Mono- and Di-Pyrene [60]Fullerene and [70]Fullerene Derivatives as Potential Components for Photovoltaic Devices
Abstract
:1. Introduction
2. Results and Discussion
2.1. HOMO and LUMO Energies
2.1.1. Determination of HOMO and LUMO Levels from CV Measurements
2.1.2. Theoretical HOMO and LUMO Frontier Orbitals by PBE and BLYP Functional Calculations
2.1.3. Theoretical vs. Experimental LUMO and HOMO Energies
2.2. Properties of Solar Cells
2.2.1. Current-Voltage Characteristics of Solar Cells
2.2.2. Optical Absorption Spectroscopy
2.2.3. Photoluminescence Spectroscopy
2.2.4. Photocurrent Spectroscopy
2.2.5. Optical Microscopy
3. Materials and Methods
3.1. Reagents
3.2. Synthesis of Malonate Esters
3.3. Synthesis of Methanofullerenes
3.4. Synthesis of Fulleropyrrolidines
3.5. Methods
3.6. Solar Cells Preparation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Li, C.-Z.; Yip, H.-L.; Jen, A.K.-Y. Functional fullerenes for organic photovoltaics. J. Mater. Chem. 2012, 22, 4161–4177. [Google Scholar] [CrossRef]
- Ganesamoorthy, R.; Govindasamy, S.; Sakthivel, P. Review: Fullerene based acceptors for efficient bulk heterojunction organic solar cell applications. Sol. Energy Mater. Sol. Cells 2017, 161, 102–148. [Google Scholar] [CrossRef]
- Kim, H.U.; Kim, J.-H.; Kang, H.; Grimsdale, A.C.; Kim, B.J.; Yoon, S.C.; Hwang, D.-H. Naphthalene-, anthracene-, and pyrene-substituted fullerene derivatives as electron acceptors in polymer-based solar cells. ACS Appl. Mater. Interfaces 2014, 6, 20776–20785. [Google Scholar] [CrossRef]
- Cominetti, A.; Pellegrino, A.; Longo, L.; Po, R.; Tacca, A.; Carbonera, C.; Salvalaggio, M.; Baldrighib, M.; Meille, S.V. Polymer solar cells based on poly(3-hexylthiophene) and fullerene:pyrene acceptor systems. Mater. Chem. Phys. 2015, 159, 46–55. [Google Scholar] [CrossRef]
- Gareis, T.; Köthe, O.; Daub, J. Chromophore-appended C60 and C70 fullerenes: Anthracene and pyrene derivatives—Syntheses, cyclic voltammetry, and spectra. Eur. J. Org. Chem. 1998, 8, 1549–1557. [Google Scholar] [CrossRef]
- Dallas, P.; Rogers, G.; Reid, B.; Taylor, R.A.; Shinohara, H.; Briggs, G.A.D.; Porfyrakis, K. Charge separated states and singlet oxygen generation of mono and bis adducts of C60 and C70. Chem. Phys. 2016, 465–466, 28–39. [Google Scholar] [CrossRef]
- Zaragoza-Galán, G.; Ortíz-Palacios, J.; Valderrama, B.X.; Camacho-Dávila, A.A.; Chávez-Flores, D.; Ramos-Sánchez, V.H.; Rivera, E. Pyrene-fullerene C60 dyads as light-harvesting antennas. Molecules 2014, 19, 352–366. [Google Scholar] [CrossRef]
- Kathiravan, A.; Panneerselvam, M.; Sundaravel, K.; Pavithra, N.; Srinivasan, V.; Anandand, S.; Jaccob, M. Unravelling the effect of anchoring groups on the ground and excited state properties of pyrene using computational and spectroscopic methods. Phys. Chem. Chem. Phys. 2016, 18, 13332–13345. [Google Scholar] [CrossRef]
- Tang, C.; Liu, F.; Xia, Y.-J.; Lin, J.; Xie, L.-H.; Zhong, G.-Y.; Fan, Q.-L.; Huang, W. Fluorene-substituted pyrenes—Novel pyrene derivatives as emitters in non-doped blue OLEDs. Org. Electron. 2006, 7, 155–162. [Google Scholar] [CrossRef]
