Rp-HPLC Determination of Quercetin in a Novel D-α-Tocopherol Polyethylene Glycol 1000 Succinate Based SNEDDS Formulation: Pharmacokinetics in Rat Plasma
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Development
2.2. Validation of the HPLC Method
2.2.1. Specificity
2.2.2. System Suitability
2.2.3. Linearity, LOD, and LOQ
2.2.4. Accuracy and Precision
2.2.5. Matrix Effect (ME)
2.2.6. Stability
2.3. Formulation Studies
2.4. Pharmacokinetic Study in Rats
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Apparatus and Analytical Conditions
3.3. Preparation of Stock and Working Solutions
3.4. Sample Preparation
3.5. Method Validation
3.6. Formulation Studies
QU-SNEDDS Globule Size and Zeta Potential Determination
3.7. Application to Pharmacokinetic Study in Rats
3.7.1. Experimental Animals
3.7.2. Design of Pharmacokinetic Study
3.7.3. Pharmacokinetic Analysis
3.7.4. Statistical Analysis
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jan, A.T.; Kamli, M.R.; Murtaza, I.; Singh, J.B.; Ali, A.; Haq, Q.M.R. Dietary Flavonoid Quercetin and Associated Health Benefits—An Overview. Food Rev. Int. 2010, 26, 302–317. [Google Scholar] [CrossRef]
- Mahmoud, M.F.; Hassan, N.A.; El Bassossy, H.M.; Fahmy, A. Quercetin protects against diabetes-induced exaggerated vasoconstriction in rats: Effect on low grade inflammation. PLoS ONE 2013, 8, e63784. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, O.A.A.; Azhar, A.S.; Tarkhan, M.M.; Balamash, K.S.; El-Bassossy, H.M. Antiglycation Activities and Common Mechanisms Mediating Vasculoprotective Effect of Quercetin and Chrysin in Metabolic Syndrome. Evid.-Based Complement Altern. Med. 2020, 2020, 3439624. [Google Scholar] [CrossRef] [PubMed]
- Khursheed, R.; Singh, S.K.; Wadhwa, S.; Gulati, M.; Awasthi, A. Enhancing the potential preclinical and clinical benefits of quercetin through novel drug delivery systems. Drug Discov. Today 2020, 25, 209–222. [Google Scholar] [CrossRef]
- Singhal, A.; Jain, H.; Singhal, V.; Elias, E.J.; Showkat, A. Colon-targeted quercetin delivery using natural polymer to enhance its bioavailability. Pharmacogn. Res. 2011, 3, 35–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Zhang, M.; Liu, Z.; Zhang, Y.; Gu, L.; Hu, G.; Chen, X.; Jia, J. Development of quercetin-phospholipid complex to improve the bioavailability and protection effects against carbon tetrachloride-induced hepatotoxicity in SD rats. Fitoterapia 2016, 113, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Rawat, M.S.; Semalty, A.; Semalty, M. Quercetin-phospholipid complex: An amorphous pharmaceutical system in herbal drug delivery. Curr. Drug Discov. Technol. 2012, 9, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Jaisamut, P.; Wanna, S.; Limsuwan, S.; Chusri, S.; Wiwattanawongsa, K.; Wiwattanapatapee, R. Enhanced Oral Bioavailability and Improved Biological Activities of a Quercetin/Resveratrol Combination Using a Liquid Self-Microemulsifying Drug Delivery System. Planta Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Riva, A.; Ronchi, M.; Petrangolini, G.; Bosisio, S.; Allegrini, P. Improved Oral Absorption of Quercetin from Quercetin Phytosome(R), a New Delivery System Based on Food Grade Lecithin. Eur. J. Drug Metab. Pharm. 2019, 44, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Cortesi, R.; Cappellozza, E.; Drechsler, M.; Contado, C.; Baldisserotto, A.; Mariani, P.; Carducci, F.; Pecorelli, A.; Esposito, E.; Valacchi, G. Monoolein aqueous dispersions as a delivery system for quercetin. Biomed. Microdevices 2017, 19, 41. [Google Scholar] [CrossRef] [PubMed]
