Determination and Application of Nineteen Monoamines in the Gut Microbiota Targeting Phenylalanine, Tryptophan, and Glutamic Acid Metabolic Pathways
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Development
2.2. Method Validation
2.2.1. Specificity and Carryover
2.2.2. Linearity and LLOQ
2.2.3. Accuracy and Precision
2.2.4. Matrix Effect and Extraction Recovery
2.2.5. Stability
2.3. Neurotransmitters of Rats with Depression in the Gut Microbiota
2.4. Screening of Postlisting Drugs In Vitro
3. Materials and Methods
3.1. Reagents and Materials
3.2. Animals
3.3. Instruments and LC-MS/MS Conditions
3.4. Stock Solutions, Calibration Curve Standards
3.5. Sample Preparation
3.6. Method Validation
3.6.1. Specificity and Carryover
3.6.2. Linearity
3.6.3. Limits of Detection and Quantification (Instrumental)
3.6.4. Accuracy and Precision
3.6.5. Matrix Effects and Extraction Recovery
3.6.6. Stability
3.7. Establishment of the Depression Model
3.8. Screening and Evaluation of Postlisting Compounds
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
References
- Richter, D.; Wall, A.; Bruen, A.; Whittington, R. Is the global prevalence rate of adult mental illness increasing? Systematic review and meta-analysis. Acta Psychiatr. Scand. 2019, 140, 393–407. [Google Scholar] [CrossRef]
- GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef] [Green Version]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203–209. [Google Scholar]
- Mehler, M.F. Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Prog. Neurobiol. 2008, 86, 305–341. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Yankner, B.A. Apoptosis in the nervous system. Nature 2000, 407, 802–809. [Google Scholar] [CrossRef]
- Nithianantharajah, J.; Hannan, A.J. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat. Rev. Neurosci. 2006, 7, 697–709. [Google Scholar] [CrossRef]
- Shulman, J.M.; De Jager, P.L.; Feany, M.B. Parkinson’s disease: Genetics and pathogenesis. Annu. Rev. Pathol. 2011, 6, 193–222. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Hou, Y.; Wang, G.; Zheng, X.; Hao, H. Gut microbial metabolites of aromatic amino acids as signals in host-microbe interplay. Trends Endocrinol. Metab. 2020, 31, 818–834. [Google Scholar] [CrossRef]
- Stilling, R.M.; Dinan, T.G.; Cryan, J.F. Microbial genes, brain & behaviour–epigenetic regulation of the gut–brain axis. Genes Brain Behav. 2014, 13, 69–86. [Google Scholar]
- Williams, B.B.; Van Benschoten, A.H.; Cimermancic, P.; Donia, M.S.; Zimmermann, M.; Taketani, M.; Ishihara, A.; Kashyap, P.C.; Fraser, J.S.; Fischbach, M.A. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 2014, 16, 495–503. [Google Scholar] [CrossRef] [Green Version]
- Sudo, N. Biogenic amines: Signals between commensal microbiota and gut physiology. Front. Endocrinol. 2019, 10, 504. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, A.V.; Nilsson, J.; Lindström, J.; Fredborg, W.; Akenine, U.; Hillilä, C.; Andersen, P.; Spulber, G.; de Lange, E.C.M.; van den Berg, D.J.; et al. Effects of daily l-dopa administration on learning and brain structure in older adults undergoing cognitive training: A randomised clinical trial. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Cryan, J.F.; O’mahony, S.M. The microbiome-gut-brain axis: From bowel to behavior. Neurogastroenterol. Motil. 2011, 23, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Mayer, E.A.; Tillisch, K.; Gupta, A. Gut/brain axis and the microbiota. J. Clin. Investig. 2015, 125, 926–938. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.A.; Neufeld, K.M. Gut–brain axis: How the microbiome influences anxiety and depression. Trends Neurosci. 2013, 36, 305–312. [Google Scholar] [CrossRef]