- Jeong, S.-H.; Lee, K.H.; Lee, J.Y. Dual role of a pyrene derivative as a hole transport material and an emitter in blue fluorescent organic light-emitting diodes. Dye. Pigment. 2019, 171, 107759. [Google Scholar] [CrossRef]
- Xu, J.-Q.; Liu, W.; Liu, S.-Y.; Ling, J.; Mai, J.; Lu, X.; Li, C.-Z.; Jen, A.K.-Y.; Chen, H. A-D-A small molecule donors based on pyrene and diketopyrrolopyrrole for organic solar cells. Sci. China Chem. 2017, 60, 561–569. [Google Scholar] [CrossRef]
- Carati, C.; Gasparini, N.; Righi, S.; Tinti, F.; Fattori, V.; Savoini, A.; Cominetti, A.; Po, R.; Bonoldi, L.; Camaioni, N. Pyrene−fullerene interaction and its effect on the behavior of photovoltaic blends. J. Phys. Chem. C 2016, 120, 6909–6919. [Google Scholar] [CrossRef]
- Alrawashdeh, A.I.; Zhao, Y.; Lagowski, J.B. Conformational analysis of the supramolecular complexation of diaryl-substituted tetrathiafulvalene vinylogues with fullerenes. ACS Omega 2019, 4, 5630–5639. [Google Scholar] [CrossRef]
- Lin, H.; Du, X.; Li, L.; Zheng, C.; Tao, S. Pyrene-imidazole based aggregation modifier leads to enhancement in efficiency and environmental stability for ternary organic solar cells. Front. Chem. 2018, 6, 578. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, C.-Z.; Williams, S.T.; Liu, S.; Zhao, T.; Jen, A.K.-Y. Crystalline co-assemblies of functional fullerenes in methanol with enhanced charge transport. J. Am. Chem. Soc. 2015, 137, 2167–2170. [Google Scholar] [CrossRef] [PubMed]
- Prato, M.; Maggini, M. Fulleropyrrolidines: A family of full-fledged fullerene derivatives. Acc. Chem. Res. 1998, 31, 519–526. [Google Scholar] [CrossRef]
- Bingel, C. Cyclopropanierung von Fullerenen. Chem. Ber. 1993, 126, 1957–1959. [Google Scholar] [CrossRef]
- Beu, T.A.; Onoe, J.; Hida, A. First-principles calculations of the electronic structure of one-dimensional C60 polymers. Phys. Rev. 2005, B72, 155416. [Google Scholar] [CrossRef]
- Benallal, R.; Boughrraf, H.; Sahdane, T.; Essassi, E.M.; Kabouchi, B. Theoretical and experimental investigations of structural and electronic properties of 1-Benzyl-3-methyl-quinoxalin-2(1H)-one molecule. J. Mater. Environ. Sci. 2017, 8, 4657–4662. [Google Scholar]
- Reiss, H.; Heller, A. The absolute potential of the standard hydrogen electrode: A new estimate. J. Phys. Chem. 1985, 89, 4207–4213. [Google Scholar] [CrossRef]
- Gaspar, H.; Figueira, F.; Strutyński, K.; Melle-Franco, M.; Ivanou, D.; Tomé, J.P.C.; Pereira, C.M.; Pereira, L.; Mendes, A.; Viana, J.C.; et al. Thiophene- and carbazole-substituted n-methyl-fulleropyrrolidine acceptors in PffBT4T-2OD based solar cells. Materials 2020, 13, 1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Li, X.-D. Effect of the position of substitution on the electronic properties of nitrophenyl derivatives of fulleropyrrolidines: Fundamental understanding toward raising LUMO energy of fullerene electron-acceptor. Chin. Chem. Lett. 2014, 25, 501–504. [Google Scholar] [CrossRef]
- Berger, P.R.; Kim, M. Polymer solar cells: P3HT:PCBM and beyond. J. Renew. Sustain. Energy 2018, 10, 013508. [Google Scholar] [CrossRef]
- He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yang, Y.; Xiao, S.; Wang, C.; Russell, T.P.; Cao, Y. Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photonics 2015, 9, 174–179. [Google Scholar] [CrossRef]
