Signaling Pathways Regulated by Silica Nanoparticles
Abstract
:1. Introduction
2. Results
2.1. The Association between the Number of Differentially Expressed Genes Identified from Toxicogenomics Studies and Cell Survival
2.2. TNF Pathway Is the Most Enriched Pathway in the Up-Regulated Gene by Silica Nanoparticles
2.3. MAPK Signaling Pathway Is Also an Enriched Pathway in the Up-Regulated Gene by Silica Nanoparticles
3. Discussion
4. Materials and Methods
4.1. Data Sets
4.2. Microarray Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Nafisi, S.; Schafer-Korting, M.; Maibach, H.I. Perspectives on percutaneous penetration: Silica nanoparticles. Nanotoxicology 2015, 9, 643–657. [Google Scholar] [CrossRef]
- Murugadoss, S.; Lison, D.; Godderis, L.; Van Den Brule, S.; Mast, J.; Brassinne, F.; Sebaihi, N.; Hoet, P.H. Toxicology of silica nanoparticles: An update. Arch. Toxicol. 2017, 91, 2967–3010. [Google Scholar] [CrossRef]
- Guidi, P.; Nigro, M.; Bernardeschi, M.; Scarcelli, V.; Lucchesi, P.; Onida, B.; Mortera, R.; Frenzilli, G. Genotoxicity of amorphous silica particles with different structure and dimension in human and murine cell lines. Mutagenesis 2013, 28, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Liu, J.; Zhang, Y.; Zhang, G.; Kang, Y.; Chen, A.; Feng, X.; Shao, L. The toxicity of silica nanoparticles to the immune system. Nanomedicine 2018, 13, 1939–1962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Athinarayanan, J.; Periasamy, V.S.; Alsaif, M.A.; Al-Warthan, A.A.; Alshatwi, A.A. Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell Biol. Toxicol. 2014, 30, 89–100. [Google Scholar] [CrossRef]
- Oh, S.; Kim, B.; Kim, H. Comparison of nanoparticle exposures between fumed and sol-gel nano-silica manufacturing facilities. Ind. Health 2014, 52, 190–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, C.C.; Yu, I.T.; Chen, W. Silicosis. Lancet 2012, 379, 2008–2018. [Google Scholar] [CrossRef]
- Li, Y.; Duan, J.; Chai, X.; Yang, M.; Wang, J.; Chen, R.; Sun, Z. Microarray-assisted size-effect study of amorphous silica nanoparticles on human bronchial epithelial cells. Nanoscale 2019, 11, 22907–22923. [Google Scholar] [CrossRef] [PubMed]
- Toska, E.; Zagorsky, R.; Figler, B.; Cheng, F. Transcriptomic studies on liver toxicity of acetaminophen. Drug Dev. Res. 2014, 75, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Theodorescu, D.; Schulman, I.G.; Lee, J.K. In vitro transcriptomic prediction of hepatotoxicity for early drug discovery. J. Theor. Biol. 2011, 290, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Khatoon, Z.; Figler, B.; Zhang, H.; Cheng, F. Introduction to RNA-Seq and its applications to drug discovery and development. Drug Dev. Res. 2014, 75, 324–330. [Google Scholar] [CrossRef]
