Covalent Histone Modification by an Electrophilic Derivative of the Anti-HIV Drug Nevirapine
Abstract
:1. Introduction
2. Results
2.1. Optimization of Digestion Conditions
2.2. Identification of NVP-Derived Binding Sites in Histones
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Modification of Histones H3 and H4 and the Histone Octamer
4.3. Sample Preparation
4.4. Mass Spectrometry
4.5. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bowersox, J. Nevirapine approved by FDA. Food and Drug Administration. In NIAID AIDS Agenda; 1996. Available online: https://pubmed.ncbi.nlm.nih.gov/11363918/ (accessed on 30 November 2020).
- Pollard, R.B.; Robinson, P.; Dransfield, K. Safety profile of nevirapine, a nonnucleoside reverse transcriptase inhibitor for the treatment of human immunodeficiency virus infection. Clin. Ther. 1998, 20, 1071–1092. [Google Scholar] [CrossRef]
- Warren, K.J.; Boxwell, D.E.; Kim, N.Y.; Drolet, B.A. Nevirapine-associated Stevens-Johnson syndrome. Lancet 1998, 351, 567. [Google Scholar] [CrossRef]
- Fagot, J.P.; Mockenhaupt, M.; Bouwes-Bavinck, J.N.; Naldi, L.; Viboud, C.; Roujeau, J.C.; EuroSCAR Study Group. Nevirapine and the risk of Stevens-Johnson syndrome or toxic epidermal necrolysis. AIDS 2001, 15, 1843–1848. [Google Scholar] [CrossRef] [PubMed]
- Sanne, I.; Mommeja-Marin, H.; Hinkle, J.; Bartlett, J.A.; Lederman, M.M.; Maartens, G.; Wakeford, C.; Shaw, A.; Quinn, J.; Gish, R.G.; Rousseau, F. Severe hepatotoxicity associated with nevirapine use in HIV-infected subjects. J. Infect. Dis. 2005, 191, 825–829. [Google Scholar] [CrossRef] [Green Version]
- Baylor, M.S.; Johann-Liang, R. Hepatotoxicity associated with nevirapine use. J. Acquir. Immune Defic. Syndr. 2004, 35, 538–539. [Google Scholar] [CrossRef]
- PDR Staff. VIRAMUNE® (nevirapine). In Physicians’ Desk Reference, 63rd ed.; Physicians’ Desk Reference, Inc.: Montvale, NJ, USA, 2009; pp. 873–881. [Google Scholar]
- Powles, T.; Robinson, D.; Stebbing, J.; Shamash, J.; Nelson, M.; Gazzard, B.; Mandelia, S.; Møller, H.; Bower, M. Highly active antiretroviral therapy and the incidence of non-AIDS-defining cancers in people with HIV infection. J. Clin. Oncol. 2009, 27, 884–890. [Google Scholar] [CrossRef]
- Pereira, S.A.; Marques, M.M.; Caixas, U.; Monteiro, E.C.; Beland, F.A.; Antunes, A.M.M. Understanding the molecular basis for the hazards associated with nevirapine treatment. In Advances in Medicine and Biology; Berhardt, L.V., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2012; pp. 77–100. [Google Scholar]
- Uetrecht, J. Evaluation of which reactive metabolite, if any, is responsible for a specific idiosyncratic reaction. Drug Metab. Rev. 2006, 38, 745–753. [Google Scholar] [CrossRef]
- Srivastava, A.; Maggs, J.L.; Antoine, D.J.; Williams, D.P.; Smith, D.A.; Park, B.K. Role of reactive metabolites in drug-induced hepatotoxicity. In Adverse Drug Reactions; Uetrecht, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 165–194. [Google Scholar]
- Marinho, A.T.; Miranda, J.P.; Caixas, U.; Charneira, C.; Gonçalves-Dias, C.; Marques, M.M.; Monteiro, E.C.; Antunes, A.M.M.; Pereira, S.A. Singularities of nevirapine metabolism: From sex-dependent differences to idiosyncratic toxicity. Drug Metab. Rev. 2019, 51, 76–90. [Google Scholar] [CrossRef]
