Sustainable Route for Synthesizing Aluminosilicate EU-1 Zeolite
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Starting Materials
3.2. Hydrothermal Synthesis of Conventional Aluminosilicate EU-1 Zeolite
3.3. Solvent-Free Synthesis of Aluminosilicate EU-1 Zeolite
3.4. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Davis, M.E. Ordered Porous Materials for Emerging Applications. Nature 2002, 417, 813–821. [Google Scholar] [CrossRef]
- Xiao, F.-S.; Meng, X. Green chemistry and sustainable technology. In Zeolites in Sustainable Chemistry: Synthesis, Characterization and Catalytic Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Bereciartua, P.J.; Cantín, Á.; Corma, A.; Jordá, J.L.; Palomino, M.; Rey, F.; Valencia, S.; Corcoran, E.W.; Kortunov, P.; Ravikovitch, P.I.; et al. Control of Zeolite Framework Flexibility and Pore Topology for Separation of Ethane and Ethylene. Science 2017, 358, 1068–1071. [Google Scholar] [CrossRef] [PubMed]
- Dusselier, M.; Van Wouwe, P.; Dewaele, A.; Jacobs, P.A.; Sels, B.F. Shape-Selective Zeolite Catalysis for Bioplastics Production. Science 2015, 349, 78–80. [Google Scholar] [CrossRef] [Green Version]
- Lai, Z.; Bonilla, G.; Diaz, I.; Nery, J.G.; Sujaoti, K.; Amat, M.A.; Kokkoli, E.; Terasaki, O.; Thompson, R.W.; Tsapatsis, M.; et al. Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation. Science 2003, 300, 456–460. [Google Scholar] [CrossRef]
- Corma, A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev. 1997, 97, 2373–2420. [Google Scholar] [CrossRef] [PubMed]
- Cundy, C.S.; Cox, P.A. The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chem. Rev. 2003, 103, 663–702. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhu, J.; Qiao, J.; Yu, X.; Sun, N.-B.; Bian, C.; Li, J.; Zhu, L. Solvent-Free Synthesis of Aluminosilicate SSZ-39 Zeolite. Micropor. Mesopor. Mater. 2021, 312, 110736. [Google Scholar] [CrossRef]
- Ren, L.; Wu, Q.; Yang, C.; Zhu, L.; Li, C.; Zhang, P.; Zhang, H.; Meng, X.; Xiao, F.-S. Solvent-Free Synthesis of Zeolites from Solid Raw Materials. J. Am. Chem. Soc. 2012, 134, 15173–15176. [Google Scholar] [CrossRef]
- Morris, R.E.; James, S.L. Solventless Synthesis of Zeolites. Angew. Chem. Int. Ed. 2013, 52, 2163–2165. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, J.; Wu, Q.; Chen, W.; Lei, C.; Zhu, Q.; Han, S.; Fei, J.; Zheng, A.; Zhu, L.; et al. Direct Synthesis of Aluminosilicate SSZ-39 Zeolite Using Colloidal Silica as a Starting Source. ACS Appl. Mater. Interfaces 2019, 11, 23112–23117. [Google Scholar] [CrossRef]
- Meng, X.; Xiao, F.-S. Green Routes for Synthesis of Zeolites. Chem. Rev. 2014, 114, 1521–1543. [Google Scholar] [CrossRef]
- Wu, Q.; Ma, Y.; Wang, S.; Meng, X.; Xiao, F.-S. 110th Anniversary: Sustainable Synthesis of Zeolites: From Fundamental Research to Industrial Production. Ind. Eng. Chem. Res. 2019, 58, 11653–11658. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, X.; Qi, G.; Guo, Q.; Pan, S.; Meng, X.; Xu, J.; Deng, F.; Fan, F.; Feng, Z.; et al. Sustainable Synthesis of Zeolites without Addition of Both Organotemplates and Solvents. J. Am. Chem. Soc. 2014, 136, 4019–4025. [Google Scholar] [CrossRef]