- Dang, M.T.; Hirsch, L.; Wantz, G. P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 2011, 23, 3597–3602. [Google Scholar] [CrossRef]
- Kumar, A.; Baccoli, R.; Fais, A.; Cincott, A.; Pilia, L.; Gatto, G. Substitution effects on the optoelectronic properties of coumarin derivatives. Appl. Sci. 2020, 10, 144. [Google Scholar] [CrossRef] [Green Version]
- Peverati, R.; Truhlar, D.G. Quest for a universal densityfunctional: The accuracy ofdensity functionals across abroad spectrum of databasesin chemistry and physics. Phil. Trans. R. Soc. A 2014, 372, 20120476. [Google Scholar] [CrossRef] [PubMed]
- Mohajeri, A.; Omidvara, A. Fullerene-based materials for solar cell applications: Design of novel acceptors for efficient polymer solar cells—A DFT study. Phys. Chem. Chem. Phys. 2015, 17, 22367–22376. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Hu, Z.; Jiang, Y.; He, X.; Sun, Z.; Sun, H. Benchmark study of ionization potentials and electron affinities of armchair single-walled carbon nanotubes using density functional theory. J. Phys. 2018, 30, 215501. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; He, Y.; Li, Y.; Su, H. Photophysical and electronic properties of five PCBM-like C 60 derivatives: Spectral and quantum chemical view. J. Phys. Chem. A 2012, 116, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-J.; Yang, W.-W.; Gao, X. A room-temperature fluorescence study of organofullerenes: Cis-1 bisadduct with unusual blue-shifted emissions. J. Phys. Chem. A 2011, 115, 6432–6437. [Google Scholar] [CrossRef] [PubMed]
- Bredas, J.-L. Organic electronics: Does a plot of the HOMO–LUMO wave functions provide useful information? Chem. Mater. 2017, 29, 477–478. [Google Scholar] [CrossRef]
- Peverati, R.; Truhlar, D.G. Communication: A global hybrid generalized gradient approximation to the exchange-correlation functional that satisfies the second-order density-gradient constraint and has broad applicability in chemistry. J. Chem. Phys. 2011, 135, 191102. [Google Scholar] [CrossRef]
- Rostami, Z.; Hosseinian, A.; Monfared, A. DFT results against experimental data for electronic properties of C 60 and C 70 fullerene derivatives. J. Mol. Graph. Model. 2018, 81, 60–67. [Google Scholar] [CrossRef]
- Cowan, S.R.; Roy, A.; Heeger, A. Recombination in polymer-fullerene bulk heterojunction solar cells. J. Phys. Rev. B 2010, 82, 245207. [Google Scholar] [CrossRef] [Green Version]
- Dennler, G.; Scharber, M.C.; Brabec, C.J. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 2009, 21, 1323–1338. [Google Scholar] [CrossRef]
- Castro, E.; Artigas, A.; Pla-Quintana, A.; Roglans, A.; Liu, F.; Perez, F.; Lledó, A.; Zhu, X.-Y.; Echegoyen, L. Enhanced open-circuit voltage in perovskite solar cells with open-cage [60]fullerene derivatives as electron-transporting materials. Materials 2019, 12, 1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, C.-F.; Wang, S.-S.; Tang, S.-J.; Wang, J.-S.; Chiu, K.-C. Physica B: Condensed matter. Phys. B Condens. Matter 2010, 405, 3761–3765. [Google Scholar] [CrossRef]
