Tea as a Source of Biologically Active Compounds in the Human Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Food Samples
2.2. Determination of Total Content of Phenolic Compounds
2.3. Determination of Antioxidant Activity
2.4. Determination of Copper (Cu), Manganese (Mn), Iron (Fe), Zinc (Zn), Magnesium (Mg) and Calcium (Ca)
2.5. Determination of Sodium (Na) and Potassium (K)
2.6. Statistical Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- FAOSTAT. FAO Statistical Databases. Tea Production in 2010–2018. Crops/Regions/World list/Production Quantity (Pick Lists). 2020. Available online: http://faostat.fao.org (accessed on 3 February 2021).
- UNFAO. Provisional Agenda and Agenda Notes (23rd Session, Rep. No. CCP:TE 18/CRS1), Hangzhou, the People’s Republic of China: IGG Tea. 2018. Available online: http://www.fao.org (accessed on 3 February 2021).
- Horie, M.; Nara, K.; Sugino, S.; Umeno, A.; Yoshida, Y. Comparison of antioxidant activities among four kinds of Japanese traditional fermented tea. Food Sci. Nutr. 2017, 5, 639–645. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Yang, J.; Wang, S. Tea category identification based on optimal wavelet entropy and weighted k–Nearest Neighbors algorithm. Multimed. Tools Appl. 2018, 77, 3745–3759. [Google Scholar] [CrossRef]
- Chupeerach, C.; Aursalung, A.; Watcharachaisoponsiri, T.; Whanmek, K.; Thiyajai, P.; Yosphan, K.; Sritalahareuthai, V.; Sahasakul, Y.; Santivarangkna, C.; Suttisansanee, U. The effect of steaming and fermentation on nutritive values, antioxidant activities, and inhibitory properties of tea leaves. Foods 2021, 10, 117. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Zhu, L.; Wang, K.; Yan, Y.; He, J.; Ren, Y. Green tea consumption and risk of breast cancer. A systematic review and updated meta-analysis of case-control studies. Medicine 2019, 98, 27. [Google Scholar] [CrossRef]
- Pinto, G.; Illiano, A.; Carpentieri, A.; Spinelli, M.; Melchiorre, C.; Fontanarosa, C.; di Serio, M.; Amoresano, A. Quantification of polyphenols and metals in Chinese tea infusions by mass spectrometry. Foods 2020, 9, 835. [Google Scholar] [CrossRef]
- Zaguła, G.; Bajcar, M.; Saletnik, B.; Czernicka, M.; Puchalski, C.; Kapusta, I.; Oszmiański, J. Comparison of the effectiveness of water-based extraction of substances from dry tea leaves with the use of magnetic field assisted extraction techniques. Molecules 2017, 22, 1656. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Li, S.; Huang, J.; Wei, C.C.; Wan, X.; Sang, S.; Ho, C.T. Importance of the nucleophilic property of tea polyphenols. J. Agric. Food Chem. 2019, 67, 5379–5383. [Google Scholar] [CrossRef] [PubMed]
- Konieczynski, P.; Viapiana, A.; Wesolowski, M. Comparison of infusions from black and green teas (Camellia sinensis L. Kuntze) and Erva-mate (Ilex paraguariensis A. St.-Hil.) based on the content of essential elements, secondary metabolites, and antioxidant activity. Food Anal. Methods 2017, 10, 3063–3070. [Google Scholar] [CrossRef] [Green Version]
