Maillard Reaction Products in Gluten-Free Bread Made from Raw and Roasted Buckwheat Flour
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Bread-Making Process
3.2. Extraction and Analysis of Polyphenolic Compounds
3.3. Antioxidant Activity
3.4. Analysis of Maillard Reaction Products
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cappelli, A.; Oliva, N.; Cini, E. A Systematic Review of Gluten-Free Dough and Bread: Dough Rheology, Bread Characteristics, and Improvement Strategies. Appl. Sci. 2020, 10, 6559. [Google Scholar] [CrossRef]
- Rybicka, I. The Handbook of Minerals on a Gluten-Free Diet. Nutrients 2018, 10, 1683. [Google Scholar] [CrossRef] [Green Version]
- Pacyński, M.; Wojtasiak, R.Z.; Mildner-Szkudlarz, S. Improving the aroma of gluten-free bread. LWT Food Sci. Technol. 2015, 63, 706–713. [Google Scholar] [CrossRef]
- Martínez-Villaluenga, C.; Peñas, E.; Hernández-Ledesma, B. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem. Toxicol. 2020, 137, 111178. [Google Scholar] [CrossRef] [PubMed]
- Dziedzic, K.; Szwengiel, A.; Górecka, D.; Rudzińska, M.; Korczak, J.; Walkowiak, J. The effect of processing on the phytosterol content in buckwheat groats and by-products. J. Cereal Sci. 2016, 69, 25–31. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, C.; Yao, Y.; Xu, B. Alteration of phenolic profiles and antioxidant capacities of common buckwheat and tartary buckwheat produced in China upon thermal processing. J. Sci. Food Agric. 2019, 99, 5565–5576. [Google Scholar] [CrossRef]
- Zielinski, H.; Michalska, A.; Amigo-Benavent, M.; del Castillo, M.D.; Piskula, M.K. Changes in Protein Quality and Antioxidant Properties of Buckwheat Seeds and Groats Induced by Roasting. J. Agric. Food Chem. 2009, 57, 4771–4776. [Google Scholar] [CrossRef]
- Małgorzata, W.; Konrad, P.M.; Zieliński, H. Effect of roasting time of buckwheat groats on the formation of Maillard reaction products and antioxidant capacity. Food Chem. 2016, 196, 355–358. [Google Scholar] [CrossRef]
- Ma, Q.; Zhao, Y.; Wang, H.-L.; Li, J.; Yang, Q.-H.; Gao, L.-C.; Murat, T.; Feng, B.-L. Comparative study on the effects of buckwheat by roasting: Antioxidant properties, nutrients, pasting, and thermal properties. J. Cereal Sci. 2020, 95, 103041. [Google Scholar] [CrossRef]
- Bhinder, S.; Singh, B.; Kaur, A.; Singh, N.; Kaur, M.; Kumari, S.; Yadav, M.P. Effect of infrared roasting on antioxidant activity, phenolic composition and Maillard reaction products of Tartary buckwheat varieties. Food Chem. 2019, 285, 240–251. [Google Scholar] [CrossRef]
- Mesías, M.; Delgado-Andrade, C. Melanoidins as a potential functional food ingredient. Curr. Opin. Food Sci. 2017, 14, 37–42. [Google Scholar] [CrossRef]
- Berk, E.; Hamzalıoğlu, A.; Gökmen, V. Investigations on the Maillard Reaction in Sesame (Sesamum indicum L.) Seeds Induced by Roasting. J. Agric. Food Chem. 2019, 67, 4923–4930. [Google Scholar] [CrossRef] [PubMed]
- Mildner-Szkudlarz, S.; Siger, A.; Szwengiel, A.; Przygoński, K.; Wojtowicz, E.; Zawirska-Wojtasiak, R. Phenolic compounds reduce formation of N ε -(carboxymethyl)lysine and pyrazines formed by Maillard reactions in a model bread system. Food Chem. 2017, 231, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Kocadağlı, T.; Žilić, S.; Taş, N.G.; Vančetović, J.; Dodig, D.; Gökmen, V. Formation of α-dicarbonyl compounds in cookies made from wheat, hull-less barley and colored corn and its relation with phenolic compounds, free amino acids and sugars. Eur. Food Res. Technol. 2016, 242, 51–60. [Google Scholar] [CrossRef]