- Srivastava, A.; Lian, L.-Y.; Maggs, J.L.; Chaponda, M.; Pirmohamed, M.; Williams, D.P.; Park, B.K. Quantifying the metabolic activation of nevirapine in patients by integrated applications of NMR and mass spectrometries. Drug Metab. Dispos. 2010, 38, 122–132. [Google Scholar] [CrossRef] [Green Version]
- Caixas, U.; Antunes, A.M.M.; Marinho, A.T.; Godinho, A.L.A.; Grilo, N.M.; Marques, M.M.; Oliveira, M.C.; Branco, T.; Monteiro, E.C.; Pereira, S.A. Evidence for nevirapine bioactivation in man: Searching for the first step in the mechanism of nevirapine toxicity. Toxicology 2012, 301, 33–39. [Google Scholar] [CrossRef]
- Meng, X.; Howarth, A.; Earnshaw, C.J.; Jenkins, R.E.; French, N.S.; Back, D.J.; Naisbitt, D.J.; Park, B.K. Detection of drug bioactivation in vivo: Mechanism of nevirapine-albumin conjugate formation in patients. Chem. Res. Toxicol. 2013, 26, 575–583. [Google Scholar] [CrossRef]
- Antunes, A.M.M.; Duarte, M.P.; Santos, P.P.; Gamboa da Costa, G.; Heinze, T.M.; Beland, F.A.; Marques, M.M. Synthesis and characterization of DNA adducts from the HIV reverse transcriptase inhibitor nevirapine. Chem. Res. Toxicol. 2008, 21, 1443–1456. [Google Scholar] [CrossRef]
- Antunes, A.M.M.; Godinho, A.L.A.; Martins, I.L.; Justino, G.C.; Beland, F.A.; Marques, M.M. Amino acid adduct formation by the nevirapine metabolite, 12-hydroxynevirapine—A possible factor in nevirapine toxicity. Chem. Res. Toxicol. 2010, 23, 888–899. [Google Scholar] [CrossRef] [PubMed]
- Antunes, A.M.M.; Godinho, A.L.A.; Martins, I.L.; Oliveira, M.C.; Gomes, R.A.; Coelho, A.V.; Beland, F.A.; Marques, M.M. Protein adducts as prospective biomarkers of nevirapine toxicity. Chem. Res. Toxicol. 2010, 23, 1714–1725. [Google Scholar] [CrossRef] [Green Version]
- Guengerich, F.P. Mechanisms of drug toxicity and relevance to pharmaceutical development. Drug Metab. Pharmacokinet. 2011, 26, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Riska, P.; Lamson, M.; MacGregor, T.; Sabo, J.; Hattox, S.; Pav, J.; Keirns, J. Disposition and biotransformation of the antiretroviral drug nevirapine in humans. Drug Metab. Dispos. 1999, 27, 895–901. [Google Scholar] [PubMed]
- Sharma, A.M.; Novalen, M.; Tanino, T.; Uetrech, J. 12-OH-Nevirapine sulfate, formed in the skin, is responsible for nevirapine-induced skin rash. Chem. Res. Toxicol. 2013, 26, 817–827. [Google Scholar] [CrossRef]
- Sharma, A.M.; Li, Y.; Novalen, M.; Hayes, M.A.; Uetrecht, J. Bioactivation of nevirapine to a reactive quinone methide: Implications for liver injury. Chem. Res. Toxicol. 2012, 25, 1708–1719. [Google Scholar] [CrossRef]
- Pinheiro, P.F.; Pereira, S.A.; Harjivan, S.G.; Martins, I.L.; Marinho, A.T.; Cipriano, M.; Jacob, C.C.; Oliveira, N.G.; Castro, M.F.; Marques, M.M.; Antunes, A.M.M.; Miranda, J.P. Hepatocyte spheroids as a competent in vitro system for drug biotransformation studies: Nevirapine as a bioactivation case study. Arch. Toxicol. 2017, 91, 1199–1211. [Google Scholar] [CrossRef]
- MacAlpine, D.M.; Almouzni, G. Chromatin and DNA replication. Cold Spring Harb. Perspect. Biol. 2013, 5, a010207. [Google Scholar] [CrossRef]