- Shaulian, E.; Karin, M. AP-1 in cell proliferation and survival. Oncogene 2001, 20, 2390–2400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fede, C.; Millino, C.; Pacchioni, B.; Celegato, B.; Compagnin, C.; Martini, P.; Selvestrel, F.; Mancin, F.; Celotti, L.; Lanfranchi, G.; et al. Altered gene transcription in human cells treated with Ludox(R) silica nanoparticles. Int. J. Environ. Res. Public Health 2014, 11, 8867–8890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, K.M.; Masiello, L.M.; Zangar, R.C.; Tarasevich, B.J.; Karin, N.J.; Quesenberry, R.D.; Bandyopadhyay, S.; Teeguarden, J.G.; Pounds, J.G.; Thrall, B.D. Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol. Sci. 2009, 107, 553–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, D.K. MAP kinase pathways. Cold Spring Harb. Perspect. Biol. 2012, 4, a011254. [Google Scholar] [CrossRef]
- Park, H.H. Structure of TRAF Family: Current Understanding of Receptor Recognition. Front. Immunol. 2018, 9, 1999. [Google Scholar] [CrossRef] [Green Version]
- Papa, S.; Choy, P.M.; Bubici, C. The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene 2019, 38, 2223–2240. [Google Scholar] [CrossRef] [Green Version]
- Bejjani, F.; Evanno, E.; Zibara, K.; Piechaczyk, M.; Jariel-Encontre, I. The AP-1 transcriptional complex: Local switch or remote command? Biochim. Biophys. Acta Rev. Cancer 2019, 1872, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Moos, P.J.; Honeggar, M.; Malugin, A.; Herd, H.; Thiagarajan, G.; Ghandehari, H. Transcriptional responses of human aortic endothelial cells to nanoconstructs used in biomedical applications. Mol. Pharm. 2013, 10, 3242–3252. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.O.; Shin, N.R.; Seo, Y.S.; Nam, H.H.; Ko, J.W.; Jung, T.Y.; Lee, S.J.; Kim, H.J.; Cho, Y.K.; Kim, J.C.; et al. Silibinin Attenuates Silica Dioxide Nanoparticles-Induced Inflammation by Suppressing TXNIP/MAPKs/AP-1 Signaling. Cells 2020, 9, 678. [Google Scholar] [CrossRef] [Green Version]
- Allport, V.C.; Slater, D.M.; Newton, R.; Bennett, P.R. NF-kappaB and AP-1 are required for cyclo-oxygenase 2 gene expression in amnion epithelial cell line (WISH). Mol. Hum. Reprod. 2000, 6, 561–565. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, N.; Chen, M.; Zheng, J.; Qian, Z.; Wang, X.; Huang, C.; Xu, S.; Shi, G. Cyclooxygenase-2 promotes hepatocellular apoptosis by interacting with TNF-alpha and IL-6 in the pathogenesis of nonalcoholic steatohepatitis in rats. Dig. Dis. Sci. 2013, 58, 2895–2902. [Google Scholar] [CrossRef] [PubMed]
- Singha, B.; Gatla, H.R.; Vancurova, I. Transcriptional regulation of chemokine expression in ovarian cancer. Biomolecules 2015, 5, 223–243. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Xu, K.; Zhang, J.; Lin, B.; Wang, Y.; Yin, S.; Xie, H.; Zhou, L.; Zheng, S. Overexpression of CXCL2 inhibits cell proliferation and promotes apoptosis in hepatocellular carcinoma. BMB Rep. 2018, 51, 630–635. [Google Scholar] [CrossRef] [Green Version]
- Levy, C.S.; Slomiansky, V.; Gattelli, A.; Nahmod, K.; Pelisch, F.; Blaustein, M.; Srebrow, A.; Coso, O.A.; Kordon, E.C. Tumor necrosis factor alpha induces LIF expression through ERK1/2 activation in mammary epithelial cells. J. Cell. Biochem. 2010, 110, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids Res. 2013, 41, D991–D995. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Dennis, G., Jr.; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003, 4, 3. [Google Scholar] [CrossRef]
GEO ID | Comparison | Upregulated Genes | Pathways in Upregulated Genes | Downregulated Genes | Pathways in Downregulated Genes |