- Agus, A.; Planchais, J.; Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 2018, 23, 716–724. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Mandal, R.; Wishart, D.S. A sensitive, high-throughput LC-MS/MS method for measuring catecholamines in low volume serum. Anal. Chim. Acta 2018, 1037, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Sotnikova, T.D.; Beaulieu, J.M.; Espinoza, S.; Masri, B.; Zhang, X.; Salahpour, A.; Barak, L.S.; Caron, M.G.; Gainetdinov, R.R. The dopamine metabolite 3-methoxytyramine is a neuromodulator. PLoS ONE 2010, 5, e13452. [Google Scholar] [CrossRef]
- Yoshida, H.; Tanaka, Y.; Nakayama, K. Production of 3, 4-dihydroxyphenyl-L-alanine (L-DOPA) and its derivatives by Vibrio tyrosinaticus. Agr. Biol. Chem. 1973, 37, 2121–2126. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, C. Gut microbes metabolize Parkinson’s disease drug. Science 2019, 364, 1030–1031. [Google Scholar] [CrossRef]
- Strandwitz, P.; Kim, K.H.; Terekhova, D.; Liu, J.K.; Sharma, A.; Levering, J.; McDonald, D.; Dietrich, D.; Ramadhar, T.R.; Lekbua, A. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 2019, 4, 396–403. [Google Scholar] [CrossRef]
- Gold, P.E. Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol. Learn. Mem. 2003, 80, 194–210. [Google Scholar] [CrossRef]
- Stephenson, M.; Rowatt, E.; Harrison, K. The production of acetylcholine by a strain of Lactobacillus plantarum. Microbiology 1947, 1, 279–298. [Google Scholar] [CrossRef] [Green Version]
- Roager, H.M.; Licht, T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miczek, K.A.; Mos, J.; Olivier, B. Brain 5-HT and inhibition of aggressive behavior in animals: 5-HIAA and receptor subtypes. Psychopharmacol. Bull. 1989, 25, 399–403. [Google Scholar] [PubMed]
- Carroll, B.J.; Greden, J.F.; Feinberg, M. Suicide, neuroendocrine dysfunction and CSF 5-HIAA concentrations in depression. In Recent Advances in Neuropsycho-Pharmacology; Pergamon: Göteborg, Sweden, 1981; pp. 307–313. [Google Scholar]
- Dubocovich, M.L. Pharmacology and function of melatonin receptors. FASEB J. 1988, 2, 2765–2773. [Google Scholar] [CrossRef]
- Schwarcz, R.; Stone, T.W. The kynurenine pathway and the brain: Challenges, controversies and promises. Neuropharmacology 2017, 112, 237–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, C.; Patte-Mensah, C.; Taleb, O.; Bourguignon, J.J.; Schmitt, M.; Bihel, F.; Maitre, M.; Mensah-Nyagan, A.G. The neuroprotector kynurenic acid increases neuronal cell survival through neprilysin induction. Neuropharmacology 2013, 70, 254–260. [Google Scholar] [CrossRef]
- Kennedy, P.J.; Cryan, J.F.; Dinan, T.G.; Clarke, G. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 2017, 112, 399–412. [Google Scholar] [CrossRef]