- Cantone, L.; Nordio, F.; Hou, L.; Apostoli, P.; Bonzini, M.; Tarantini, L.; Angelici, L.; Bollati, V.; Zanobetti, A.; Schwartz, J.; Bertazzi, P.A.; Baccarelli, A. Inhalable metal-rich air particles and histone H3K4 dimethylation and H3K9 acetylation in a cross-sectional study of steel workers. Environ. Health Perspect. 2011, 119, 964–969. [Google Scholar] [CrossRef] [Green Version]
- Reddy, D.; Khade, B.; Pandya, R.; Gupta, S. A novel method for isolation of histones from serum and its implications in therapeutics and prognosis of solid tumours. Clin. Epigenetics 2017, 9, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quina, A.S.; Buschbeck, M.; Di Croce, L. Chromatin structure and epigenetics. Biochem. Pharmacol. 2006, 72, 1563–1569. [Google Scholar] [CrossRef]
- Rothbart, S.B.; Strahl, B.D. Interpreting the language of histone and DNA modifications. Biochim. Biophys. Acta 2014, 1839, 627–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pogribny, I.P.; Rusyn, I. Environmental toxicants, epigenetics, and cancer. Epigenetic alterations in oncogenesis. Adv. Exp. Med. Biol. 2013, 754, 215–232. [Google Scholar]
- Hou, L.; Zhang, X.; Wang, D.; Baccarelli, A. Environmental chemical exposures and human epigenetics. Int. J. Epidemiol. 2012, 41, 79–105. [Google Scholar] [CrossRef] [Green Version]
- de Conti, A.; Tryndyak, V.; VonTungeln, L.S.; Churchwell, M.I.; Beland, F.A.; Antunes, A.M.M.; Pogribny, I.P. Genotoxic and epigenotoxic alterations in the lung and liver of mice induced by acrylamide: A 28 day drinking water study. Chem. Res. Toxicol. 2019, 32, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Lee, S. Post-translational modification of proteins in toxicological research: Focus on lysine acylation. Toxicol. Res. 2013, 29, 81–86. [Google Scholar] [CrossRef]
- Yu, S.C.; Fishman, J. Interaction of histones with estrogens. Covalent adduct formation with 16α-hydroxyestrone. Biochemistry 1985, 24, 8017–8021. [Google Scholar] [CrossRef]
- Oe, T.; Arora, J.S.; Lee, S.H.; Blair, I.A. A novel lipid hydroperoxide-derived cyclic covalent modification to histone H4. J. Biol. Chem. 2003, 278, 42098–42105. [Google Scholar] [CrossRef] [Green Version]
- Galligan, J.J.; Rose, K.L.; Beavers, W.N.; Hill, S.; Tallman, K.A.; Tansey, W.P.; Marnett, L.J. Stable histone adduction by 4-oxo-2-nonenal: A potential link between oxidative stress and epigenetics. J. Am. Chem. Soc. 2014, 136, 11864–11866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alzolibani, A.A.; Al Robaee, A.A.; Al-Shobaili, H.A.; Rasheed, Z. 4-Hydroxy-2-nonenal modified histone-H2A: A possible antigenic stimulus for systemic lupus erythematosus autoantibodies. Cell. Immunol. 2013, 284, 154–162. [Google Scholar] [CrossRef]
- Carrier, E.J.; Zagol-Ikapitte, I.; Amarnath, V.; Boutaud, O.; Oates, J.A. Levuglandin forms adducts with histone H4 in a cyclooxygenase-2-dependent manner, altering its interaction with DNA. Biochemistry 2014, 53, 2436–2441. [Google Scholar] [CrossRef] [PubMed]
- Edrissi, B.; Taghizadeh, K.; Dedon, P.C. Quantitative analysis of histone modifications: Formaldehyde is a source of pathological N6-formyllysine that is refractory to histone deacetylases. PLoS Genet. 2013, 9, e1003328. [Google Scholar] [CrossRef] [Green Version]