- Terekhina, N.A.; Goryacheva, O.G. The role of oxidative stress and antioxidants in occurrence of myocardial infarction and chronic heart failure. Med. Univ. 2020, 3, 155–164. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Ahmed, A.; Khalid, N.; Ahmad, A.; Abbasi, N.A.; Latif, M.S.Z.; Randhawa, M.A. Phytochemicals and biofunctional properties of buckwheat: A review. J. Agric. Sci. 2014, 152, 349–369. [Google Scholar] [CrossRef]
- Del Bo’, C.; Bernardi, S.; Marino, M.; Porrini, M.; Tucci, M.; Guglielmetti, S.; Cherubini, A.; Carrieri, B.; Kirkup, B.; Kroon, P.; et al. Systematic review on polyphenol intake and health outcomes: Is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern? Nutrients 2019, 11, 1355. [Google Scholar] [CrossRef] [Green Version]
- Gaeini, Z.; Bahadoran, Z.; Mirmiran, P.; Azizi, F. Tea, coffee, caffeine intake and the risk of cardio-metabolic outcomes: Findings from a population with low coffee and high tea consumption. Nutr. Metab. 2019, 16, 28. [Google Scholar] [CrossRef]
- Prasanth, M.I.; Sivamaruthi, B.S.; Chaiyasut, C.; Tencomnao, T. A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients 2019, 11, 474. [Google Scholar] [CrossRef] [Green Version]
- Shen, Q.; Yu, C.; Guo, Y.; Bian, Z.; Zhu, N.; Yang, L.; Chen, Y.; Luo, G.; Li, J.; Qin, Y.; et al. Habitual tea consumption and risk of fracture in 0.5 million Chinese adults: A prospective cohort study. Nutrients 2018, 10, 1633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, Y.; Chen, L.; Ren, N.; Li, B.; Wu, Y.; Rankin, G.O.; Rojanasakul, Y.; Wang, Y.; Chen, Y.C. Standarized saponin extract from baiye No. 1 tea (Camellia sinensis) flowers induced S phase cell cycle arrest and apoptosis via AKT-MDM2-p53 signaling pathway in ovarian cancer cells. Molecules 2020, 25, 3515. [Google Scholar] [CrossRef] [PubMed]
- Cleverdon, R.; Elhalaby, Y.; McAlpine, M.D.; Gittings, W.; Ward, W.E. Total polyphenol content and antioxidant capacity of tea bags: Comparison of black, green, red rooibos, chamomile and peppermint over different steep times. Beverages 2018, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.T.; Kang, L.; Wang, C.Z.; Huang, P.J.; Huang, H.T.; Lin, S.Y.; Chou, S.H.; Lu, C.C.; Shen, P.C.; Lin, Y.S.; et al. (−)-Epigallocatechin-3-gallate decreases osteoclastogenesis via modulation of RANKL and osteoprotegrin. Molecules 2019, 24, 156. [Google Scholar] [CrossRef] [Green Version]
- Yonekura, Y.; Terauchi, M.; Hirose, A.; Odai, T.; Kato, K.; Miyasaka, N. Daily coffee and green tea consumption is inversely associated with body mass index, body fat percentage, and cardio-ankle vascular index in middle-aged Japanese women: A cross-sectional study. Nutrients 2020, 12, 1370. [Google Scholar] [CrossRef]
- Boccellino, M.; D’Angelo, S. Anti-obesity effects of polyphenol intake: Current status and future possibilities. Int. J. Mol. Sci. 2020, 21, 5642. [Google Scholar] [CrossRef]
- Unno, K.; Furushima, D.; Nomura, Y.; Yamada, H.; Iguchi, K.; Taguchi, K.; Suzuki, T.; Ozeki, M.; Nakamura, Y. Antidepressant effect of shaded white leaf tea containing high levels of caffeine and amino acids. Molecules 2020, 25, 3550. [Google Scholar] [CrossRef] [PubMed]
- Diniz, L.R.L.; Souza, M.T.S.; Duarte, A.B.S.; Sousa, D.P. Mechanistic aspects and therapeutic potential of quercetin against COVID-19-associated acute kidney injury. Molecules 2020, 25, 5772. [Google Scholar] [CrossRef] [PubMed]