- Greenshaw, A.J.; Dewhurst, W.G. Tryptamine receptors: Fact, myth or misunderstanding. Brain Res. Bull. 1987, 18, 253–256. [Google Scholar] [CrossRef]
- Baranwal, A.; Chandra, P. Clinical implications and electrochemical biosensing of monoamine neurotransmitters in body fluids, in vitro, in vivo, and ex vivo models. Biosens. Bioelectron. 2018, 121, 137–152. [Google Scholar] [CrossRef]
- Ma, L.; Zhao, T.; Zhang, P.; Liu, M.; Shi, H.; Kang, W. Determination of monoamine neurotransmitters and metabolites by high-performance liquid chromatography based on Ag(III) complex chemiluminescence detection. Anal. Biochem. 2020, 593, 113594. [Google Scholar] [CrossRef] [PubMed]
- Helmschrodt, C.; Becker, S.; Perl, S.; Schulz, A.; Richter, A. Development of a fast liquid chromatography-tandem mass spectrometry method for simultaneous quantification of neurotransmitters in murine microdialysate. Anal. Bioanal. Chem. 2020, 412, 7777–7787. [Google Scholar] [CrossRef]
- Han, X.M.; Qin, Y.J.; Zhu, Y.; Zhang, X.L.; Wang, N.X.; Rang, Y.; Zhai, X.J.; Lu, Y.N. Development of an underivatized LC-MS/MS method for quantitation of 14 neurotransmitters in rat hippocampus, plasma and urine: Application to CUMS induced depression rats. J. Pharm. Biomed. Anal. 2019, 174, 683–695. [Google Scholar] [CrossRef]
- Wojnicz, A.; Avendaño Ortiz, J.; Casas, A.I.; Freitas, A.E.; G López, M.; Ruiz-Nuño, A. Simultaneous determination of 8 neurotransmitters and their metabolite levels in rat brain using liquid chromatography in tandem with mass spectrometry: Application to the murine Nrf2 model of depression. Clin. Chim. Acta 2016, 453, 174–181. [Google Scholar] [CrossRef]
- Bergh, M.S.S.; Bogen, I.L.; Lundanes, E.; Øiestad, A.M.L. Validated methods for determination of neurotransmitters and metabolites in rodent brain tissue and extracellular fluid by reversed phase UHPLC–MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1028, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Forgacsova, A.; Galba, J.; Garruto, R.M.; Majerova, P.; Katina, S.; Kovac, A. A novel liquid chromatography/mass spectrometry method for determination of neurotransmitters in brain tissue: Application to human tauopathies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1073, 154–162. [Google Scholar] [CrossRef]
- Uutela, P.; Reinilä, R.; Harju, K.; Piepponen, P.; Ketola, R.A.; Kostiainen, R. Analysis of intact glucuronides and sulfates of serotonin, dopamine, and their phase I metabolites in rat brain microdialysates by liquid chromatography-tandem mass spectrometry. Anal. Chem. 2009, 81, 8417–8425. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, Y.; Sato-Suzuki, I.; Tsujino, N.; Nakasato, A.; Seki, Y.; Fumoto, M.; Arita, H. Augmented brain 5-HT crosses the blood–brain barrier through the 5-HT transporter in rat. Eur. J. Neurosci. 2008, 27, 2466–2472. [Google Scholar] [CrossRef]
- Wang, L.S.; Zhang, M.D.; Tao, X.; Zhou, Y.F.; Liu, X.M.; Pan, R.L.; Liao, Y.H.; Chang, Q. LC-MS/MS-based quantification of tryptophan metabolites and neurotransmitters in the serum and brain of mice. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1112, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Savitz, J.; Drevets, W.C.; Wurfel, B.E.; Ford, B.N.; Bellgowan, P.S.; Victor, T.A.; Bodurka, J.; Teague, T.K.; Dantzer, R. Reduction of kynurenic acid to quinolinic acid ratio in both the depressed and remitted phases of major depressive disorder. Brain Behav. Immun. 2015, 46, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.R.; Borre, Y.; O’ Brien, C.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 2016, 82, 109–118. [Google Scholar] [CrossRef]