- Galligan, J.J.; Marnett, L.J. Histone adduction and its functional impact on epigenetics. Chem. Res. Toxicol. 2017, 30, 376–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, J.; Martins, I.L.; Charneira, C.; Pogribny, I.P.; de Conti, A.; Beland, F.A.; Marques, M.M.; Jacob, C.C.; Antunes, A.M.M. New insights into the molecular mechanisms of chemical carcinogenesis: In vivo adduction of histone H2B by a reactive metabolite of the chemical carcinogen furan. Toxicol. Lett. 2016, 264, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Nunes, J.; Charneira, C.; Morello, J.; Rodrigues, J.; Pereira, S.A.; Antunes, A.M.M. Mass spectrometry-based methodologies for targeted and untargeted identification of protein covalent adducts (Adductomics): Current status and challenges. High Throughput 2019, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Garcia, B.A. Examining histone posttranslational modification patterns by high-resolution mass spectrometry. Methods Enzymol. 2012, 512, 3–28. [Google Scholar]
- Sidoli, S.; Cheng, L.; Jensen, O.N. Proteomics in chromatin biology and epigenetics: Elucidation of post-translational modifications of histone proteins by mass spectrometry. J. Proteomics 2012, 75, 3419–3433. [Google Scholar] [CrossRef] [PubMed]
- Nunes, J.; Charneira, C.; Nunes, C.; Gouveia-Fernandes, S.; Serpa, J.; Morello, J.; Antunes, A.M.M. A metabolomics-inspired strategy for the identification of protein covalent modifications. Front. Chem. 2019, 7, 532. [Google Scholar] [CrossRef] [Green Version]
- Schilling, B.; Rardin, M.J.; MacLean, B.X.; Zawadzka, A.M.; Frewen, B.E.; Cusack, M.P.; Sorensen, D.J.; Bereman, M.S.; Jing, E.; Wu, C.C.; Verdin, E.; Kahn, C.R.; MacCoss, M.J.; Gibson, B.W. Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in Skyline. Application to protein acetylation and phosphorylation. Mol. Cell. Proteom. 2012, 11, 202–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toteva, M.M.; Richard, J.P. The generation and reactions of quinone methides. Adv. Phys. Org. Chem. 2011, 45, 39–91. [Google Scholar] [PubMed] [Green Version]
- Wiśniewski, J.R.; Zougman, A.; Mann, M. Nε-Formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function. Nucl. Acids Res. 2008, 36, 570–577. [Google Scholar] [CrossRef]
- Arnaudo, A.M.; Garcia, B.A. Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin 2013, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Silk, E.; Zhao, H.; Weng, H.; Ma, D. The role of extracellular histone in organ injury. Cell Death Dis. 2017, 8, e2812. [Google Scholar] [CrossRef] [Green Version]
- Williams, W.M.; Whalley, A.S.; Comacchio, R.M.; Rosenberg, J.; Watts, R.A.; Isenberg, D.A.; McCutchan, J.A.; Morrow, W.J.W. Correlation between expression of antibodies to histone H2B and clinical activity in HIV-infected individuals. Clin. Exp. Immunol. 1996, 104, 18–24. [Google Scholar] [CrossRef]
- Mir, A.R.; Moinuddin, H.S.; Khan, F.; Alam, K.; Ali, A. Structural changes in histone H2A by methylglyoxal generate highly immunogenic amorphous aggregates with implications in auto-immune response in cancer. Glycobiology 2016, 26, 129–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stern, J.O.; Robinson, P.A.; Love, J.; Lanes, S.; Imperiale, M.S.; Mayers, D.L. A comprehensive hepatic safety analysis of nevirapine in different populations of HIV infected patients. J. Acquir. Immune Defic. Syndr. 2003, 34, S21–S33. [Google Scholar] [CrossRef]