- Podwika, W.; Kleszcz, K.; Krośniak, M.; Zagrodzki, P. Copper, manganese, zinc and cadmium in tea leaves of different types and origin. Biol. Trace Elem. Res. 2018, 183, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Karak, T.; Bhagat, R.M. Trace elements in tea leaves, made tea and tea infusion: A review. Food Res. Int. 2010, 43, 2234–2252. [Google Scholar] [CrossRef]
- Jarosz, M. Nutrition Standards for the Polish Population; Food and Nutrition Institute: Warsaw, Poland, 2017; ISBN 978-83-86060-89-4. [Google Scholar]
- Karak, T.; Kutu, F.R.; Nath, J.R.; Sonar, I.; Paul, R.K.; Boruah, R.K.; Sanyal, S.; Sabhapondit, S.; Dutta, A.K. Micronutrients (B, Co, Cu, Fe, Mn, Mo and Zn) content in made tea (Camellia sinensis L.) and tea infusion with health prospect: A critical review. Crit. Rev. Food Sci. Nutr. 2017, 57, 14. [Google Scholar] [CrossRef]
- Samadi, S.; Fard, F.R. Phytochemical properties, antioxidant activity and mineral content (Fe, Zn and Cu) in Iranian produced black tea, green tea and roselle calyces. Biocatal. Agric. Biotechnol. 2020, 23, 101472. [Google Scholar] [CrossRef]
- Garbowska, B.; Wieczorek, J.K.; Polak-Śliwińska, M.; Wieczorek, Z.J. The content of minerals, bioactive compounds and anti-nutritional factors in tea infusions. J. Elem. 2017, 23, 369–380. [Google Scholar] [CrossRef]
- Brzezicha-Cirocka, J.; Grembecka, M.; Szefer, P. Monitoring of essential and heavy metals in green tea from different geographical origins. Environ. Monit. Assess. 2016, 188, 183. [Google Scholar] [CrossRef] [Green Version]
- Ribereau-Gayon, P. Plant Phenolics; Hafner Publishing Company: New York, NY, USA, 1972. [Google Scholar]
- Guo, X.D.; Ma, Y.J.; Parry, J.; Gao, J.M.; Yu, L.L.; Wang, M. Phenolics content and antioxidant activity of tartary buckwheat from different locations. Molecules 2011, 16, 9850–9867. [Google Scholar] [CrossRef] [Green Version]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Qin, P.; Wu, L.; Yao, Y.; Ren, G. Changes in phytochemical compositions, antioxidant and α-glucosidase inhibitory activities during the processing of tartary buckwheat tea. Food Res. Int. 2013, 50, 562–567. [Google Scholar] [CrossRef]
- Whiteside, P.; Miner, B. Pye Unicam Atomic Absorption Data Book; Pye Unicam LTD: Cambridge, UK, 1984. [Google Scholar]
- Almeida, T.S.; Araujo, M.E.M.; Rodriguez, L.; Julio, A.; Mendes, B.G.; Santos, R.M.B.; Simoes, J.A.M. Influence of preparation procedures on the phenolic content, antioxidant and antidiabetic activities of green and black teas. Braz. J. Pharm. Sci. 2019, 55, 17695. [Google Scholar] [CrossRef]
- Szajdek, A.; Borowska, J. Antioxidant properties of plant-based food products. Żywność. Nauka. Technologia. Jakość 2004, 4, 5–28. (In Polish). Available online: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.dl-catalog-7da5b096-f6d5-4ca8-9d86-2eb50b13e35b (accessed on 5 January 2021).
- Szajdek, A.; Borowska, E.J. Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods Hum. Nutr. 2008, 63, 147–156. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Ghosh, N.; Chakraborty, T.; Mallic, S.; Mana, S.; Singha, D.; Ghosh, B.; Roy, S. Synthesis, characterization and study of antioxidant activity of quercetin-magnesium complex. Spectrochim. Acta A 2015, 151, 807–813. [Google Scholar] [CrossRef]
