Dinuclear Lanthanide(III) Complexes from the Use of Methyl 2-Pyridyl Ketoxime: Synthetic, Structural, and Physical Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthetic Comments
2.2. Description of Structures
2.3. Characterization of Selected Complexes
3. Experimental Section
3.1. Materials, Physical and Spectroscopic Measurements
3.2. Synthesis of the Representative Complex [Nd2(O2CMe)4(NO3)2(mepaoH)2] (1)
3.3. Syntheses of the Complexes [Eu2(O2CMe)4(NO3)2(mepaoH)2] (2), [Gd2(O2CMe)4(NO3)2(mepaoH)2] (3), [Tb2(O2CMe)4(NO3)2(mepaoH)2] (4) and [Dy2(O2CMe)4(NO3)2(mepaoH)2] (5)
3.4. Synthesis of [Dy2(O2CMe)6(mepaoH)2] (6)
3.5. Conversion of 6 to 5
3.6. Single-Crystal X-ray Crystallography
4. Concluding Comments and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gerasimchuk, N. Recent Advances in Chemistry and Applications of Oximes and their Metal Complexes: Parts I and II. Curr. Inorg. Chem. 2015, 5, 82. [Google Scholar] [CrossRef]
- Tschugaeff, L. Ueber ein neues, empfindliches reagens auf nickel. Ber. Dtsch. Chem. 1905, 38, 2520–2522. [Google Scholar] [CrossRef] [Green Version]
- Thorpe, J.M.; Beddoes, R.L.; Collison, D.; Garner, C.D.; Helliwell, M.; Holmes, J.M.; Tasker, P.A. Surface coordination chemistry. Corrosion inhibition by tetranuclear cluster formation of iron with salicyladoxime. Angew. Chem. Int. Ed. 1999, 38, 1119–1121. [Google Scholar] [CrossRef]
- Tasker, P.A.; Tong, C.C.; Westra, A.N. Co-extraction of cations and anions in base metal recovery. Coord. Chem. Rev. 2007, 251, 1868–1877. [Google Scholar] [CrossRef]
- Gerasimchuk, N. Chemistry and applications of cyanoximes and their metal complexes. Dalton Trans. 2019, 48, 7985–8013. [Google Scholar] [CrossRef] [PubMed]
- Gerasimchuk, N.; Maher, T.; Durham, P.; Domasevitch, K.V.; Wilking, J.; Mokhir, A. Tin(IV) Cyanoximates: Synthesis, Characterization, and Cytotoxicity. Inorg. Chem. 2007, 46, 7268–7284. [Google Scholar] [CrossRef]
- Pettenuzzo, A.; Pigot, R.; Ronconi, L. Vitamin B12-Metal Conjugates for Targeted Chemotherapy and Diagnosis: Current Status and Future Prospects. Eur. J. Inorg. Chem. 2017, 2017, 1625–1638. [Google Scholar] [CrossRef] [Green Version]
- Perlepe, P.S.; Maniaki, D.; Pilichos, E.; Katsoulakou, E.; Perlepes, S.P. Smart Ligands for Efficient 3d-, 4d- and 5d-Metal Single-Molecule Magnets and Single-Ion Magnets. Inorganics 2020, 8, 39. [Google Scholar] [CrossRef]
- Chaudhuri, P. Homo- and hetero-polymetallic exchange coupled metal-oximates. Coord. Chem. Rev. 2003, 243, 143–190. [Google Scholar] [CrossRef]
- Yang, C.-I.; Zhang, Z.-Z.; Lin, S.-B. A review of manganese-based molecular magnets and supramolecular architectures from phenolic oximes. Coord. Chem. Rev. 2015, 289–290, 289–314. [Google Scholar] [CrossRef]
- Milios, C.J.; Inglis, R.; Vinslava, A.; Bagai, R.; Wernsdorfer, W.; Parsons, S.; Perlepes, S.P.; Christou, G.; Brechin, E.K. Toward a Magnetostructural Correlation for a Family of Mn6 SMMs. J. Am. Chem. Soc. 2007, 129, 12505–12511. [Google Scholar] [CrossRef]
- Alonso, D.A.; Nájera, C. Oxime-derived palladacycles as source of palladium nanoparticles. Chem. Soc. Rev. 2010, 39, 2891–2902. [Google Scholar] [CrossRef] [PubMed]
- Kopylovich, M.N.; Kukushkin, V.Y.; Haukka, M.; Fráusto da Silva, J.J.R.; Pombeiro, A.J.L. Zinc(II)/Ketoxime System as a Simple and Efficient Catalyst for Hydrolysis of Organonitriles. Inorg. Chem. 2002, 41, 4798–4804. [Google Scholar] [CrossRef] [PubMed]