- Sabbioni, G.; Turesky, R.J. Biomonitoring human albumin adducts: The past, the present, and the future. Chem. Res. Toxicol. 2017, 30, 332–366. [Google Scholar] [CrossRef]
- Wang, T.Y.; Jia, Y.L.; Zhang, X.; Sun, Q.L.; Li, Y.C.; Zhang, J.H.; Zhao, C.P.; Wang, X.Y.; Wang, L. Treating colon cancer cells with FK228 reveals a link between histone lysine acetylation and extensive changes in the cellular proteome. Sci. Rep. 2015, 5, 18443. [Google Scholar] [CrossRef] [Green Version]
- Tropberger, P.; Scheider, R. Going global: Novel histone modifications in the globular domain of H3. Epigenetics 2010, 5, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Besant, P.G.; Attwood, P.V. Histone H4 histidine phosphorylation: Kinases, phosphatases, liver regeneration and cancer. Biochem. Soc. Trans. 2012, 40, 290–293. [Google Scholar] [CrossRef] [Green Version]
- Maile, T.; Kwoczynski, S.; Katzenberger, R.J.; Wassarman, D.A.; Sauer, F. TAF1 activates transcription by phosphorylation of serine 33 in histone H2B. Science 2004, 304, 1010–1014. [Google Scholar] [CrossRef]
- Pereira, S.A.; Tryndyak, V.P.; Pogribny, I.P.; Beland, F.A. Epigenetic markers of hepatotoxicity. A nevirapine story. Environ. Mol. Mutagen. 2010, 51, 699. [Google Scholar]
- Luger, K.; Richmond, T.J. DNA binding within the nucleosome core. Curr. Opin. Struct. Biol. 1998, 8, 33–40. [Google Scholar] [CrossRef]
- Mersfelder, E.L.; Parthun, M.R. The tale beyond the tail: Histone core domain modifications and the regulation of chromatin structure. Nucl. Acids Res. 2006, 34, 2653–2662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luger, K.; Mäder, A.W.; Richmond, R.K.; Sargent, D.F.; Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 1997, 389, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Perkins, D.N.; Pappin, D.J.C.; Creasy, D.M.; Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20, 3551–3567. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harjivan, S.G.; Charneira, C.; Martins, I.L.; Pereira, S.A.; Espadas, G.; Sabidó, E.; Beland, F.A.; Marques, M.M.; Antunes, A.M.M. Covalent Histone Modification by an Electrophilic Derivative of the Anti-HIV Drug Nevirapine. Molecules 2021, 26, 1349. https://doi.org/10.3390/molecules26051349
Harjivan SG, Charneira C, Martins IL, Pereira SA, Espadas G, Sabidó E, Beland FA, Marques MM, Antunes AMM. Covalent Histone Modification by an Electrophilic Derivative of the Anti-HIV Drug Nevirapine. Molecules. 2021; 26(5):1349. https://doi.org/10.3390/molecules26051349
Chicago/Turabian StyleHarjivan, Shrika G., Catarina Charneira, Inês L. Martins, Sofia A. Pereira, Guadalupe Espadas, Eduard Sabidó, Frederick A. Beland, M. Matilde Marques, and Alexandra M. M. Antunes. 2021. "Covalent Histone Modification by an Electrophilic Derivative of the Anti-HIV Drug Nevirapine" Molecules 26, no. 5: 1349. https://doi.org/10.3390/molecules26051349
APA StyleHarjivan, S. G., Charneira, C., Martins, I. L., Pereira, S. A., Espadas, G., Sabidó, E., Beland, F. A., Marques, M. M., & Antunes, A. M. M. (2021). Covalent Histone Modification by an Electrophilic Derivative of the Anti-HIV Drug Nevirapine. Molecules, 26(5), 1349. https://doi.org/10.3390/molecules26051349