- Nordin, N.H.; Molan, A.L.; Chua, W.H.; Kruger, M.C. Total phenolic contents and antioxidant activities of selenium-rich black tea versus regular black tea. Am. J. Life Sci. 2017, 5, 40–50. Available online: http://www.diili.org/ojs-2.4.6/index.php/ajlsr/index (accessed on 5 January 2021).
- Jabeen, S.; Alam, S.; Saleem, M.; Ahmad, W.; Bibi, R.; Hamid, F.S.; Shah, H.U. Withering timings affect the total free amino acids and mineral contents of tea leaves during black tea manufacturing. Arab. J. Chem. 2019, 12, 2411–2417. [Google Scholar] [CrossRef] [Green Version]
- Kräutler, B. Breakdown of chlorophyll in higher plants–phyllobilins as abundant, yet hardly visible signs of ripening, senescence, and cell death. Angew. Chem. Int. Ed. Engl. 2016, 55, 4882–4907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, F.; Chen, W. Lead and copper levels in tea samples marketed in Beijing, China. Bull. Environ. Contam. Toxicol. 2007, 79, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.L.; Flowers, T.J.; Wang, S. Mechanisms of sodium uptake by roots of higher plant. Plant Soil 2010, 326, 45–60. [Google Scholar] [CrossRef]
- Lv, H.; Zhang, Y.; Lin, Z.; Liang, Y. Processing and chemical constituents of Pu-erh tea: A review. Food Res. Int. 2013, 53, 608–618. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, R.; Chen, R.; Li, Y.C.; Peng, Y.; Liu, C. Multielemental analysis associated with chemometric techniques for geographical origin discrimination of tea leaves (Camelia sinensis) in Guizhou Province, SW China. Molecules 2018, 23, 3013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabel, A.M. Free radicals and antioxidants: Role of enzymes and nutrition. World J. Nutr. Health 2014, 2, 35–38. [Google Scholar] [CrossRef]
- Narendhran, S.; Manikandan, M.; Shakila, P.B. Antibacterial, antioxidant properties of Solanum trilobatum and sodium hydroxide-mediated magnesium oxide nanoparticles: A green chemistry approach. Bull. Mater. Sci. 2019, 42, 133. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, B.; Saedisomeolia, A.; Allman-Farinelli, M. Association between antioxidant intake/status and obesity: A systematic review of observational studies. Biol. Trace Elem. Res. 2017, 175, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Ahanger, M.A.; Agarwal, R.M. Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L). Protoplasma 2017, 254, 1471–1486. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Agarwal, R.M. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiol. Biochem. 2017, 115, 449–460. [Google Scholar] [CrossRef]
- Taha, R.S.; Seleiman, M.F.; Alotaibi, M.; Alhammad, B.A.; Rady, M.M.; Mahdi, A.H.A. Exogenous potassium treatments elevate salt tolerance and performances of Glycine max L. by boosting antioxidant defense system under actual saline field conditions. Agronomy 2020, 10, 1741. [Google Scholar] [CrossRef]
- Martins, A.C.; Morcillo, P.; Ijomone, O.M.; Venkataramani, V.; Harrison, F.E.; Lee, E.; Bowman, A.B.; Aschner, M. New insights on the role of manganese in Alzheimer’s disease and Parkinson’s disease. Int. J. Environ. Res. Public Health 2019, 16, 3546. [Google Scholar] [CrossRef]
