Preparation of Cellulose/Laponite Composite Particles and Their Enhanced Electrorheological Responses
Abstract
:1. Introduction
2. Results and Discussions
3. Materials and Methods
3.1. Materials
3.2. Preparation of Cellulose/Laponite Composite Particles
3.3. Characterization and Rheological Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Hao, T. Electrorheological fluids. Adv. Mater. 2001, 13, 1847–1857. [Google Scholar] [CrossRef]
- Wu, J.-B.; Wen, W.-J. Research progress of field-induced soft smart materials. Acta Phys. Sin. 2016, 65, 188301. [Google Scholar] [CrossRef]
- Bilyk, V.A.; Korobko, E.V. Research of the influence of dissipative heating on the performance characteristics of electrorheological shock absorbers. J. Intell. Mater. Syst. Struct. 2015, 26, 1906–1912. [Google Scholar] [CrossRef]
- Ma, N.; Yao, Y.; Wang, Q.; Niu, C.; Dong, X. Properties and mechanical model of a stiffness tunable viscoelastic damper based on electrorheological elastomers. Smart Mater. Struct. 2020, 29, 045041. [Google Scholar] [CrossRef]
- Coulter, J.P.; Weiss, K.D.; Carlson, J.D. Engineering applications of electrorheological materials. J. Intell. Mater. Syst. Struct. 1993, 4, 248–259. [Google Scholar] [CrossRef]
- Su, J.; Cheng, H.; Feng, Y.; Tam, H.Y. Study of a wheel-like electrorheological finishing tool and its applications to small parts. Appl. Opt. 2016, 55, 638–945. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.D.; Choi, H.J. Electrorheological fluids: Smart soft matter and characteristics. Soft Matter 2012, 8, 11961–11978. [Google Scholar] [CrossRef]
- Agafonov, A.V.; Kraev, A.S.; Kusova, T.V.; Evdokimova, O.L.; Ivanova, O.S.; Baranchikov, A.E.; Shekunova, T.O.; Kozyukhin, S.A. Surfactant-Switched Positive/Negative Electrorheological Effect in Tungsten Oxide Suspensions. Molecules 2019, 24, 3348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Y.Z.; Choi, K.; Kwon, S.H.; Nam, J.-D.; Choi, H.J. Nanoparticles Functionalized by Conducting Polymers and Their Electrorheological and Magnetorheological Applications. Polymers 2020, 12, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, Y.G.; Choi, U.S. Gelation of natural polymer dispersed suspensions under electric field. Soft Matter 2012, 8, 253–259. [Google Scholar] [CrossRef]
- Geist, M.F.; Boussois, K.; Smith, A.; Peyratout, C.S.; Kurth, D.G. Nanocomposites Derived from Montmorillonite and Metallosupramolecular Polyelectrolytes: Modular Compounds for Electrorheological Fluids. Langmuir 2013, 29, 1743–1747. [Google Scholar] [CrossRef]
- Choi, K.; Gao, C.Y.; Nam, J.D.; Choi, H.J. Cellulose-Based Smart Fluids under Applied Electric Fields. Materials 2017, 10, 1060. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.; Nam, J.D.; Kwon, S.H.; Choi, H.J.; Islam, M.S.; Kao, N. Microfibrillated Cellulose Suspension and Its Electrorheology. Polymers 2019, 11, 2119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sim, B.; Bae, D.H.; Choi, H.J.; Choi, K.; Islam, M.S.; Kao, N. Fabrication and stimuli response of rice husk-based microcrystalline cellulose particle suspension under electric fields. Cellulose 2016, 23, 185–197. [Google Scholar] [CrossRef]
- Cabuk, M.; Yavuz, M.; Unal, H.I.; Erol, O. Synthesis, characterization and electrorheological properties of biodegradable chitosan/bentonite composites. Clay Miner. 2013, 48, 129–141. [Google Scholar] [CrossRef]
- Kuznetsov, N.M.; Zagoskin, Y.D.; Vdovichenko, A.Y.; Bakirov, A.V.; Kamyshinsky, R.A.; Istomina, A.P.; Grigoriev, T.E.; Chvalun, S.N. Enhanced electrorheological activity of porous chitosan particles. Carbohydr. Polym. 2020, 256, 117530. [Google Scholar] [CrossRef] [PubMed]
- Yavuz, M.; Tilki, T.; Karabacak, C.; Erol, O.; Ibrahim Unal, H.; Uluturk, M.; Cabuk, M. Electrorheological behavior of biodegradable modified corn starch/corn oil suspensions. Carbohydr. Polym. 2010, 79, 318–324. [Google Scholar] [CrossRef]
- Gracia-Fernández, C.; Gómez-Barreiro, S.; Álvarez-García, A.; López-Beceiro, J.; Artiaga, R. Electrorheological behaviour of a starch-oil system. Rheol. Acta. 2014, 53, 655–661. [Google Scholar] [CrossRef]