- Sibley, S.P.; Argentine, S.M.; Francis, A.H. A photoluminescence study of C60 and C70. Chem. Phys. Lett. 1992, 188, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Korona, K.P.; Korona, T.; Rutkowska-Zbik, D.; Grankowska, S.; Iwan, A.; Kamińska, M. Polyazomethine as a component of solar cells-theoretical and optical study. J. Phys. Chem. Solids 2015, 86, 186–193. [Google Scholar] [CrossRef]
- De la Torre, M.D.L.; Tomé, A.C.; Silva, A.M.S.; Cavaleiro, J.A.S. Synthesis of [60]fullerene–quercetin dyads. Tetrahedron Lett. 2002, 43, 4617–4620. [Google Scholar] [CrossRef]
- Nierengarten, J.-F.; Gramlich, V.; Cardullo, F.; Diedrich, F. Regio- and diastereoselective bisfunctionalization of C60 and enantioselective synthesis of a C60 derivative with a chiral addition pattern. Angew. Chem. Int. Ed. 1996, 35, 2101–2103. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Revision A.03; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Fullerene Derivative | LUMO (eV) | HOMO (eV) | Eg (eV) |
---|---|---|---|
[C60]P1 | −3.88 | −5.36 | 1.48 |
[C60]B1 | −3.89 | −5.56 | 1.67 |
[C60]B2 | −3.95 | −5.67 | 1.72 |
[C70]P1 | −3.85 | −5.49 | 1.64 |
[C70]B1 | −3.83 | −5.58 | 1.75 |
[C70]B2 | −3.86 | −5.57 | 1.71 |
Sample | VOC (V) | JSC (mA/cm2) | FF (%) | Rs (Ω·cm2) | Rsh (Ω·cm2) | Max PCE (%) | Av. PCE (%) |
---|---|---|---|---|---|---|---|
PTB7:PC60BM (CB) | 0.696 | 9.28 | 55.6 | 5.24 | 581 | 3.59 | 3.31 |
PTB7:PC60BM (CS2) | 0.725 | 5.24 | 60.4 | 4.37 | 681 | 2.30 | 2.04 |
PTB7:[C60]P1 (CS2) | 0.306 | 0.29 | 20.9 | 610 | 785 | 0.018 | 0.011 |
PTB7:[C60]B1 (CS2) | 0.697 | 2.62 | 41.0 | 32.7 | 485 | 0.75 | 0.45 |
PTB7:PC70BM (CB) | 0.711 | 11.5 | 56.4 | 5.45 | 501 | 4.59 | 3.95 |
PTB7:PC70BM (CS2) | 0.733 | 5.91 | 57.5 | 4.38 | 468 | 2.49 | 2.28 |
PTB7:[C70]P1 (CS2) | 0.225 | 0.09 | 33.5 | 23.3 | 3220 | 0.007 | 0.004 |
PTB7:[C70]B1 (CS2) | 0.713 | 2.49 | 50.7 | 26.9 | 724 | 0.90 | 0.83 |
PTB7:[C70]B2 (CS2) | 0.433 | 0.34 | 28.6 | 98.2 | 1370 | 0.043 | 0.037 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piotrowski, P.; Mech, W.; Zarębska, K.; Krajewski, M.; Korona, K.P.; Kamińska, M.; Skompska, M.; Kaim, A. Mono- and Di-Pyrene [60]Fullerene and [70]Fullerene Derivatives as Potential Components for Photovoltaic Devices. Molecules 2021, 26, 1561. https://doi.org/10.3390/molecules26061561
Piotrowski P, Mech W, Zarębska K, Krajewski M, Korona KP, Kamińska M, Skompska M, Kaim A. Mono- and Di-Pyrene [60]Fullerene and [70]Fullerene Derivatives as Potential Components for Photovoltaic Devices. Molecules. 2021; 26(6):1561. https://doi.org/10.3390/molecules26061561
Chicago/Turabian StylePiotrowski, Piotr, Wojciech Mech, Kamila Zarębska, Maciej Krajewski, Krzysztof P. Korona, Maria Kamińska, Magdalena Skompska, and Andrzej Kaim. 2021. "Mono- and Di-Pyrene [60]Fullerene and [70]Fullerene Derivatives as Potential Components for Photovoltaic Devices" Molecules 26, no. 6: 1561. https://doi.org/10.3390/molecules26061561
APA StylePiotrowski, P., Mech, W., Zarębska, K., Krajewski, M., Korona, K. P., Kamińska, M., Skompska, M., & Kaim, A. (2021). Mono- and Di-Pyrene [60]Fullerene and [70]Fullerene Derivatives as Potential Components for Photovoltaic Devices. Molecules, 26(6), 1561. https://doi.org/10.3390/molecules26061561