- Błaszczak, W.; Zielińska, D.; Zieliński, H.; Szawara-Nowak, D.; Fornal, J. Antioxidant Properties and Rutin Content of High Pressure-Treated Raw and Roasted Buckwheat Groats. Food Bioprocess Technol. 2013, 6, 92–100. [Google Scholar] [CrossRef]
- Chandrasekara, N.; Shahidi, F. Effect of Roasting on Phenolic Content and Antioxidant Activities of Whole Cashew Nuts, Kernels, and Testa. J. Agric. Food Chem. 2011, 59, 5006–5014. [Google Scholar] [CrossRef] [PubMed]
- Sakač, M.; Torbica, A.; Sedej, I.; Hadnađev, M. Influence of breadmaking on antioxidant capacity of gluten free breads based on rice and buckwheat flours. Food Res. Int. 2011, 44, 2806–2813. [Google Scholar] [CrossRef]
- Wu, X.; Fu, G.; Li, R.; Li, Y.; Dong, B.; Liu, C. Effect of thermal processing for rutin preservation on the properties of phenolics & starch in Tartary buckwheat achenes. Int. J. Biol. Macromol. 2020, 164, 1275–1283. [Google Scholar] [CrossRef]
- Vogrinčič, M.; Timoracka, M.; Melichacova, S.; Vollmannova, A.; Kreft, I. Degradation of Rutin and Polyphenols during the Preparation of Tartary Buckwheat Bread. J. Agric. Food Chem. 2010, 58, 4883–4887. [Google Scholar] [CrossRef]
- Şensoy, Í.; Rosen, R.T.; Ho, C.-T.; Karwe, M.V. Effect of processing on buckwheat phenolics and antioxidant activity. Food Chem. 2006, 99, 388–393. [Google Scholar] [CrossRef]
- Tang, C.-H.; Peng, J.; Zhen, D.-W.; Chen, Z. Physicochemical and antioxidant properties of buckwheat (Fagopyrum esculentum Moench) protein hydrolysates. Food Chem. 2009, 115, 672–678. [Google Scholar] [CrossRef]
- Horáková, L. Flavonoids in prevention of diseases with respect to modulation of Ca-pump function. Interdiscip. Toxicol. 2011, 4. [Google Scholar] [CrossRef] [Green Version]
- Djilas, S.M.; Milić, B.L. Naturally Occurring Phenolic Compounds as Inhibitors of Free Radical Formation in the Maillard Reaction. In Maillard Reactions in Chemistry, Food and Health; Elsevier: Woodhead Publishing, Cambridge, 2005; pp. 75–81. [Google Scholar]
- Kaur, C.; Kapoor, H.C. Antioxidants in fruits and vegetables—The millennium’s health. Int. J. Food Sci. Technol. 2008, 36, 703–725. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Siger, A.; Szwengiel, A.; Bajerska, J. Natural compounds from grape by-products enhance nutritive value and reduce formation of CML in model muffins. Food Chem. 2015, 172, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, F.; Wang, M. Antioxidant and Antiglycation Activity of Selected Dietary Polyphenols in a Cookie Model. J. Agric. Food Chem. 2014, 62, 1643–1648. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-W.; Hsieh, C.-L.; Wang, H.-Y.; Chen, H.-Y. Inhibitory effects of guava (Psidium guajava L.) leaf extracts and its active compounds on the glycation process of protein. Food Chem. 2009, 113, 78–84. [Google Scholar] [CrossRef]
- Gökmen, V.; Serpen, A.; Açar, Ö.Ç.; Morales, F.J. Significance of furosine as heat-induced marker in cookies. J. Cereal Sci. 2008, 48, 843–847. [Google Scholar] [CrossRef]
- Çelik, E.E.; Gökmen, V. Formation of Maillard reaction products in bread crust-like model system made of different whole cereal flours. Eur. Food Res. Technol. 2020, 246, 1207–1218. [Google Scholar] [CrossRef]