- Vinayak, M.; Maurya, A.K. Quercetin Loaded Nanoparticles in Targeting Cancer: Recent Development. Anticancer. Agents Med. Chem. 2019, 19, 1560–1576. [Google Scholar] [CrossRef] [PubMed]
- Li, S.J.; Liao, Y.F.; Du, Q. Research and application of quercetin-loaded nano drug delivery system. Zhongguo Zhong Yao Za Zhi 2018, 43, 1978–1984. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, O.A.; El-Say, K.M.; Aljaeid, B.M.; Badr-Eldin, S.M.; Ahmed, T.A. Optimized vinpocetine-loaded vitamin E D-alpha-tocopherol polyethylene glycol 1000 succinate-alpha lipoic acid micelles as a potential transdermal drug delivery system: In vitro and ex vivo studies. Int. J. Nanomed. 2019, 14, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Wu, T.; Qi, Y.; Zhang, Z. Recent Advances in the Application of Vitamin E TPGS for Drug Delivery. Theranostics 2018, 8, 464–485. [Google Scholar] [CrossRef] [PubMed]
- Zou, T.; Gu, L. TPGS emulsified zein nanoparticles enhanced oral bioavailability of daidzin: In vitro characteristics and in vivo performance. Mol. Pharm. 2013, 10, 2062–2070. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tan, S.; Feng, S.S. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials 2012, 33, 4889–4906. [Google Scholar] [CrossRef] [PubMed]
- Constantinides, P.P.; Han, J.; Davis, S.S. Advances in the Use of Tocols as Drug Delivery Vehicles. Pharm. Res. 2006, 23, 243–255. [Google Scholar] [CrossRef]
- Kong, L.Y.; Su, B.G.; Bao, Z.B.; Xing, H.B.; Yang, Y.W.; Ren, Q.L. Direct quantification of mono- and di-d-α-tocopherol polyethylene glycol 1000 succinate by high performance liquid chromatography. J. Chromatogr. A 2011, 1218, 8664–8671. [Google Scholar] [CrossRef]
- Good, R.L.; Roupe, K.A.; Fukuda, C.; Clifton, G.D.; Fariss, M.W.; Davies, N.M. Direct high-performance liquid chromatographic analysis of d-tocopheryl acid succinate and derivatives. J. Pharm. Biomed. 2005, 39, 33–38. [Google Scholar] [CrossRef]
- Yu, W.; Wen, D.; Cai, D.; Zheng, J.; Gan, H.; Jiang, F.; Liu, X.; Lao, B.; Yu, W.; Guan, Y.; et al. Simultaneous determination of curcumin, tetrahydrocurcumin, quercetin, and paeoniflorin by UHPLC-MS/MS in rat plasma and its application to a pharmacokinetic study. J. Pharm. Biomed. Anal. 2019, 172, 58–66. [Google Scholar] [CrossRef]
- Zupanets, I.A.; Pidpruzhnykov, Y.V.; Sabko, V.E.; Bezugla, N.P.; Shebeko, S.K. UPLC-MS/MS quantification of quercetin in plasma and urine following parenteral administration. Clin. Phytoscience 2019, 5, 11. [Google Scholar] [CrossRef]
- Pilarova, V.; Plachka, K.; Chrenkova, L.; Najmanova, I.; Mladenka, P.; Svec, F.; Novak, O.; Novakova, L. Simultaneous determination of quercetin and its metabolites in rat plasma by using ultra-high performance liquid chromatography tandem mass spectrometry. Talanta 2018, 185, 71–79. [Google Scholar] [CrossRef]
- Jones, D.J.; Lim, C.K.; Ferry, D.R.; Gescher, A. Determination of quercetin in human plasma by HPLC with spectrophotometric or electrochemical detection. Biomed. Chromatogr. 1998, 12, 232–235. [Google Scholar] [CrossRef]
- Liu, B.; Anderson, D.; Ferry, D.R.; Seymour, L.W.; de Takats, P.G.; Kerr, D.J. Determination of quercetin in human plasma using reversed-phase high-performance liquid chromatography. J. Chromatogr. B Biomed. Appl. 1995, 666, 149–155. [Google Scholar] [CrossRef]