- Dinan, T.G.; Cryan, J.F. Melancholic microbes: A link between gut microbiota and depression? Neurogastroenterol. Motil. 2013, 25, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Naseribafrouei, A.; Hestad, K.; Avershina, E.; Sekelja, M.; Linløkken, A.; Wilson, R.; Rudi, K. Correlation between the human fecal microbiota and depression. Neurogastroenterol. Motil. 2014, 26, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Fakhoury, M. Revisiting the serotonin hypothesis: Implications for major depressive disorders. Mol. Neurobiol. 2016, 53, 2778–2786. [Google Scholar] [CrossRef]
- Owens, M.J.; Nemeroff, C.B. Role of serotonin in the pathophysiology of depression: Focus on the serotonin transporter. Clin. Chem. 1994, 40, 288–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehhaghi, M.; Panahi, H.K.S.; Guillemin, G.J. Microorganisms, tryptophan metabolism, and kynurenine pathway: A complex interconnected loop influencing human health status. Int. J. Tryptophan Res. 2019, 12, 1178646919852996. [Google Scholar] [CrossRef] [Green Version]
- Cheung, S.G.; Goldenthal, A.R.; Uhlemann, A.C.; Mann, J.J.; Miller, J.M.; Sublette, M.E. Systematic review of gut microbiota and major depression. Front. Psychiatry 2019, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 2015, 48, 186–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Health Commission of the People’s Republic of China. Guidelines for the Diagnosis and Treatment of Mental Disorders; National Health Commission of the People’s Republic of China: Beijing, China, 2020.
- U.S. Food and Drug Administration. Bioanalytical Method Validation, Guidance for Industry; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2018; pp. 20–26.
- Ma, S.R.; Tong, Q.; Zhao, Z.X.; Cong, L.; Yu, J.B.; Fu, J.; Han, P.; Pan, L.B.; Gu, R.; Peng, R.; et al. Determination of berberine-upregulated endogenous short-chain fatty acids through derivatization by 2-bromoacetophenone. Anal. Bioanal. Chem. 2019, 411, 3191–3207. [Google Scholar] [CrossRef]
- Asgari, A.; Kobarfard, F.; Keyhanfar, F.; Mohebbi, S.; Noubarani, M. Determination of mebudipine in human plasma by liquid chromatography-tandem mass spectrometry. Iran. J. Pharm. Res. 2015, 14, 739–746. [Google Scholar] [PubMed]
- Hong, J.Y.; Park, N.H.; Oh, M.S.; Lee, H.S.; Pyo, H.; Hong, J. Profiling analysis of biogenic amines and their acidic metabolites in mouse brain tissue using gas chromatography–tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 940, 94–103. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, Q.; He, Y.; Deng, M.; Wang, X.; Ma, J. Gradient elution LC-MS determination of dasatinib in rat plasma and its pharmacokinetic study. Acta Chromatogr. 2015, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Diana Di Mavungu, J.; Monbaliu, S.; Scippo, M.L.; Maghuin-Rogister, G.; Schneider, Y.J.; Larondelle, Y.; Callebaut, A.; Robbens, J.; Van Peteghem, C.; De Saeger, S. LC-MS/MS multi-analyte method for mycotoxin determination in food supplements. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2009, 26, 885–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.B.; Zhao, Z.X.; Peng, R.; Pan, L.B.; Fu, J.; Ma, S.R.; Han, P.; Cong, L.; Zhang, Z.W.; Sun, L.X.; et al. Gut microbiota-based pharmacokinetics and the antidepressant mechanism of paeoniflorin. Front. Pharmacol. 2019, 10, 268. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.X.; Fu, J.; Ma, S.R.; Peng, R.; Yu, J.B.; Cong, L.; Pan, L.B.; Zhang, Z.G.; Tian, H.; Che, C.T.; et al. Gut-brain axis metabolic pathway regulates antidepressant efficacy of albiflorin. Theranostics 2018, 8, 5945–5959. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, Q.; Ma, S.R.; Zhao, Z.X.; Pan, L.B.; Cong, L.; Han, P.; Peng, R.; Yu, H.; Lin, Y.; et al. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota. Signal Transduct. Target. Ther. 2021, 6, 1–20. [Google Scholar] [CrossRef] [PubMed]
Analyte | Formula | Molecular Weight (MW) | MRM (m/z) | Q1 CE (Volt) | CE (Volt) | Q3 CE (Volt) |
---|---|---|---|---|---|---|
Phenylalanine (Phe) | C9H11NO2 | 165.2 | 166.05→120.20 | −1 | −1 | −2 |
Tyrosine (Tyr) | C9H11NO3 | 181.2 | 181.90→136.20 | −1 | −1 | −1 |
l-dopa (Dopa) | C9H11NO4 | 197.2 | 198.05→152.25 | −23 | −14 | −30 |
Dopamine (DA) | C8H11NO2 | 153.2 | 154.10→119.20 | −11 | −20 | −11 |
3-Methoxytyramine (MT) | C9H13NO2 | 167.2 | 168.10→151.20 | −17 | −12 | −14 |
Tryptophan (Trp) | C11H12N2O2 | 204.2 | 205.25→188.25 | −1 | −1 | −1 |
5-Hydroxytryptophan (5-HTP) | C11H12N2O3 | 220.2 | 220.90→134.20 | −11 | −25 | −25 |
5-Hydroxytryptamine (5-HT) | C10H12N2O | 176.2 | 177.25→160.20 | −18 | −11 | −30 |
5-Hydroxyindole-3-acetic acid (5-HIAA) | C10H9N2O3 | 191.2 | 192.00→146.20 | −13 | −15 | −14 |
Melatonin (MLT) | C13H16NO2 | 232.3 | 233.00→174.10 | −12 | −15 | −16 |
Kynurenine (KN) | C9H7NO5 | 208.2 | 208.90→146.10 | −16 | −20 | −24 |
Kynurenic acid (KYNA) | C10H7NO3 | 189.2 | 190.20→143.90 | −10 | −19 | −26 |
Tryptamine (TA) | C10H12N2 | 160.2 | 161.10→144.20 | −30 | −11 | −13 |
Indole-3-lactic acid (ILA) | C11H11NO3 | 205.2 | 205.90→130.10 | −15 | −27 | −25 |
Indole-3-acetic acid (IAA) | C10H9NO2 | 175.2 | 175.90→130.00 | −12 | −17 | −22 |
Indolyl-3-propionic acid (IPA) | C11H11NO2 | 189.2 | 190.10→130.00 | −13 | −20 | −12 |
Glutamic acid (Glu) | C5H9NO4 | 147.1 | 148.10→84.10 | −2 | −1 | −2 |
Gamma-aminobutyric acid (GABA) | C4H9NO2 | 103.1 | 104.10→87.20 | −22 | −12 | −16 |
Acetylcholine (Ach) | C7H16NO2 | 146.2 | 146.10→60.00 | −10 | −12 | −23 |
4-Hydroxybenzylamine (IS) | C7H9NO | 123.2 | 124.30→107.00 | −17 | −12 | −10 |
Analyte | Rt (min) | Linear Range (ng/mL) | R2 | Instrumental Lowest Limit of Detection (LLOD) (ng/mL) | Instrumental Lowest Limit of Quantification (LLOQ) (ng/mL) |
---|---|---|---|---|---|
Phe | 3.31 | 500–50,000 | 0.9923 | 2 | 5 |
Tyr | 2.18 | 200–50,000 | 0.9901 | 5 | 10 |
Dopa | 1.69 | 2–500 | 0.9961 | 0.2 | 0.5 |
DA | 2.14 | 5–500 | 0.9982 | 0.2 | 0.5 |
MT | 5.25 | 0.2–200 | 0.9948 | 0.08 | 0.2 |
Trp | 6.35 | 200–50,000 | 0.9901 | 2 | 5 |
5-HTP | 5.11 | 0.5–500 | 0.9980 | 0.2 | 0.5 |
5-HT | 5.90 | 2–500 | 0.9926 | 0.1 | 0.2 |