No | Kind of Tea | Country | Province | Total Phenolics (mg/100 mL) | Antioxidant Activity (%) | The Content of Minerals (µg/100 mL) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu | Mn | Fe | Zn | Mg | Ca | Na | K | ||||||
1. | white | China | Fujian | 65.05 ± 1.40 p | 37.27 ± 3.54 jkl | 4.75 ± 0.12 g | 318 ± 0.79 m | 1.68 ± 0.09 n | 32.7 ± 1.57 hi | 1036 ± 13.80 t | 85.6 ± 0.43 o | 198 ± 2.23 d | 21,485 ± 83.5 s |
2. | China | Yunnan | 58.21 ± 0.75 q | 31.89 ± 1.36 mn | 5.88 ± 0.34 f | 645 ± 3.19 d | 2.31 ± 0.28 lmn | 37.2 ± 1.05 f | 1230 ± 0.58 r | 71.8 ± 0.61 opqr | 737 ± 15.30 a | 33,452 ± 109 f | |
3. | yellow | China | Anhui | 79.10 ± 1.74 mn | 40.51 ± 1.47 ij | 4.75 ± 0.17 g | 289 ± 0.97 n | 1.96 ± 0.20 mn | 43.4 ± 3.42 e | 1752 ± 7.02 n | 141 ± 1.74 l | 74.1 ± 1.41 jk | 29,923 ± 142 j |
4. | green | China | Anhwei | 90.46 ± 0.95 j | 49.41 ± 3.69 fg | 7.59 ± 0.41 d | 324 ± 4.48 m | 9.14 ± 0.52 c | 31.3 ± 1.56 ij | 1494±6.43 o | 307 ± 8.01 e | 103 ± 1.04 h | 26,240 ± 99.9 o |
5. | China | - | 107.88 ± 0.34 g | 65.09 ± 1.22 c | 9.40 ± 0.20 b | 621 ± 4.93 e | 5.93 ± 0.29 efg | 63.3 ± 1.08 b | 2576 ± 5.29 b | 337 ± 35.60 d | 60.5 ± 0.49 no | 33,056 ± 102 gh | |
6. | China | - | 83.21 ±0.72 l | 43.51 ± 0.60 hi | 2.44 ± 0.10 jk | 298 ± 2.74 n | 12.20 ± 0.68 b | 14.1 ± 1.59 q | 492 ± 4.00 x | 366 ± 1.50 b | 21.2 ± 0.26 u | 21,127 ± 60.9 t | |
7. | China | - | 76.23 ± 3.63 no | 35.28 ± 1.79 klm | 1.96 ± 0.06 l | 207 ± 1.19 s | 11.83 ± 1.07 b | 7.8 ± 0.13 r | 405 ± 2.65 y | 445 ± 2.25 a | 10.1 ± 0.87 v | 15,506 ± 96.6 v | |
8. | China | Jiangs | 117.26 ± 1.06 f | 70.61 ± 0.89 b | 8.00 ± 0.27 c | 1329 ± 9.32 a | 6.83 ± 1.03 de | 62.2 ± 1.74 b | 2386 ± 10.30 e | 226 ± 22.00 i | 56.6 ± 0.44 op | 39,077 ± 176 b | |
9. | China | Yunnan | 128.17 ± 0.68 d | 72.52 ± 1.58 b | 3.77 ± 0.17 h | 450 ± 2.18 h | 4.48 ± 0.21 jk | 35.1 ± 0.45 fgh | 2528 ± 11.80 c | 164 ± 1.89 k | 39.5 ± 0.14 s | 32,580 ± 109 i | |
10. | China | Yunnan | 124.51 ± 0.96 e | 60.80 ± 3.78 cd | 9.89 ± 0.45 a | 1130 ± 9.00 b | 6.64 ± 0.48 def | 46.8 ± 2.25 d | 2092 ± 15.70 j | 58,4 ± 1.31 r | 41.0 ± 0.17 rs | 36,430 ± 186 d | |
11. | China | Zhejiang | 99.13 ± 2.97 hi | 57.30 ± 086 de | 0.66 ± 0.08 n | 790 ± 7.30 c | 9.03 ± 1.40 c | 35.8 ± 2.74 fg | 2419 ± 4.00 d | 161 ± 1.34 k | 41.8 ± 0.32 rs | 38,706 ± 143 c | |
12. | China | Zhejiang | 86.69 ± 0.28 k | 49.52 ± 0.68 g | 2.66 ± 0.05 jk | 496 ± 3.81 g | 4.83 ± 0.18 ij | 21.6 ± 0.78 nop | 1429 ± 3.21 p | 182 ± 1.40 j | 4.0 ± 0.25 w | 23,608 ± 59.4 q | |
13. | India | Assam | 152.12 ± 1.35 a | 89.76 ± 1.26 a | 2.60 ± 0.11 jk | 555 ± 2.26 f | 7.01 ± 0.28 d | 52.2 ± 2.46 c | 3688 ± 28.00 a | 77,8 ± 0.18 op | 27.0 ± 0.35 tu | 45,535 ± 436 a | |
14. | Japan | - | 96.55 ± 0.79 i | 54.16 ± 1.60 ef | 1.23 ± 0.07 m | 397 ± 3.80 k | 8.34 ± 0.42 c | 15.5 ± 1.23 q | 1246 ± 6.51 r | 155 ± 0.49 k | 72.3 ± 0.75 jkl | 23,896 ± 107 q | |
15. | Japan | - | 97.90 ± 0.87 i | 33.78 ± 4.97 lm | 1.21 ± 0.10 m | 332 ± 0.85 l | 5.41 ± 0.19 ghi | 26.9 ± 0.25 kl | 1237 ± 4.00 r | 268 ± 8.81 fg | 138 ± 0.94 f | 21,396 ± 46.4 st | |
16. | Japan | Miyazaki | 102.16 ± 0.9h | 59.20 ± 0.40 d | 1.83 ± 0.10 l | 428 ± 7.25 j | 5.79 ± 0.33 fgh | 32.1 ± 2.13 i | 2014 ± 20.1 k | 122 ± 2.30 m | 77.7 ± 5.80 j | 33,097 ± 98.9 gh | |