- Ko, Y.G.; Lee, H.J.; Chun, Y.J.; Choi, U.S.; Yoo, K.P. Positive and Negative Electrorheological Response of Alginate Salts Dispersed Suspensions under Electric Field. ACS Appl. Mater. Interfaces 2013, 5, 1122–1130. [Google Scholar] [CrossRef]
- Chun, Y.; Ko, Y.G.; Do, T.; Jung, Y.; Kim, S.W.; Chun, Y.J.; Choi, U.S. Electrorheological properties of algae dispersed suspension: New application of harmful algae. Colloid Surf. A 2018, 539, 354–363. [Google Scholar] [CrossRef]
- Kim, S.G.; Kim, J.W.; Jang, W.H.; Choi, H.J.; Jhon, M.S. Electrorheological characteristics of phosphate cellulose-based suspensions. Polymer 2001, 42, 5005–5012. [Google Scholar] [CrossRef]
- Ko, Y.G.; Lee, H.J.; Shin, S.S.; Choi, U.S. Dipolar-molecule complexed chitosan carboxylate, phosphate, and sulphate dispersed electrorheological suspensions. Soft Matter 2012, 8, 6273–6279. [Google Scholar] [CrossRef]
- Ko, Y.G.; Shin, S.S.; Choi, U.S.; Park, Y.S.; Woo, J.W. Gelation of Chitin and Chitosan Dispersed Suspensions under Electric Field: Effect of Degree of Deacetylation. ACS Appl. Mater. Interfaces 2011, 3, 1289–1298. [Google Scholar] [CrossRef]
- Choi, H.J.; Jhon, M.S. Electrorheology of polymers and nanocomposites. Soft Matter 2009, 5, 1562–1567. [Google Scholar] [CrossRef]
- Chen, P.; Cheng, Q.; Wang, L.-M.; Liu, Y.D.; Choi, H.J. Fabrication of dual-coated graphene oxide nanosheets by polypyrrole and poly(ionic liquid) and their enhanced electrorheological responses. J. Ind. Eng. Chem. 2019, 69, 106–115. [Google Scholar] [CrossRef]
- Han, W.J.; Choi, H.J.; Seo, Y. Pickering emulsion fabricated smart polyaniline/clay composite particles and their tunable rheological response under electric field. Smart Mater. Struct. 2020, 29, 085022. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Zheng, C.; Lei, Q.; Dong, Y.; Zhao, X.; Yin, J. Pickering emulsion polymerization of poly(ionic liquid)s encapsulated nano-SiO2 composite particles with enhanced electro-responsive characteristic. Polymer 2018, 146, 109–119. [Google Scholar] [CrossRef]
- Hu, H.; Wang, X.; Wang, J.; Liu, F.; Zhang, M.; Xu, C. Microwave-assisted covalent modification of graphene nanosheets with chitosan and its electrorheological characteristics. Appl. Surf. Sci. 2011, 257, 2637–2642. [Google Scholar] [CrossRef]
- Ren, F.; Li, Z.; Tan, W.-Z.; Liu, X.-H.; Sun, Z.-F.; Ren, P.-G.; Yan, D.-X. Facile preparation of 3D regenerated cellulose/graphene oxide composite aerogel with high-efficiency adsorption towards methylene blue. J. Colloid Interface Sci. 2018, 532, 58–67. [Google Scholar] [CrossRef]
- Wu, K.; Liu, D.; Gong, F.; Lei, C.; Fu, Q. Addressing the challenge of fabricating a high content regenerated cellulose/nanomaterial composite: The magical effect of urea. Green Chem. 2020, 22, 4121–4127. [Google Scholar] [CrossRef]
- Del Mar Ramos-Tejada, M.; Maria Rodriguez, J.; Delgado, A.V. Electrorheology of clay particle suspensions. Effects of shape and surface treatment. Rheol. Acta. 2018, 57, 405–413. [Google Scholar] [CrossRef]
- Stolyarova, D.Y.; Kuznetsov, N.M.; Belousov, S.I.; Chvalun, S.N. Electrorheological behavior of low filled suspensions of highly anisometric montmorillonite particles. J. Appl. Polym. Sci. 2019, 136, 47678. [Google Scholar] [CrossRef]
- Sadeghi, S.; Arjmand, M.; Li, T.; Sundararaj, U. DC electrorheological Response of Polyethylene/Organically Modified Layered Silicate Nanocomposites. J. Polym. Sci. Pol. Phys. 2017, 55, 1298–1309. [Google Scholar] [CrossRef]
- Geist, M.F.; Peyratout, C.S.; Kurth, D.G. Intercalation of Nickel(II) and Iron(II) Metallosupramolecular Polyelectrolytes in Montmorillonite: Nanocomposites and their Electrorheological Properties. Chemnanomat 2015, 1, 489–496. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, Q. A polymer/clay nanocomposite gel via chlorinated paraffin solvent initiated photopolymerization with electrorheological performance. RSC Adv. 2015, 5, 7752–7754. [Google Scholar] [CrossRef]
