ± 0.5 a | 1.4 ± 0.3 b | 4.8 ± 0.8 a |
Na-Sil | nd | 1.3 ± 0.7 a | 1.3 ± 0.2 a | 2.6 ± 0.9 a |
Alfalfa | ||||
Control | nd | 3.9± 0.9 b | 2.0 ± 0.7 a | 5.9 ± 1.3 a |
Fe-EDTA–Na-Sil | nd | 6.7 ± 0.8 ab | 2.4 ± 0.6 a | 9.1 ± 1.4 a |
Na-Sil | nd | 9.5 ± 1.0 a | 2.2 ± 0.7 a | 11.7 ± 1.7 a |
Treatment | Free | Esters | Glycosides | Total |
---|---|---|---|---|
Flavonoids | ||||
Fenugreek | ||||
Control | 2047 | 5075 | 263 | 7385 |
Fe-EDTA–Na-Sil | 1576 | 6661 | 198 | 8435 |
Na-Sil | 327 | 8938 | 218 | 9483 |
Lentil | ||||
Control | 27.1 | 30.9 | 513 | 571 |
Fe-EDTA–Na-Sil | 39.7 | 32.4 | 357 | 429 |
Na-Sil | 50.5 | 46.0 | 148 | 245 |
Alfalfa | ||||
Control | 446 | 389 | 464 | 1299 |
Fe-EDTA–Na-Sil | 352 | 520 | 606 | 1478 |
Na-Sil | 197 | 681 | 1025 | 1903 |
Phenolic acids | ||||
Fenugreek | ||||
Control | 230 | 413 | 1154 | 1797 |
Fe-EDTA–Na-Sil | 252 | 405 | 1099 | 1756 |
Na-Sil | 355 | 372 | 1464 | 2191 |
Lentil | ||||
Control | 287 | 982 | 1073 | 2342 |
Fe-EDTA–Na-Sil | 309 | 834 | 812 | 1955 |
Na-Sil | 251 | 750 | 844 | 1845 |
Alfalfa | ||||
Control | 276 | 1140 | 768 | 2184 |
Fe-EDTA–Na-Sil | 290 | 1660 | 909 | 2859 |
Na-Sil | 225 | 1792 | 802 | 2819 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dębski, H.; Wiczkowski, W.; Horbowicz, M. Effect of Elicitation with Iron Chelate and Sodium Metasilicate on Phenolic Compounds in Legume Sprouts. Molecules 2021, 26, 1345. https://doi.org/10.3390/molecules26051345
Dębski H, Wiczkowski W, Horbowicz M. Effect of Elicitation with Iron Chelate and Sodium Metasilicate on Phenolic Compounds in Legume Sprouts. Molecules. 2021; 26(5):1345. https://doi.org/10.3390/molecules26051345
Chicago/Turabian StyleDębski, Henryk, Wiesław Wiczkowski, and Marcin Horbowicz. 2021. "Effect of Elicitation with Iron Chelate and Sodium Metasilicate on Phenolic Compounds in Legume Sprouts" Molecules 26, no. 5: 1345. https://doi.org/10.3390/molecules26051345
APA StyleDębski, H., Wiczkowski, W., & Horbowicz, M. (2021). Effect of Elicitation with Iron Chelate and Sodium Metasilicate on Phenolic Compounds in Legume Sprouts. Molecules, 26(5), 1345. https://doi.org/10.3390/molecules26051345