---|---|---|---|---|---|
GSE35142 | Silica nanoparticles vs. Control (PAMAM) for 4 h | 2031 | 20 | 1662 | 1 |
GSE13005 | Silica nanoparticles (10 nm, at high concentration) vs. Control for 2 h | 178 | 6 | 159 | 0 |
GSE53700 | Silica nanoparticles (9 nm) vs. Control for 3 h | 1902 | 18 | 1655 | 3 |
Data Set | Pathway Name | Count | p-Value | Genes | Fold Enrichment | FDR |
---|---|---|---|---|---|---|
1 | hsa04668: TNF signaling pathway | 29 | 5.13 × 10−11 | TRAF1, CSF2, TNF, CCL2, PTGS2, CXCL3, CXCL2, NFKBIA, NFKB1, ATF2, VCAM1, LIF, FOS, CCL20, MAP3K8, BCL3, IL1B, ICAM1, SOCS3, MAP2K3, CREB1, MAPK11, CREB5, BIRC3, JUNB, RPS6KA5, JUN, TNFAIP3, SELE | 4.27 | 6.68 × 10−10 |
2 | mmu04668: TNF signaling pathway | 9 | 7.87 × 10−6 | LIF, FOS, CCL2, TNF, PTGS2, JUN, CXCL2, EDN1, JUNB | 8.70 | 8.41 × 10−5 |
3 | hsa04668: TNF signaling pathway | 34 | 4.00 × 10−12 | CXCL1, TRAF1, CSF2, TNF, PTGS2, MMP9, CXCL3, CXCL2, NFKB1, IL15, CCL5, ATF2, LIF, CCL20, MAP3K8, ATF6B, PIK3CA, IL1B, MLKL, PIK3R5, ITCH, AKT3, ICAM1, IL6, CEBPB, SOCS3, RELA, PIK3CD, CREB5, BIRC2, RPS6KA5, MAPK13, JUN, TNFAIP3 | 3.96 | 5.24 × 10−11 |
Data Set | Pathway Name | Count | p-Value | Genes | Fold Enrichment | FDR |
---|---|---|---|---|---|---|
1 | hsa04010: MAPK signaling pathway | 40 | 5.13 × 10−11 | FGF5, TNF, DUSP10, NFKB1, HSPA1A, CACNB3, NFKB2, FGF12, ATF2, FOS, BDNF, RAC3, ELK4, MAP3K1, MAPT, SOS1, MAP3K8, DUSP16, RASGRP2, IL1B, IL1A, NFATC1, MAP2K5, LAMTOR3, MAP2K3, RELB, NR4A1, MAPK11, DDIT3, CDC25B, MAP4K3, RPS6KA5, DUSP5, RPS6KA6, DUSP2, DUSP1, RPS6KA2, JUN, GADD45B, MAP3K11 | 2.49 | 1.90 × 10−6 |
2 | mmu04010: MAPK signaling pathway | 10 | 5.69 × 10−6 | HSPA8, NR4A1, DUSP2, JUN, JUND, GADD45B, DUSP1, FOS, TNF, DUSP16 | 4.20 | 6.07 × 10−3 |
3 | hsa04010: MAPK signaling pathway | 43 | 3.51 × 10−6 | FGFR1, FGF5, TNF, PDGFB, MRAS, GNA12, DUSP10, NFKB1, NFKB2, FGF12, ATF2, KRAS, RAC2, RASGRP3, MAP3K3, JUND, MAP3K8, SOS2, DUSP16, IL1B, FGF2, AKT3, RASA2, LAMTOR3, TAOK1, RELA, RELB, PTPRR, STK4, DDIT3, RPS6KA5, DUSP5, MAP4K4, DUSP4, PLA2G4A, RASGRF2, MAPK13, JUN, MAPK8IP1, PLA2G4C, MAP3K13, DUSP8, DUSP7 | 2.12 | 4.60 × 10−5 |
GEO ID | Species | Cells | Nanoparticles |
---|---|---|---|
GSE35142 | Homo sapiens | Human aortic endothelial cells | Silica vs. control (PAMAM) |
GSE13005 | Mus musculus | RAW 264.7 mouse macrophage cells | Silica (10 nm) vs. control |
GSE53700 | Homo sapiens | A549 human lung epithelial cell lines | Silica (9nm) vs. control |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, S.-Y.; Morris, R.; Cheng, F. Signaling Pathways Regulated by Silica Nanoparticles. Molecules 2021, 26, 1398. https://doi.org/10.3390/molecules26051398
Hsu S-Y, Morris R, Cheng F. Signaling Pathways Regulated by Silica Nanoparticles. Molecules. 2021; 26(5):1398. https://doi.org/10.3390/molecules26051398
Chicago/Turabian StyleHsu, Shih-Yi, Robert Morris, and Feng Cheng. 2021. "Signaling Pathways Regulated by Silica Nanoparticles" Molecules 26, no. 5: 1398. https://doi.org/10.3390/molecules26051398
APA StyleHsu, S. -Y., Morris, R., & Cheng, F. (2021). Signaling Pathways Regulated by Silica Nanoparticles. Molecules, 26(5), 1398. https://doi.org/10.3390/molecules26051398