- Müller-Sepúlveda, A.; Letelier, M.E.; San Martin, B.; saavedra-Saavedra, I. Simultaneous determination of different flavonoids in human plasma by a simple hplc assay. J. Chil. Chem. Soc. 2016, 61, 3164–3169. [Google Scholar] [CrossRef] [Green Version]
- Biasutto, L.; Marotta, E.; Garbisa, S.; Zoratti, M.; Paradisi, C. Determination of quercetin and resveratrol in whole blood--implications for bioavailability studies. Molecules 2010, 15, 6570–6579. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, S. 1—Overview: Handbook of Pharmaceutical Analysis by HPLC. In Separation Science and Technology; Ahuja, S., Dong, M.W., Eds.; Academic Press: Cambridge, MA, USA, 2005; Volume 6, pp. 1–17. [Google Scholar]
- Boulton, D.W.; Walle, U.K.; Walle, T. Extensive binding of the bioflavonoid quercetin to human plasma proteins. J. Pharm. Pharm. 1998, 50, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Nawirska-Olszanska, A.; Kita, A.; Biesiada, A.; Sokol-Letowska, A.; Kucharska, A.Z. Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars. Food Chem. 2013, 139, 155–161. [Google Scholar] [CrossRef]
- Carini, R.; Poli, G.; Dianzani, M.U.; Maddix, S.P.; Slater, T.F.; Cheeseman, K.H. Comparative evaluation of the antioxidant activity of alpha-tocopherol, alpha-tocopherol polyethylene glycol 1000 succinate and alpha-tocopherol succinate in isolated hepatocytes and liver microsomal suspensions. Biochem. Pharm. 1990, 39, 1597–1601. [Google Scholar] [CrossRef]
- Guo, Y.; Luo, J.; Tan, S.; Otieno, B.O.; Zhang, Z. The applications of Vitamin E TPGS in drug delivery. Eur. J. Pharm. Sci. 2013, 49, 175–186. [Google Scholar] [CrossRef]
- Dintaman, J.M.; Silverman, J.A. Inhibition of P-glycoprotein by D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm. Res. 1999, 16, 1550–1556. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.H.; Lee, S.Y.; Jeong, D.W.; Choi, E.J.; Kim, Y.J.; Lee, J.G.; Yi, Y.H.; Cha, H.S. Effect of pumpkin seed oil on hair growth in men with androgenetic alopecia: A randomized, double-blind, placebo-controlled trial. Evid.-Based Complement Alternat. Med. 2014, 2014, 549721. [Google Scholar] [CrossRef] [Green Version]
- Bu, H.; He, X.; Zhang, Z.; Yin, Q.; Yu, H.; Li, Y. A TPGS-incorporating nanoemulsion of paclitaxel circumvents drug resistance in breast cancer. Int. J. Pharm. 2014, 471, 206–213. [Google Scholar] [CrossRef]
- Gulam, M.; Zeenat, I.K.; Tripta, B.; Sushama, T. Preparation and Characterization of Oil in Water Nano-Reservoir Systems for Improved Oral Delivery of Atorvastatin. Curr. Nanosci. 2009, 5, 428–440. [Google Scholar] [CrossRef]
- Ujhelyi, Z.; Kalantari, A.; Vecsernyes, M.; Roka, E.; Fenyvesi, F.; Poka, R.; Kozma, B.; Bacskay, I. The enhanced inhibitory effect of different antitumor agents in self-microemulsifying drug delivery systems on human cervical cancer HeLa cells. Molecules 2015, 20, 13226–13239. [Google Scholar] [CrossRef] [PubMed]
- Ujhelyi, Z.; Fenyvesi, F.; Varadi, J.; Feher, P.; Kiss, T.; Veszelka, S.; Deli, M.; Vecsernyes, M.; Bacskay, I. Evaluation of cytotoxicity of surfactants used in self-micro emulsifying drug delivery systems and their effects on paracellular transport in Caco-2 cell monolayer. Eur. J. Pharm. Sci. 2012, 47, 564–573. [Google Scholar] [CrossRef]
- Guidance for Industry: Bioanalytical Method Validation; U.S. Department of Health and Human Services Food and Drug Administration: Rockville, MD, USA, 2018.