- Meng, X.; Wu, Q.; Chen, F.; Xiao, F.-S. Solvent-Free Synthesis of Zeolite Catalysts. Sci. China Chem. 2015, 58, 6–13. [Google Scholar] [CrossRef]
- Jin, Y.; Sun, Q.; Qi, G.; Yang, C.; Xu, J.; Chen, F.; Meng, X.; Deng, F.; Xiao, F.-S. Solvent-Free Synthesis of Silicoaluminophosphate Zeolites. Angew. Chem. Int. Ed. 2013, 52, 9172–9175. [Google Scholar] [CrossRef] [PubMed]
- Casci, J.L.; Lowe, B.M.; Whittam, T.V. Zeolite EU-1. Eur. Patent EP0042226, 23 December 1981. [Google Scholar]
- Souverijns, W.; Rombouts, L.; Martens, J.A.; Jacobs, P.A. Molecular Shape Selectivity of EUO Zeolites. Micropor. Mater. 1995, 4, 123–130. [Google Scholar] [CrossRef]
- Ahmed, M.H.M.; Muraza, O.; Yoshioka, M.; Yokoi, T. Effect of Multi-Step Desilication and Dealumination Treatments on the Performance of Hierarchical EU-1 Zeolite for Converting Methanol to Olefins. Micropor. Mesopor. Mater. 2017, 241, 79–88. [Google Scholar] [CrossRef]
- Pan, S.; Wu, Q.; Wang, X.; Chen, F.; Meng, X.; Xiao, F.-S. Mesoporous EU-1 Zeolite Synthesized in the Presence of Cationic Polymer. Micropor. Mesopor. Mater. 2016, 235, 246–252. [Google Scholar] [CrossRef]
- Pradhan, A.R.; Kotasthane, A.N.; Rao, B.S. Isopropylation of Benzene over EU-1 Zeolite Catalyst. Appl. Catal. 1991, 72, 311–319. [Google Scholar] [CrossRef]
- Ahmed, M.H.M.; Muraza, O.; Al-Amer, A.M.; Miyake, K.; Nishiyama, N. Development of Hierarchical EU-1 Zeolite by Sequential Alkaline and Acid Treatments for Selective Dimethyl Ether to Propylene (DTP). Appl. Catal. A Gen. 2015, 497, 127–134. [Google Scholar] [CrossRef]
- Gonçalves, J.C.; Rodrigues, A.E. Industrial Xylene/Ethylbenzene Isomerization Unit Using a Radial-Flow Reactor and EUO-Type Zeolite. Chem. Eng. Technol. 2013, 36, 1658–1664. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Zhang, Y.; Liu, Y.; Sun, X.; Ren, P.; Gao, M.; Dou, T. Controllable Synthesis of EU-1 Molecular Sieve with High SiO2/Al2O3 Ratios in Thermodynamic Stable Sol System. J. Porous Mater. 2016, 23, 1557–1565. [Google Scholar] [CrossRef]
- Goergen, S.; Guillon, E.; Patarin, J.; Rouleau, L. Shape Controlled Zeolite EU-1 (EUO) Catalysts: Dry Gel Conversion Type Synthesis, Characterization and Formation Mechanisms. Micropor. Mesopor. Mater. 2009, 126, 283–290. [Google Scholar] [CrossRef]
- Martins, J.; Birot, E.; Guillon, E.; Lemos, F.; Ribeiro, F.R.; Magnoux, P.; Laforge, S. Sodium Exchange over H-EU-1 Zeolite. Part II: Catalytic Properties. Micropor. Mesopor. Mater. 2013, 171, 238–245. [Google Scholar] [CrossRef]
- Xu, Q.; Gong, Y.; Xu, W.; Xu, J.; Deng, F.; Dou, T. Synthesis of High-Silica EU-1 Zeolite in the Presence of Hexamethonium Ions: A Seeded Approach for Inhibiting ZSM-48. J. Colloid Interf. Sci. 2011, 358, 252–260. [Google Scholar] [CrossRef]