5-HIAA | 5.96 | 20–2000 | 0.9908 | 0.4 | 0.8 |
MLT | 6.21 | 0.01–10 | 0.9973 | 0.005 | 0.01 |
KN | 1.84 | 2–500 | 0.9912 | 0.1 | 0.5 |
KYNA | 6.11 | 1–100 | 0.9941 | 0.02 | 0.1 |
TA | 6.56 | 5–500 | 0.9918 | 0.1 | 0.5 |
ILA | 6.03 | 20–2000 | 0.9912 | 0.05 | 0.2 |
IAA | 6.09 | 20–2000 | 0.9912 | 0.01 | 0.05 |
IPA | 6.16 | 20–2000 | 0.9966 | 0.1 | 0.5 |
Glu | 0.98 | 500–50,000 | 0.9987 | 1 | 2 |
GABA | 1.09 | 20–2000 | 0.9994 | 0.4 | 0.8 |
Ach | 2.55 | 2–500 | 0.9902 | 0.1 | 0.2 |
Analyte | Concentration (ng/mL) | Intra-Day (n = 5) | Inter-Day (n = 15) | Matrix Effects | Extraction Recovery | Stability after Treatment (4 ℃, 12 h) | Stability after Added with Acetonitrile (4 ℃, 12 h) | Freeze Stability (−70 ℃, 2 Weeks) | ||
---|---|---|---|---|---|---|---|---|---|---|
Accuracy (RE%) | RSD (%) | Accuracy (RE%) | RSD (%) | Mean ± SD (%) | Mean ± SD (%) | Mean ± SD (%) | Mean ± SD (%) | Mean ± SD (%) | ||
Phe | 500 | −11.58 | 1.57 | −11.27 | 2.16 | 112.80 ± 6.95 | 104.27 ± 3.07 | 112.61 ± 3.92 | 97.47 ± 3.82 | 97.28 ± 6.99 |
5000 | 3.23 | 4.70 | 1.76 | 5.23 | 103.65 ± 3.72 | 107.93 ± 3.20 | 100.61 ± 2.34 | 92.85 ± 8.35 | 96.19 ± 2.92 | |
50,000 | −5.84 | 4.99 | −7.33 | 4.10 | 84.17 ± 2.84 | 100.44 ± 8.13 | 114.73 ± 2.97 | 96.90 ± 9.27 | 107.34 ± 5.02 | |
Tyr | 200 | 5.17 | 6.43 | 1.45 | 10.42 | 82.00 ± 4.05 | 103.99 ± 5.75 | 93.07 ± 7.29 | 90.55 ± 6.44 | 99.36 ± 4.13 |
5000 | 1.25 | 5.22 | −2.29 | 6.44 | 95.95 ± 10.73 | 109.05 ± 3.45 | 93.11 ± 3.53 | 91.16 ± 4.34 | 85.61 ± 2.54 | |
50,000 | −4.43 | 6.54 | −4.43 | 9.31 | 91.81 ± 13.82 | 95.57 ± 6.54 | 95.45 ± 2.38 | 93.52 ± 2.30 | 93.93 ± 4.57 | |
Dopa | 2 | 0.65 | 4.60 | 2.08 | 6.11 | 102.52 ± 11.55 | 98.97 ± 2.41 | 99.40 ± 10.29 | 105.37 ± 4.77 | 99.63 ± 5.78 |
50 | 2.93 | 2.85 | 5.37 | 5.08 | 104.59 ± 2.52 | 105.58 ± 6.92 | 105.42 ± 3.90 | 91.49 ± 7.46 | 106.57 ± 7.56 | |
500 | −2.87 | 5.03 | −0.51 | 9.73 | 91.30 ± 14.60 | 90.40 ± 6.86 | 99.58 ± 3.90 | 96.94 ± 14.32 | 87.37 ± 6.15 | |
DA | 5 | −5.24 | 4.03 | 0.00 | 7.86 | 87.08 ± 6.63 | 101.42 ± 2.89 | 89.49 ± 3.23 | 102.33 ± 11.46 | 100.29 ± 6.19 |
50 | −6.81 | 2.35 | −3.03 | 6.55 | 117.71 ± 2.59 | 104.50 ± 3.75 | 105.34 ± 2.17 | 95.78 ± 5.44 | 96.98 ± 7.29 | |
500 | −0.85 | 4.69 | 4.93 | 6.48 | 99.98 ± 2.70 | 98.81 ± 7.06 | 99.30 ± 7.12 | 95.89 ± 6.88 | 87.65 ± 2.08 | |
MT | 0.2 | 0.52 | 8.91 | 1.96 | 8.15 | 96.35 ± 11.01 | 104.32 ± 2.90 | 99.00 ± 7.59 | 98.73 ± 6.09 | 97.40 ± 4.75 |
20 | −2.66 | 2.28 | −0.38 | 7.38 | 105.30 ± 4.44 | 117.21 ± 12.74 | 109.28 ± 3.23 | 87.67 ± 2.47 | 97.33 ± 10.29 | |
200 | −2.77 | 5.53 | 2.64 | 8.07 | 98.58 ± 7.20 | 101.69 ± 7.27 | 103.39 ± 8.57 | 97.29 ± 7.90 | 87.58 ± 4.27 | |
Trp | 200 | −0.51 | 6.77 | −1.08 | 8.13 | 113.90 ± 11.90 | 101.85 ± 2.64 | 87.13 ± 5.00 | 100.84 ± 6.03 | 95.71 ± 9.60 |
5000 | 0.52 | 5.39 | 4.11 | 6.14 | 108.70 ± 3.72 | 97.31 ± 9.13 | 86.55 ± 3.60 | 97.37 ± 5.63 | 85.40 ± 2.58 | |
50,000 | −2.26 | 8.88 | −7.67 | 6.87 | 102.22 ± 5.95 | 97.74 ± 8.88 | 98.28 ± 6.45 | 100.48 ± 3.76 | 103.69 ± 6.40 | |
5-HTP | 0.5 | 4.00 | 4.87 | 1.52 | 6.27 | 111.75 ± 8.99 | 105.38 ± 1.48 | 92.07 ± 0.77 | 96.40 ± 10.88 | 98.20 ± 9.55 |
50 | 0.62 | 3.32 | −0.48 | 5.41 | 98.58 ± 3.29 | 102.07 ± 7.32 | 101.27 ± 3.65 | 92.41 ± 8.78 | 89.47 ± 0.77 | |