- Alhakamy, N.A.; Fahmy, U.A.; Ahmed, O.A.A. Attenuation of Benign Prostatic Hyperplasia by Optimized Tadalafil Loaded Pumpkin Seed Oil-Based Self Nanoemulsion: In Vitro and In Vivo Evaluation. Pharmaceutics 2019, 11, 640. [Google Scholar] [CrossRef] [Green Version]
Parameter | Quercetin | TPGS |
---|---|---|
Retention time (Rt) | 4.11 ± 0.02 | 7.21 ± 0.14 |
Capacity Factor (k’) | 1.74 | 3.81 |
Resolution (Rs) | - | 9.26 |
Selectivity (α) | - | 2.18 |
Symmetry factor | 1.03 | 1.034 |
No of theoretical plates (N) (plates/m) | 2.91 × 103 | 5.96 × 103 |
Parameter | Quercetin | TPGS |
---|---|---|
Linearity range (ng/mL) | 30–10,000 | 100–10,000 |
Regression equation parameters Y= ax + b | ||
Slope (a) | 4.254 | 0.231 |
Intercept (b) | −215.96 | 4.763 |
Determination Coefficient (r2) | 0.9999 | 0.9996 |
Limit of detection LOD (ng/mL) | 7.65 | 22.09 |
Limit of quantitation LOQ (ng/mL) | 23.19 | 66.96 |
Quercetin | TPGs | ||||
---|---|---|---|---|---|
Added Concentration (ng/mL) | Found Concentration (ng/mL) * | Recovery (%) | Added (ng/mL) | Found (ng/mL) * | Recovery (%) |
100 | 102.97 | 102.97 | 100 | 96.01 | 96.02 |
300 | 308.60 | 102.87 | 300 | 308.32 | 103.25 |
500 | 521.30 | 104.26 | 700 | 750.16 | 107.35 |
700 | 696.08 | 99.44 | 3000 | 3096.73 | 103.24 |
3000 | 2926.62 | 97.55 | 10,000 | 9980.93 | 99.79 |
10,000 | 10,020.94 | 100.21 | |||
Mean | 101.22 | 101.93 | |||
SD | 2.56 | 4.25 | |||
RSD | 2.525 | 4.170 |
Analyte | Concentration (ng/mL Plasma) | Accuracy | Precision | ||
---|---|---|---|---|---|
Mean% Recovery* | RE% | Intra-Day RSD% | Inter-Day RSD% | ||
Quercetin | 100 | 100.27 | 0.27 | 0.778 | 0.894 |
3000 | 100.99 | 0.99 | 0.346 | 1.782 | |
10,000 | 101.22 | 1.22 | 0.789 | 0.304 | |
TPGS | 100 | 100.91 | 0.91 | 1.542 | 2.594 |
3000 | 99.56 | −0.43 | 1.423 | 2.633 | |
10,000 | 99.81 | −0.19 | 0.820 | 0.300 |
Formula # | PSO | TPGS | PEG 200 | Size (nm) ± SD | PDI ± SD | Zeta Potential mV ± SD |
---|---|---|---|---|---|---|
F1 | 0.1 | 0.3 | 0.6 | 165.3 ± 26.1 | 0.29± 0.02 | −21.2 ± 4.3 |
F2 | 0.4 | 0.3 | 0.3 | >1000 | 0.7 ± 0.2 | −27.4 ± 6.8 |
F3 | 0.2 | 0.4 | 0.4 | 362 ± 29.0 | 0.23 ± 0.05 | −29.3 ± 3.8 |
F4 | 0.1 | 0.5 | 0.4 | 82.6 ± 25.3 | 0.35 ± 0.03 | −26.2 ± 5.2 |
F5 | 0.2 | 0.5 | 0.3 | 320 ± 34.3 | 0.37 ± 0.07 | −28.6 ± 4.1 |
F6 | 0.3 | 0.3 | 0.4 | 490 ± 59.8 | 0.42 ± 0.03 | −30.2 ± 3.8 |
Sample Availability: Samples of the compounds are not available from the authors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, O.A.A.; El-Bassossy, H.M.; El-Sayed, H.M.; El-Hay, S.S.A. Rp-HPLC Determination of Quercetin in a Novel D-α-Tocopherol Polyethylene Glycol 1000 Succinate Based SNEDDS Formulation: Pharmacokinetics in Rat Plasma. Molecules 2021, 26, 1435. https://doi.org/10.3390/molecules26051435
Ahmed OAA, El-Bassossy HM, El-Sayed HM, El-Hay SSA. Rp-HPLC Determination of Quercetin in a Novel D-α-Tocopherol Polyethylene Glycol 1000 Succinate Based SNEDDS Formulation: Pharmacokinetics in Rat Plasma. Molecules. 2021; 26(5):1435. https://doi.org/10.3390/molecules26051435
Chicago/Turabian StyleAhmed, Osama A. A., Hany M. El-Bassossy, Heba M. El-Sayed, and Soad S. Abd El-Hay. 2021. "Rp-HPLC Determination of Quercetin in a Novel D-α-Tocopherol Polyethylene Glycol 1000 Succinate Based SNEDDS Formulation: Pharmacokinetics in Rat Plasma" Molecules 26, no. 5: 1435. https://doi.org/10.3390/molecules26051435
APA StyleAhmed, O. A. A., El-Bassossy, H. M., El-Sayed, H. M., & El-Hay, S. S. A. (2021). Rp-HPLC Determination of Quercetin in a Novel D-α-Tocopherol Polyethylene Glycol 1000 Succinate Based SNEDDS Formulation: Pharmacokinetics in Rat Plasma. Molecules, 26(5), 1435. https://doi.org/10.3390/molecules26051435