- Piao, S.H.; Kwon, S.H.; Choi, H.J. Stimuli-Responsive Polymer-Clay Nanocomposites under Electric Fields. Materials 2016, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Chen, P.; Jin, X.; Wang, L.-M.; Liu, Y.; Choi, H. Enhanced Electrorheological Response of Cellulose: A Double Effect of Modification by Urea-Terminated Silane. Polymers 2018, 10, 867. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Li, Z.; Li, H. Modification of Eu3+–beta-diketonate complex-intercalated LAPONITE® with a terpyridine-functionalized ionic liquid. RSC Adv. 2015, 5, 70868–70873. [Google Scholar] [CrossRef]
- Ding, L.; Hu, Y.; Luo, Y.; Zhu, J.; Wu, Y.; Yu, Z.; Cao, X.; Peng, C.; Shi, X.; Guo, R. LAPONITE®-stabilized iron oxide nanoparticles for in vivo MR imaging of tumors. Biomater. Sci. 2016, 4, 474–482. [Google Scholar] [CrossRef]
- Bippus, L.; Jaber, M.; Lebeau, B. Laponite and hybrid surfactant/laponite particles processed as spheres by spray-drying. New J. Chem. 2009, 33, 1116–1126. [Google Scholar] [CrossRef]
- Cho, M.S.; Choi, H.J.; Jhon, M.S. Shear stress analysis of a semiconducting polymer based electrorheological fluid system. Polymer 2005, 46, 11484–11488. [Google Scholar] [CrossRef]
- Seo, Y.P.; Seo, Y. Modeling and Analysis of Electrorheological Suspensions in Shear Flow. Langmuir 2012, 28, 3077–3084. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.C. Polarization forces and conductivity effects in electrorheological fluids. J. Appl. Phys. 1992, 72, 1334–1340. [Google Scholar] [CrossRef]
- Seo, Y. A new yield stress scaling function for electrorheological fluids. J. Non-Newt. Fluid Mech. 2011, 166, 241–243. [Google Scholar] [CrossRef]
- Parmar, K.P.S.; Meheust, Y.; Schjelderupsen, B.; Fossum, J.O. Electrorheological suspensions of laponite in oil: Rheometry studies. Langmuir 2008, 24, 1814–1822. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, M.; Rozynek, Z.; Fossum, J.O. Electrorheological properties of organically modified nanolayered laponite: Influence of intercalation, adsorption and wettability. J. Mater. Chem. 2009, 19, 1816–1828. [Google Scholar] [CrossRef]
- Liu, Y.D.; Fang, F.F.; Choi, H.J. Core-Shell Structured Semiconducting PMMA/Polyaniline Snowman-like Anisotropic Microparticles and Their Electrorheology. Langmuir 2010, 26, 12849–12854. [Google Scholar] [CrossRef]
- Zhao, J.; Lei, Q.; He, F.; Zheng, C.; Liu, Y.; Zhao, X.; Yin, J. Interfacial Polarization and Electroresponsive Electrorheological Effect of Anionic and Cationic Poly(ionic liquids). ACS Appl. Polym. Mater. 2019, 1, 2862–2874. [Google Scholar] [CrossRef]
Sample | Electric Field Strength (kV/mm) | τy | α | β | t2 | t3 | η∞ |
---|---|---|---|---|---|---|---|
Raw cellulose | 0.5 | 3.60 | 0.55 | 0.067 | 65.16 | 0.0069 | 0.045 |
1.0 | 8.76 | 0.81 | 0.64 | 18.84 | 0.0040 | 0.046 | |
2.0 | 26.88 | 0.46 | 0.61 | 9.87 | 0.0017 | 0.047 | |
3.0 | 52.72 | 0.30 | 0.20 | 2.59 | 0.0061 | 0.088 | |
Cellulose/Laponite composite | 0.5 | 10.41 | 0.092 | 0.57 | 2.63 | 0.107 | 0.042 |
1.0 | 43.36 | 0.052 | 0.53 | 3.04 | 0.108 | 0.046 | |
2.0 | 150.10 | 0.085 | 0.80 | 0.0115 | 0.101 | 0.072 | |
3.0 | 302.30 | 0.150 | 0.33 | 0.0005 | 0.164 | 0.113 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhao, Z.; Jin, X.; Wang, L.-M.; Liu, Y.D. Preparation of Cellulose/Laponite Composite Particles and Their Enhanced Electrorheological Responses. Molecules 2021, 26, 1482. https://doi.org/10.3390/molecules26051482
Liu Z, Zhao Z, Jin X, Wang L-M, Liu YD. Preparation of Cellulose/Laponite Composite Particles and Their Enhanced Electrorheological Responses. Molecules. 2021; 26(5):1482. https://doi.org/10.3390/molecules26051482
Chicago/Turabian StyleLiu, Zhao, Zhenjie Zhao, Xiao Jin, Li-Min Wang, and Ying Dan Liu. 2021. "Preparation of Cellulose/Laponite Composite Particles and Their Enhanced Electrorheological Responses" Molecules 26, no. 5: 1482. https://doi.org/10.3390/molecules26051482
APA StyleLiu, Z., Zhao, Z., Jin, X., Wang, L. -M., & Liu, Y. D. (2021). Preparation of Cellulose/Laponite Composite Particles and Their Enhanced Electrorheological Responses. Molecules, 26(5), 1482. https://doi.org/10.3390/molecules26051482