500 | 5.94 | 6.25 | 1.08 | 8.55 | 97.38 ± 3.07 | 101.20 ± 6.91 | 101.16 ± 3.38 | 93.45 ± 7.81 | 97.54 ± 8.10 | |
5-HT | 2 | 0.25 | 7.66 | −0.77 | 5.71 | 99.30 ± 4.78 | 101.59 ± 3.47 | 103.88 ± 10.32 | 100.90 ± 7.96 | 101.08 ± 7.07 |
50 | −6.16 | 3.87 | −0.95 | 7.46 | 90.88 ± 3.93 | 95.61 ± 5.43 | 93.84 ± 5.14 | 93.12 ± 11.14 | 96.01 ± 10.78 | |
500 | −5.01 | 10.15 | 3.64 | 10.31 | 112.20 ± 2.32 | 108.20 ± 7.77 | 92.51 ± 2.15 | 95.28 ± 14.95 | 86.16 ± 5.13 | |
5-HIAA | 20 | 1.07 | 6.53 | −0.35 | 7.68 | 71.91 ± 5.59 | 105.93 ± 2.78 | 94.18 ± 1.46 | 99.95 ± 2.78 | 98.50 ± 1.94 |
200 | −3.34 | 1.70 | −3.72 | 6.35 | 82.20 ± 11.50 | 100.51 ± 1.49 | 93.31 ± 0.96 | 97.08 ± 0.49 | 96.84 ± 0.32 | |
2000 | −0.03 | 5.34 | 2.19 | 5.91 | 71.06 ± 2.89 | 103.75 ± 3.69 | 87.36 ± 4.79 | 104.24 ± 5.55 | 93.36 ± 4.12 | |
MLT | 0.01 | 4.32 | 7.90 | 1.40 | 9.66 | 83.57 ± 8.83 | 98.22 ± 10.39 | 106.33 ± 10.56 | 94.60 ± 6.36 | 102.27 ± 15.61 |
1 | −2.23 | 5.81 | −1.75 | 5.82 | 74.20 ± 3.07 | 98.97 ± 6.41 | 102.88 ± 10.45 | 99.43 ± 4.81 | 99.72 ± 9.47 | |
10 | −4.10 | 7.14 | 1.06 | 8.21 | 68.24 ± 4.50 | 98.76 ± 8.47 | 96.16 ± 8.44 | 87.07 ± 5.59 | 86.38 ± 3.97 | |
KN | 2 | 7.46 | 3.69 | −0.66 | 8.21 | 105.66 ± 3.48 | 84.81 ± 8.05 | 97.78 ± 7.71 | 94.41 ± 7.36 | 108.12 ± 4.06 |
50 | 3.41 | 4.44 | 1.58 | 6.24 | 98.29 ± 9.37 | 94.35 ± 5.43 | 101.82 ± 4.29 | 93.13 ± 3.80 | 108.37 ± 5.38 | |
500 | 2.36 | 5.00 | 6.69 | 5.00 | 99.18 ± 9.53 | 96.09 ± 5.54 | 91.38 ± 3.66 | 89.70 ± 0.82 | 104.05 ± 6.40 | |
KYNA | 1 | −0.50 | 9.58 | −1.29 | 7.68 | 94.82 ± 2.89 | 96.20 ± 7.79 | 95.38 ± 2.49 | 103.28 ± 5.31 | 107.99 ± 6.10 |
10 | −2.99 | 8.83 | 0.99 | 8.29 | 86.52 ± 3.20 | 95.36 ± 2.28 | 102.46 ± 2.75 | 111.28 ± 7.19 | 111.21 ± 5.71 | |
100 | 9.71 | 5.53 | 2.27 | 9.57 | 90.52 ± 13.77 | 98.81 ± 6.38 | 94.82 ± 1.69 | 104.38 ± 1.93 | 104.46 ± 2.14 | |
TA | 5 | 7.08 | 9.72 | 2.13 | 9.39 | 92.64 ± 0.48 | 107.47 ± 9.48 | 94.00 ± 9.59 | 100.49 ± 2.92 | 107.69 ± 9.97 |
50 | 11.49 | 1.56 | 1.75 | 10.18 | 114.41 ± 6.28 | 105.46 ± 5.45 | 90.61 ± 1.73 | 111.13 ± 3.85 | 97.04 ± 11.77 | |
500 | 5.05 | 7.99 | 5.64 | 6.19 | 111.39 ± 11.04 | 104.36 ± 2.68 | 92.10 ± 7.09 | 99.38 ± 5.26 | 94.59 ± 1.92 | |
ILA | 20 | 5.62 | 4.82 | 2.49 | 8.40 | 71.28 ± 5.46 | 102.67 ± 5.35 | 89.59 ± 6.35 | 102.96 ± 5.99 | 103.52 ± 6.03 |
200 | 2.32 | 7.14 | 2.89 | 8.02 | 75.23 ± 13.26 | 100.13 ± 5.86 | 102.75 ± 2.92 | 103.98 ± 9.56 | 106.87 ± 6.41 | |
2000 | −2.51 | 7.08 | 2.15 | 7.24 | 75.45 ± 6.69 | 100.21 ± 4.46 | 91.26 ± 1.57 | 85.19 ± 0.42 | 102.68 ± 0.37 | |
IAA | 20 | 8.85 | 6.81 | 4.20 | 9.17 | 102.01 ± 14.26 | 99.97 ± 5.70 | 96.60 ± 1.01 | 101.00 ± 6.20 | 95.08 ± 9.72 |
200 | 2.70 | 6.59 | 5.36 | 8.57 | 114.53 ± 3.20 | 102.43 ± 3.40 | 96.04 ± 1.47 | 104.02 ± 2.12 | 91.42 ± 5.67 | |
2000 | 3.49 | 7.09 | 5.37 | 7.14 | 109.47 ± 6.81 | 101.81 ± 6.25 | 94.66 ± 4.56 | 92.29 ± 2.70 | 96.70 ± 4.99 | |
IPA | 20 | 4.56 | 7.80 | 0.36 | 8.46 | 75.49 ± 3.41 | 114.75 ± 7.92 | 113.84 ± 2.70 | 105.50 ± 3.61 | 114.78 ± 2.58 |
200 | 0.46 | 7.39 | −0.38 | 8.01 | 78.12 ± 10.83 | 114.36 ± 5.16 | 95.96 ± 2.05 | 110.57 ± 4.60 | 101.65 ± 11.79 | |
2000 | −5.83 | 6.39 | −0.79 | 6.51 | 77.22 ± 1.72 | 105.51 ± 5.49 | 97.83 ± 0.86 | 92.98 ± 1.91 | 105.37 ± 3.66 | |