17. | Japan | Shizouka | 144.54 ± 1.66 b | 57.40 ± 5.32 de | 0.37 ± 0.05 n | 290 ± 4.04 n | 3.83 ± 0.16 k | 22.8 ± 0.20 mno | 1983 ± 6.40 l | 64.9 ± 1.11 pqr | 64.1 ± 0.46 mn | 22,604 ± 51.8 r | |
18. | Korea | Jeju | 128.58 ± 0.91 d | 70.82 ± 3.35 b | 1.35 ± 0.08 m | 316 ± 0.70 m | 8.91 ± 0.85 c | 28.4 ± 0.82 k | 2216 ± 12.90 h | 68.1 ± 0.82 pqr | 226 ± 11.60 c | 30,193 ± 118 j | |
19. | Vietnam | - | 136.24 ± 1.37 c | 75.09 ± 3.64 b | 3.03 ± 0.21 i | 236 ± 19.7 q | 5.81 ± 0.30 fgh | 33.7 ± 2.80 ghi | 1957 ± 7.37 m | 73.4 ± 0.43 opq | 37.1 ± 1.13 s | 28,007 ± 98.0 l | |
20. | oolong | China | - | 62.66 ± 1.01 p | 33.70 ± 1.06 lm | 3.66 ± 0.15 h | 317 ± 0.62 m | 4.40 ± 0.37 jk | 8.8 ± 0.41 r | 496 ± 4.51 x | 433 ± 4.08 a | 83.9 ± 0.28 i | 16,752 ± 40.9 u |
21. | pu-erh | China | Yunnan | 51.23 ± 6.18 r | 21.46 ± 2.41 qr | 3.12 ± 0.03 i | 224 ± 0.12 r | 12.17 ± 0.52 b | 23.7 ± 1.64 mn | 1003 ± 12.80 u | 265 ± 12.00 fg | 226 ± 1.66 c | 25,527 ± 517 p |
22. | China | Yunnan | 46.03 ± 1.29 st | 20.79 ± 1.44 qr | 2.37 ± 0.10 k | 215 ± 1.45 s | 14.46 ± 0.26 a | 149 ± 1.81 a | 997 ± 14.5 u | 243 ± 5.26 h | 292 ± 2.00 b | 25,238 ± 210 p | |
23. | black | China | - | 43.38 ± 3.76 t | 17.75 ± 2.08 r | 3.74 ± 0.17 h | 223 ± 0.64 r | 6.74 ± 0.16 de | 24.5 ± 1.22 lm | 1142 ± 9.45 s | 44.6 ± 1.00 s | 46.4 ± 0.43 qr | 26,138 ± 33.4 o |
24. | China | Yunnan | 55.37 ± 0.75 q | 28.59 ± 8.71 no | 5.76 ± 0.10 f | 438 ± 3.96 i | 3.91 ± 0.17 k | 31.2 ± 0.26 ij | 1446 ± 9.85 p | 61.6 ± 0.46 qr | 30.6 ± 0.07 t | 28,485 ± 95.7 k | |
25. | China | Yunnan | 80.45 ± 0.62 lm | 33.14 ± 1.21 lmn | 5.78 ± 0.11 f | 450 ± 1.26 h | 5.99 ± 0.45 efg | 20.9 ± 0.37 op | 1736 ± 18.1 n | 86.3 ± 2.67 o | 103 ± 0.96 h | 32,972 ± 37.3 h | |
26. | India | Assam | 89.79 ± 1.36 jk | 46.87 ± 2.37 gh | 3.49 ± 0.12 h | 253 ± 0.80 p | 2.69 ± 0.12 lm | 22.0 ± 0.10 mno | 2309 ± 39.5 f | 104 ± 4.47 n | 84.0 ± 0.45 i | 35,521 ± 649 e | |
27. | India | Assam | 82.73 ± 0.42 l | 35.97 ± 1.35 jklm | 2.71 ± 0.21 j | 185 ± 1.21 t | 2.63 ± 0.31 lm | 19.1 ± 1.32 p | 1999 ± 3.79 kl | 168 ± 0.26 k | 55.4 ± 0.44 op | 36,215 ± 131 d | |
28. | India | Assam | 75.59 ± 2.5 o | 37.92 ± 2.49 jkl | 3.63 ± 0.14 h | 213 ± 1.78 s | 3.01 ± 0.24 l | 20.7 ± 2.27 op | 2242 ± 4.58 g | 133 ± 1.68 lm | 42.3 ± 0.26 rs | 32,304 ± 202 i | |
29. | India | Ceylon | 48.35 ± 0.39 rs | 22.61 ± 1.56 pqr | 6.28 ± 0.03 e | 248 ± 1.73 p | 4.56 ± 0.22 ijk | 14.5 ± 0.26 q | 963 ± 14.0 v | 277 ± 3.69 f | 160 ± 0.65 e | 22,711 ± 16.9 r | |
30. | India | Darjeeling | 93.00 ± 0.92 j | 49.48 ± 1.69 fg | 8.04 ± 0.17 c | 253 ± 0.46 p | 4.84 ± 0.07 ij | 28.4 ± 0.26 k | 2126 ± 10.4 i | 73.4 ± 1.52 opqr | 51.6 ± 0.52 pq | 33,348 ± 57.6 fg | |
31. | India | mix 1* | 61.84 ± 3.84 p | 26.49 ± 1.84 op | 6.34 ± 0.12 e | 270 ± 1.05 o | 4.96 ± 0.38 hij | 29.4 ± 1.05 jk | 1350 ± 4.58 q | 255 ± 2.88 gh | 116 ± 0.85 g | 27,336 ± 67.6 m | |
32. | India | mix 2 * | 55.56 ± 1.01 q | 24.93 ± 1.63 opq | 4.71 ± 0.20 g | 320 ± 2.45 m | 2.06 ± 0.12 mn | 9.3 ± 0.40 r | 870 ± 10.1 w | 350 ± 3.53 c | 70.2 ± 0.38 klm | 26,608 ± 48.3 n | |