- Bian, C.; Mao, H.; Qiu, J.; Shi, K. Facile and Seed-Direct Synthesis of Pure EUO Zeolite with Enhanced Catalytic Performance. Mater. Res. Express 2019, 6, 095529. [Google Scholar] [CrossRef]
- Rao, G.N.; Kumar, R.; Ratnasamy, P. Shape Selectivity of Zeolite EU-1 in Reactions of Aromatic Hydrocarbons. Appl. Catal. 1989, 49, 307–318. [Google Scholar] [CrossRef]
- Arnold, A.; Hunger, M.; Weitkamp, J. Dry-gel Synthesis of Zeolites [Al]EU-1 and [Ga]EU-1. Micropor. Mesopor. Mater. 2004, 67, 205–213. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, X.; Zhu, L.; Ding, L.; Gao, P.; Wang, X.; Pan, S.; Bian, C.; Meng, X.; Xu, J.; et al. Solvent-Free Synthesis of Zeolites from Anhydrous Starting Raw Solids. J. Am. Chem. Soc. 2015, 137, 1052–1055. [Google Scholar] [CrossRef]
- Yang, D.; Zhao, J.; Zhang, J.; Dou, T.; Wu, Z.; Chen, Z. Designed Synthesis and Crystallization of Fe-Al-EU-1 Zeolites Containing Framework-Iron. Acta. Phys. Chim. Sin. 2012, 28, 720–728. [Google Scholar] [CrossRef]
- Xu, R.; Pang, W.; Yu, J.; Huo, Q.; Chen, J. Chemistry of Zeolites and Related Porous Materials; Wiley: Singapore, 2007. [Google Scholar]
Run 1 | SiO2/Al2O3 | Na2O/SiO2 | HMBr2/SiO2 | Seeds/SiO2 | Products 2 |
---|---|---|---|---|---|
1 | 30 | 0.12 | 0.042 | 0.010 | Amorphous |
2 | 50 | 0.12 | 0.042 | 0.010 | EU-1 |
3 | 60 | 0.12 | 0.042 | 0.010 | EU-1 |
4 | 70 | 0.12 | 0.042 | 0.010 | EU-1 |
5 | 80 | 0.12 | 0.042 | 0.010 | EU-1 + dense phase |
6 | 100 | 0.12 | 0.042 | 0.010 | EU-1 + dense phase |
7 | 120 | 0.12 | 0.042 | 0.010 | EU-1 + dense phase |
8 | 60 | 0.080 | 0.042 | 0.010 | Amorphous |
9 | 60 | 0.10 | 0.042 | 0.010 | EU-1 + Amorphous |
10 | 60 | 0.14 | 0.042 | 0.010 | EU-1 + dense phase |
11 | 60 | 0.16 | 0.042 | 0.010 | EU-1 + dense phase |
12 | 60 | 0.12 | 0.010 | 0.010 | EU-1 + dense phase |
13 | 60 | 0.12 | 0.030 | 0.010 | EU-1 + dense phase |
14 | 60 | 0.12 | 0.080 | 0.010 | EU-1 |
15 | 60 | 0.12 | 0.042 | 0 | EU-1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Zhu, J.; Wang, X.; Shen, C.; Meng, S.; Zheng, K.; Lei, C.; Zhu, L. Sustainable Route for Synthesizing Aluminosilicate EU-1 Zeolite. Molecules 2021, 26, 1462. https://doi.org/10.3390/molecules26051462
Xu H, Zhu J, Wang X, Shen C, Meng S, Zheng K, Lei C, Zhu L. Sustainable Route for Synthesizing Aluminosilicate EU-1 Zeolite. Molecules. 2021; 26(5):1462. https://doi.org/10.3390/molecules26051462
Chicago/Turabian StyleXu, Hao, Jie Zhu, Xiong Wang, Chao Shen, Shengshen Meng, Kai Zheng, Chao Lei, and Longfeng Zhu. 2021. "Sustainable Route for Synthesizing Aluminosilicate EU-1 Zeolite" Molecules 26, no. 5: 1462. https://doi.org/10.3390/molecules26051462
APA StyleXu, H., Zhu, J., Wang, X., Shen, C., Meng, S., Zheng, K., Lei, C., & Zhu, L. (2021). Sustainable Route for Synthesizing Aluminosilicate EU-1 Zeolite. Molecules, 26(5), 1462. https://doi.org/10.3390/molecules26051462