Glu | 500 | −7.35 | 7.82 | −2.31 | 9.88 | 80.04 ± 11.12 | 97.30 ± 1.71 | 89.09 ± 3.05 | 96.77 ± 6.49 | 91.24 ± 2.77 |
5000 | 1.59 | 5.58 | 5.10 | 7.21 | 75.98 ± 1.84 | 97.18 ± 11.02 | 98.30 ± 4.17 | 101.67 ± 2.47 | 100.82 ± 4.50 | |
50,000 | −4.26 | 7.06 | −2.67 | 9.84 | 72.91 ± 1.39 | 104.99 ± 13.04 | 106.21 ± 4.08 | 94.91 ± 8.60 | 96.74 ± 7.96 | |
GABA | 20 | 5.61 | 10.09 | 3.31 | 9.05 | 103.75 ± 3.85 | 94.14 ± 7.88 | 92.98 ± 2.73 | 107.19 ± 10.78 | 97.63 ± 10.89 |
200 | 0.87 | 6.06 | −2.21 | 7.54 | 99.92 ± 3.10 | 100.30 ± 5.14 | 92.03 ± 1.59 | 98.99 ± 2.92 | 87.76 ± 2.92 | |
2000 | 5.10 | 8.91 | 4.00 | 7.37 | 102.40 ± 9.73 | 83.14 ± 4.75 | 91.61 ± 1.22 | 103.20 ± 4.46 | 93.34 ± 6.30 | |
Ach | 2 | 0.25 | 7.09 | 1.78 | 8.45 | 105.66 ± 10.21 | 106.85 ± 6.64 | 104.18 ± 9.45 | 113.23 ± 7.70 | 103.03 ± 5.85 |
50 | −0.47 | 8.03 | 3.26 | 7.53 | 103.02 ± 3.77 | 100.55 ± 4.97 | 109.91 ± 1.68 | 105.11 ± 9.55 | 102.20 ± 6.10 | |
500 | −3.87 | 6.55 | −4.03 | 5.86 | 95.46 ± 3.66 | 102.77 ± 8.59 | 97.69 ± 6.59 | 94.41 ± 12.30 | 86.83 ± 4.35 |
Control | Model | |
---|---|---|
Phe | 13.85 ± 4.57 μg/g | 8.92 ± 8.07 μg/g |
Tyr | 13.07 ± 3.50 μg/g | 6.60 ± 5.47μg/g |
Dopa | 1660 ± 253 ng/g | 3409 ± 266 ng/g |
DA | 263.8 ± 76.3 ng/g | 216.8 ± 48.0 ng/g |
MT | 11.19 ± 1.36 ng/g | 12.88 ± 1.65 ng/g |
Trp | 1409 ± 277 ng/g | 1000 ± 756 ng/g |
5-HTP | 13.82 ± 5.14 ng/g | 11.79 ± 2.44 ng/g |
5-HT | 806.5 ± 34.1 ng/g | 642.1 ± 64.4 ng/g |
5-HIAA | 17.76 ± 2.18 μg/g | 12.47 ± 1.74 μg/g |
MLT | 1.48 ± 1.88 ng/g | 1.25 ± 1.15 ng/g |
KN | 139.3 ± 10.5 ng/g | 63.0 ± 4.9 ng/g |
KYNA | 1051 ± 116 ng/g | 668 ± 75 ng/g |
TA | 2846 ± 195 ng/g | 2415 ± 142 ng/g |
IAA | 8833 ± 1531 ng/g | 5934 ± 996 ng/g |
IPA | 1572 ± 501 ng/g | 1008 ± 138 ng/g |
ILA | 1067 ± 111 ng/g | 704 ± 88 ng/g |
Glu | 583.7 ± 70.9 μg/g | 384.4 ± 119.6 μg/g |
GABA | 11.89 ± 0.51 μg/g | 12.81 ± 1.49 μg/g |
Ach | 8.04 ± 6.96 ng/g | 5.85 ± 4.73 ng/g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.-R.; Yu, J.-B.; Fu, J.; Pan, L.-B.; Yu, H.; Han, P.; Zhang, Z.-W.; Peng, R.; Xu, H.; Wang, Y. Determination and Application of Nineteen Monoamines in the Gut Microbiota Targeting Phenylalanine, Tryptophan, and Glutamic Acid Metabolic Pathways. Molecules 2021, 26, 1377. https://doi.org/10.3390/molecules26051377
Ma S-R, Yu J-B, Fu J, Pan L-B, Yu H, Han P, Zhang Z-W, Peng R, Xu H, Wang Y. Determination and Application of Nineteen Monoamines in the Gut Microbiota Targeting Phenylalanine, Tryptophan, and Glutamic Acid Metabolic Pathways. Molecules. 2021; 26(5):1377. https://doi.org/10.3390/molecules26051377
Chicago/Turabian StyleMa, Shu-Rong, Jin-Bo Yu, Jie Fu, Li-Bin Pan, Hang Yu, Pei Han, Zheng-Wei Zhang, Ran Peng, Hui Xu, and Yan Wang. 2021. "Determination and Application of Nineteen Monoamines in the Gut Microbiota Targeting Phenylalanine, Tryptophan, and Glutamic Acid Metabolic Pathways" Molecules 26, no. 5: 1377. https://doi.org/10.3390/molecules26051377
APA StyleMa, S. -R., Yu, J. -B., Fu, J., Pan, L. -B., Yu, H., Han, P., Zhang, Z. -W., Peng, R., Xu, H., & Wang, Y. (2021). Determination and Application of Nineteen Monoamines in the Gut Microbiota Targeting Phenylalanine, Tryptophan, and Glutamic Acid Metabolic Pathways. Molecules, 26(5), 1377. https://doi.org/10.3390/molecules26051377