33. | Kenya | - | 76.90 ± 0.51 no | 39.48 ± 1.15 ijk | 3.67 ± 0.08 h | 292 ± 1.38 n | 6.52 ± 0.32 def | 21.4 ± 0.68 nop | 2077 ± 3.00 j | 101 ± 1.12 n | 66.9 ± 2.16 lm | 32,340 ± 52.8 i |
No | Kind of Tea | Total Phenolics [mg/100 mL] | Antioxidant Activity [%] | The Content of Minerals [µg/100 mL] | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cu | Mn | Fe | Zn | Mg | Ca | Na | K | ||||
1. | white | 61.63 ± 3.88 bc | 34.58 ± 3.80 bc | 5.32 ± 0.66 a | 482 ± 179.0 a | 1.99 ± 0.39 d | 34.9 ± 2.73 c | 1133 ± 106 b | 78.7 ± 7.62 d | 468 ± 296 ab | 27,469 ± 6555 a |
2. | yellow | 79.10 ± 1.7 4b | 40.51 ± 1.47 b | 4.75 ± 0.17 a | 289 ± 0.971 a | 1.96 ± 0.20 d | 43.4 ± 3.42 b | 1752 ± 7.02 a | 141 ± 1.74 c | 74.1 ± 1.41 d | 29,923 ± 124 a |
3. | green | 110.73 ± 22.46 a | 59.02 ± 14.80 a | 3.62 ± 3.13 abc | 512 ± 313.1 a | 7.25 ± 2.47 b | 33.1 ± 15.91 bcd | 1885 ± 806 ab | 192 ± 63.7 bc | 63.7 ± 54.06 cd | 29,441 ± 7891 a |
4. | oolong | 62.66 ± 1.01 bc | 33.70 ± 1.06 bc | 3.66 ± 0.15 b | 317 ± 0.624 a | 4.40 ± 0.37 c | 8.80 ± 0.41 e | 496 ± 4.51 c | 433 ± 4.08 a | 83.9 ± 0.28 c | 16,752 ± 40.9b |
5. | pu-erh | 48.63 ± 4.90 c | 21.12 ± 1.81 c | 2.74 ± 0.41 c | 219 ± 5.21 a | 13.32 ± 1.31 a | 86.7 ± 68.98 abcd | 1000 ± 12.69 b | 254 ± 14.44 b | 259 ± 36.22 b | 25,382 ± 387 a |
6. | black | 69.36 ± 16.66 bc | 33.02 ± 10.06 bc | 4.92 ± 1.59 a | 286 ± 83.5 a | 4.36 ± 1.60 bc | 21.9 ± 6.28 d | 1660 ± 512 ab | 150 ± 97.47 bcd | 75.1 ± 37.08 cd | 30,362 ± 4196 a |
TP * | AA * | Cu | Mn | Fe | Zn | Mg | Ca | Na | |
---|---|---|---|---|---|---|---|---|---|
AA | 0.9288 * | ||||||||
Cu | −0.1114 | −0.0210 | |||||||
Mn | 0.3813 * | 0.4587 * | 0.4328 * | ||||||
Fe | −0.0044 | 0.0167 | −0.2298 * | 0.0048 | |||||
Zn | 0.0430 | 0.1064 | 0.1491 | 0.2555 * | 0.3534 * | ||||
Mg | 0.7160 * | 0.7472 * | 0.1068 | 0.3859 * | −0.2084 * | 0.2164 * | |||
Ca | −0.3056 * | −0.2755 * | 0.0192 | −0.1283 | 0.3433 * | −0.0800 | −0.5425 * | ||
Na | −0.3183 * | −0.2870 * | 0.0635 | 0.0117 | −0.0341 | 0.2475 * | −0.2268 * | −0.1160 | |
K | 0.4337 * | 0.5158 * | 0.2618 * | 0.5185 * | −0.1839 | 0.2638 * | 0.8652 * | −0.5287 * | −0.0152 |
Type of Tea | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Average Content of Minerals Determined in Tea Groups, RDA *, DDC * and AI * | White | Yellow | Green | Oolong | Pu-Erh | Black | ||||||
Children and Youth 10–18 Years Old | Adults 19–75 Years Old | Children and Youth 10–18 Years Old | Adults 19–75 Years Old | Children and Youth 10–18 Years Old | Adults 19–75 Years Old | Children and Youth 10–18 Years Old | Adults 19–75 Years Old | Children and Youth 10–18 Years Old | Adults 19–75 Years Old | Children and Youth 10–18 Years Old | Adults 19–75 Years Old | |
Cu (mg/L) | 0.05 | 0.05 | 0.05 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 | 0.03 | 0.03 | 0.05 | 0.05 |
RDA | 0.70–0.90 | 0.90 | 0.70–0.90 | 0.90 | 0.70–0.90 | 0.90 | 0.70–0.90 | 0.90 | 0.70–0.90 | 0.90 | 0.70–0.90 | 0.90 |
DDC (%) | 5.56–7.14 | 5.56 | 5.56–7.14 | 5.56 | 4.44–5.71 | 4.44 | 4.44–5.71 | 4.44 | 3.33–4.29 | 3.33 | 5.56–7.14 | 5.56 |
Mn (mg/L) | 4.82 | 4.82 | 2.89 | 2.89 | 5.12 | 5.12 | 3.17 | 3.17 | 2.19 | 2.19 | 2.86 | 2.86 |
AI | 1.5–2.2 | 1.8–2.3 | 1.5–2.2 | 1.8–2.3 | 1.5–2.2 | 1.8–2.3 | 1.5–2.2 | 1.8–2.3 | 1.5–2.2 | 1.8–2.3 | 1.5–2.2 | 1.8–2.3 |