- Thorvaldsson, K.; Skjöldebrand, C. Water Diffusion in Bread During Baking. LWT Food Sci. Technol. 1998, 31, 658–663. [Google Scholar] [CrossRef]
- Carciochi, R.A.; D′Alessandro, L.G.; Manrique, G.D. Effect of roasting conditions on the antioxidant compounds of quinoa seeds. Int. J. Food Sci. Technol. 2016, 51, 1018–1025. [Google Scholar] [CrossRef]
- Zhou, W.; Hui, Y.H.; De Leyn, I.; Pagani, M.A.; Rosell, C.M.; Selman, J.D.; Therdthai, N. Bakery Products Science and Technology; John Wiley & Sons, Ltd.: Chichester, UK, 2014; ISBN 9781118792001. [Google Scholar]
- Srey, C.; Hull, G.L.J.; Connolly, L.; Elliott, C.T.; del Castillo, M.D.; Ames, J.M. Effect of Inhibitor Compounds on N ε -(Carboxymethyl)lysine (CML) and N ε -(Carboxyethyl)lysine (CEL) Formation in Model Foods. J. Agric. Food Chem. 2010, 58, 12036–12041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, X.; Bai, N.; He, K.; Ho, C.-T.; Yang, C.S.; Sang, S. Apple Polyphenols, Phloretin and Phloridzin: New Trapping Agents of Reactive Dicarbonyl Species. Chem. Res. Toxicol. 2008, 21, 2042–2050. [Google Scholar] [CrossRef] [PubMed]
- Chompoo, J.; Upadhyay, A.; Kishimoto, W.; Makise, T.; Tawata, S. Advanced glycation end products inhibitors from Alpinia zerumbet rhizomes. Food Chem. 2011, 129, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Starowicz, M.; Koutsidis, G.; Zieliński, H. Determination of Antioxidant Capacity, Phenolics and Volatile Maillard Reaction Products in Rye-Buckwheat Biscuits Supplemented with 3β-d-Rutinoside. Molecules 2019, 24, 982. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Shu, C.; Zhou, B.; Qi, X.; Xiang, J. Impact of selected additives on acrylamide formation in asparagine/sugar Maillard model systems. Food Res. Int. 2011, 44, 449–455. [Google Scholar] [CrossRef]
- Przygodzka, M.; Zieliński, H. Characterization of the quality of novel rye-buckwheat ginger cakes by chemical markers and antioxidant capacity. Chem. Pap. 2016, 70. [Google Scholar] [CrossRef]
- Pongjaruvat, W.; Methacanon, P.; Seetapan, N.; Fuongfuchat, A.; Gamonpilas, C. Influence of pregelatinised tapioca starch and transglutaminase on dough rheology and quality of gluten-free jasmine rice breads. Food Hydrocoll. 2014, 36, 143–150. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, W. Stability of Tea Catechins in the Breadmaking Process. J. Agric. Food Chem. 2004, 52, 8224–8229. [Google Scholar] [CrossRef]
- Dziedzic, K.; Górecka, D.; Szwengiel, A.; Sulewska, H.; Kreft, I.; Gujska, E.; Walkowiak, J. The Content of Dietary Fibre and Polyphenols in Morphological Parts of Buckwheat (Fagopyrum tataricum). Plant Foods Hum. Nutr. 2018, 73, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Delgado-Andrade, C.; Rufián-Henares, J.A.; Morales, F.J. Study on fluorescence of Maillard reaction compounds in breakfast cereals. Mol. Nutr. Food Res. 2006, 50, 799–804. [Google Scholar] [CrossRef] [PubMed]
(µg/g) | Raw Buckwheat Bread | Roasted Buckwheat Bread | ||
---|---|---|---|---|
Crumb | Crust | Crumb | Crust | |
1-O-Sinapoyl-beta-d-glucose | nd | 0.19 ± 0.01 b | 0.25 ± 0.03 a,b | 0.26 ± 0.002 a |
4-Hydroxybenzoate-O-glucoside | 4.97 ± 0.47 a | 3.26 ± 0.06 b | nd | nd |
4-Hydroxybenzoic acid | 0.73 ± 0.02 b | 0.78 ± 0.01 b | 9.43 ± 0.18 a | 8.70 ± 0.45 a |