DDC (%) | 219–321 | 210–268 | 131–193 | 126–161 | 233–341 | 223–284 | 144–211 | 138–176 | 100–146 | 95–122 | 130–191 | 124–159 |
Fe (mg/L) | 0.02 | 0.02 | 0.02 | 0.02 | 0.07 | 0.07 | 0.04 | 0.04 | 0.13 | 0.13 | 0.04 | 0.04 |
RDA | 10–15 | 10–18 | 10–15 | 10–18 | 10–15 | 10–18 | 10–15 | 10–18 | 10–15 | 10–18 | 10–15 | 10–18 |
DDC (%) | 0.13–0.20 | 0.11–0.20 | 0.13–0.20 | 0.11–0.20 | 0.47–0.70 | 0.39–0.70 | 0.27–0.40 | 0.22–0.40 | 0.87–1.30 | 0.72–1.30 | 0.27–0.40 | 0.22–0.40 |
Zn (mg/L) | 0.35 | 0.35 | 0.43 | 0.43 | 0.33 | 0.33 | 0.09 | 0.09 | 0.87 | 0.87 | 0.22 | 0.22 |
RDA | 8–11 | 8–11 | 8–11 | 8–11 | 8–11 | 8–11 | 8–11 | 8–11 | 8–11 | 8–11 | 8–11 | 8–11 |
DDC (%) | 3.18–4.38 | 3.18–4.38 | 3.91–5.38 | 3.91–5.38 | 3.00–4.13 | 3.00–4.13 | 0.82–1.13 | 0.82–1.13 | 7.91–10.9 | 7.91–10.9 | 2.00–2.75 | 2.00–2.75 |
Mg (mg/L) | 11.3 | 11.3 | 17.5 | 17.5 | 18.9 | 18.9 | 5.00 | 5.00 | 10.0 | 10.0 | 16.6 | 16.6 |
RDA | 240–410 | 310–420 | 240–410 | 310–420 | 240–410 | 310–420 | 240–410 | 310–420 | 240–410 | 310–420 | 240–410 | 310–420 |
DDC (%) | 2.76–4.71 | 2.69–3.65 | 4.27–7.29 | 4.17–5.65 | 4.61–7.88 | 4.50–6.10 | 1.22–2.08 | 1.19–1.61 | 2.44–4.17 | 2.38–3.23 | 4.05–6.92 | 3.95–5.35 |
Ca(mg/L) | 0.79 | 0.79 | 1.41 | 1.41 | 1.92 | 1.92 | 4.33 | 4.33 | 2.54 | 2.54 | 1.50 | 1.50 |
RDA | 1300 | 1000–1200 | 1300 | 1000–1200 | 1300 | 1000–1200 | 1300 | 1000–1200 | 1300 | 1000–1200 | 1300 | 1000–1200 |
DDC (%) | 0.06 | 0.07–0.08 | 0.11 | 0.12–0.14 | 0.15 | 0.16–0.19 | 0.29 | 0.36–0.43 | 0.20 | 0.21–0.25 | 0.12 | 0.13–0.15 |
Na (mg/L) | 4.68 | 4.68 | 0.74 | 0.74 | 0.64 | 0.64 | 0.84 | 0.84 | 2.59 | 2.59 | 0.75 | 0.75 |
AI | 1300–1500 | 1300–1500 | 1300–1500 | 1300–1500 | 1300–1500 | 1300–1500 | 1300–1500 | 1300–1500 | 1300–1500 | 1300–1500 | 1300–1500 | 1300–1500 |
DDC (%) | 0.31–0.36 | 0.31–0.36 | 0.05–0.06 | 0.05–0.06 | 0.04–0.05 | 0.04–0.05 | 0.056–0.064 | 0.056–0.064 | 0.17–0.20 | 0.17–0.20 | 0.05–0.06 | 0.05–0.06 |
K (mg/L) | 275 | 275 | 299 | 299 | 294 | 294 | 168 | 168 | 254 | 254 | 304 | 304 |
AI | 2400–3500 | 3500 | 2400–3500 | 3500 | 2400–3500 | 3500 | 2400–3500 | 3500 | 2400–3500 | 3500 | 2400–3500 | 3500 |
DDC (%) | 7.86–11.5 | 7.86 | 8.54–12.5 | 8.54 | 8.40—12.3 | 8.40 | 4.80–7.00 | 4.80 | 7.26–10.6 | 7.26 | 8.69–12.7 | 8.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klepacka, J.; Tońska, E.; Rafałowski, R.; Czarnowska-Kujawska, M.; Opara, B. Tea as a Source of Biologically Active Compounds in the Human Diet. Molecules 2021, 26, 1487. https://doi.org/10.3390/molecules26051487
Klepacka J, Tońska E, Rafałowski R, Czarnowska-Kujawska M, Opara B. Tea as a Source of Biologically Active Compounds in the Human Diet. Molecules. 2021; 26(5):1487. https://doi.org/10.3390/molecules26051487
Chicago/Turabian StyleKlepacka, Joanna, Elżbieta Tońska, Ryszard Rafałowski, Marta Czarnowska-Kujawska, and Barbara Opara. 2021. "Tea as a Source of Biologically Active Compounds in the Human Diet" Molecules 26, no. 5: 1487. https://doi.org/10.3390/molecules26051487
APA StyleKlepacka, J., Tońska, E., Rafałowski, R., Czarnowska-Kujawska, M., & Opara, B. (2021). Tea as a Source of Biologically Active Compounds in the Human Diet. Molecules, 26(5), 1487. https://doi.org/10.3390/molecules26051487