Caffeic acid | 0.48 ± 0.01 a | 0.38 ± 0.03 b | 0.12 ± 0.01 c | 0.070 ± 0.009 c |
Catechin | 3.98 ± 0.01 b | 3.60 ± 0.33 b | 22.08 ± 1.08 a | 20.12 ± 0.63 a |
Dihydroxybenzoic acid | nd | nd | 24.6 ± 1.03 a | 22.27 ± 1.37 a |
Ferulic acid | nd | nd | 0.15 ± 0.009a | 0.17 ± 0.001a |
Gallic acid | 1.47 ± 0.13 b | 1.68 ± 0.05 b | 25.46 ± 0.08 a | 23.61 ± 1.07 a |
Naringenin | nd | nd | 0.09 ± 0.01 a | 0.07 ± 0.01a |
Quercetin | 40.42 ± 0.89 a | 41.75 ± 1.7 a | 0.96 ± 0.11 b | 0.9 ± 0.014 b |
Quercetin 3β-d-rutinoside (rutin) | nd | nd | 62.52 ± 0.9 a | 52.41 ± 1.25 b |
Syringic acid | 2.12 ± 0.05 b | 2.25 ± 0.09 b | 7.77 ± 0.22 a | 8.41 ± 0.22 a |
Vanillic acid | nd | nd | 2.26 ± 0.15 a | 2.5 ± 0.23 a |
p-coumaric acid | 0.26 ± 0.03 b | 0.23 ± 0.07 b | 0.38 ± 0.015 a | 0.370 ± 0.012 a |
Total | 54.43 ± 0.89 c | 54.12 ± 1.70 c | 156.07 ± 0.22 a | 139.86 ± 1.37 b |
Antioxidant activity (TEAC/g sample) | 3.65 ± 0.04 b | 4.40 ± 0.03 a | 2.80 ± 0.03 c | 2.97 ± 0.09 c |
MRPs | Raw Buckwheat Bread | Roasted Buckwheat Bread | ||
---|---|---|---|---|
Crumb | Crust | Crumb | Crust | |
FUR (mg/kg) | 71.61 ± 5.34 b | 117.56 ± 5.96 a | 6.34 ± 0.68 c | 8.73 ± 1.82 c |
FIC (FI/g) | 44.43 ± 1.08 b | 47.07 ± 1.29 b | 62.06 ± 2.17 a | 65.05 ± 1.15 a |
CML (mg/kg) | 423.37 ± 10.61c | 508.85 ± 18.61 b | 418.56 ± 11.4 c | 617.86 ± 22.18 a |
FUR | FIC | CML | TEAC | |
---|---|---|---|---|
FUR | −0.89 * | −0.16 | 0.99 * | |
FIC | −0.89 * | 0.48 | −0.85 * | |
CML | −0.16 | 0.48 | −0.05 | |
TEAC | 0.99 * | −0.85 * | −0.05 | |
1-O-Sinapoyl-beta-d-glucose | −0.47 | 0.78 * | 0.50 | −0.41 |
4-Hydroxybenzoate-O-glucoside | 0.79 * | −0.96 * | −0.41 | 0.76 * |
4-Hydroxybenzoic acid | −0.93 * | 0.97 * | 0.26 | −0.91 * |
Caffeic acid | 0.83 * | −0.99 * | −0.47 | 0.79 * |
Catechin | −0.94 * | 0.96 * | 0.24 | −0.92 * |
Dihydroxybenzoic acid | −0.93 * | 0.97 * | 0.25 | −0.91 * |
Ferulic acid | −0.93 * | 0.99 * | 0.40 | −0.90 * |
Gallic acid | −0.93 * | 0.97 * | 0.27 | −0.91 * |
Naringenin | −0.93 * | 0.95 * | 0.20 | −0.91 * |
Quercetin | 0.94 * | −0.98 * | −0.31 | 0.91 * |
Rutin | −0.93 * | 0.95 * | 0.21 | −0.91 * |
Syringic acid | −0.93 * | 0.99 * | 0.39 | −0.89 * |
Vanillic acid | −0.93 * | 0.99 * | 0.38 | −0.90 * |
p-coumaric acid | −0.97 * | 0.94 | 0.18 | −0.96 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Różańska, M.B.; Siger, A.; Szwengiel, A.; Dziedzic, K.; Mildner-Szkudlarz, S. Maillard Reaction Products in Gluten-Free Bread Made from Raw and Roasted Buckwheat Flour. Molecules 2021, 26, 1361. https://doi.org/10.3390/molecules26051361
Różańska MB, Siger A, Szwengiel A, Dziedzic K, Mildner-Szkudlarz S. Maillard Reaction Products in Gluten-Free Bread Made from Raw and Roasted Buckwheat Flour. Molecules. 2021; 26(5):1361. https://doi.org/10.3390/molecules26051361
Chicago/Turabian StyleRóżańska, Maria Barbara, Aleksander Siger, Artur Szwengiel, Krzysztof Dziedzic, and Sylwia Mildner-Szkudlarz. 2021. "Maillard Reaction Products in Gluten-Free Bread Made from Raw and Roasted Buckwheat Flour" Molecules 26, no. 5: 1361. https://doi.org/10.3390/molecules26051361
APA StyleRóżańska, M. B., Siger, A., Szwengiel, A., Dziedzic, K., & Mildner-Szkudlarz, S. (2021). Maillard Reaction Products in Gluten-Free Bread Made from Raw and Roasted Buckwheat Flour. Molecules, 26(5), 1361. https://doi.org/10.3390/molecules26051361