- Kukushkin, V.Y.; Pombeiro, A.J.L. Oxime and oximate metal complexes: Unconventional synthesis and reactivity. Coord. Chem. Rev. 1999, 181, 147–175. [Google Scholar] [CrossRef]
- Garnovskii, D.A.; Kukushkin, V.Y. Metal-mediated reactions of oximes. Russ. Chem. Rev. 2006, 75, 111–124. [Google Scholar] [CrossRef]
- Bolotin, D.S.; Bokach, N.A.; Demakova, M.Y.; Kukushkin, V.Y. Metal-Involving Synthesis and Reaction of Oximes. Chem. Rev. 2017, 17, 13039–13122. [Google Scholar] [CrossRef]
- Milios, C.J.; Stamatatos, T.C.; Perlepes, S.P. The coordination chemistry of pyridyl oximes. Polyhderon 2006, 25, 134–194. [Google Scholar] [CrossRef]
- Polyzou, C.D.; Nikolaou, H.; Papatriantafyllopoulou, C.; Psycharis, V.; Terzis, A.; Raptopoulou, C.P.; Escuer, A.; Perlepes, S.P. Employment of methyl 2-pyridyl Ketone oxime in 3d/4f-metal chemistry: Dinuclear nickel(II)/lanthanide(III) species and complexes containing the metals in separate ions. Dalton Trans. 2012, 41, 13755–13764. [Google Scholar] [CrossRef]
- Anastasiadis, N.C.; Polyzou, C.D.; Kostakis, G.E.; Bekiari, V.; Lan, Y.; Perlepes, S.P.; Konidaris, K.F.; Powell, A.K. Dinuclear lanthanide(III)/zinc(II) complexes with methyl 2-pyridyl ketone oxime. Dalton Trans. 2015, 44, 19791–19795. [Google Scholar] [CrossRef] [Green Version]
- Polyzou, C.D.; Koumousi, E.S.; Lada, Z.G.; Raptopoulou, C.P.; Psycharis, V.; Rouzières, M.; Tsipis, A.C.; Mathonière, C.; Clérac, R.; Perlepes, S.P. “Switching on” the single-molecule magnet properties within a series of dinuclear cobalt(III)-dysprosium(III) 2-pyridyloximate complexes. Dalton Trans. 2017, 46, 14812–14825. [Google Scholar] [CrossRef] [PubMed]
- Tsantis, S.T.; Zagoraiou, E.; Savvidou, A.; Raptopoulou, C.P.; Psycharis, V.; Szyrwiel, L.; Holyńska, M.; Perlepes, S.P. Binding of oxime group to uranyl ion. Dalton Trans. 2016, 45, 9307–9319. [Google Scholar] [CrossRef]
- Stamatatos, T.C.; Foguet-Albiol, D.; Lee, S.-C.; Stoumpos, C.C.; Raptopoulou, C.P.; Terzis, A.; Wernsdorfer, W.; Hill, S.O.; Perlepes, S.P.; Christou, G. “Switching On” the Properties of Single-Molecule Magnetism in Triangular Manganese(III) Complexes. J. Am. Chem. Soc. 2007, 129, 9484–9499. [Google Scholar] [CrossRef] [PubMed]
- Konidaris, K.F.; Bekiari, V.; Katsoulakou, E.; Raptopoulou, C.P.; Psycharis, V.; Manessi-Zoupa, E.; Kostakis, G.E.; Perlepes, S.P. Investigation of the zinc(II)-benzoate-2-pyridylaldoxime reaction system. Dalton Trans. 2012, 41, 3797–3806. [Google Scholar] [CrossRef] [PubMed]
- Stamatatos, T.C.; Katsoulakou, E.; Terzis, A.; Raptopoulou, C.P.; Winpenny, R.E.P.; Perlepes, S.P. A family of mononuclear CoIII/2-pyridyloximate complexes and their conversion to trinuclear, mixed-valence linear CoII/III3 clusters. Polyhedron 2009, 28, 1638–1645. [Google Scholar] [CrossRef]
- Stamatatos, T.C.; Escuer, A.; Abboud, K.A.; Raptopoulou, C.P.; Perlepes, S.P.; Christou, G. Unusual Structural Types in Nickel Cluster Chemistry from the Use of Pyridyl Oximes: Ni5, Ni12Na2 and Ni14 Clusters. Inorg. Chem. 2008, 47, 11825–11838. [Google Scholar] [CrossRef]
- Anastasiadis, N.C.; Lada, Z.G.; Polyzou, C.D.; Raptopoulou, C.P.; Psycharis, V.; Konidaris, K.F.; Perlepes, S.P. Synthetic strategies to {CoIII2Ln} complexes based on 2-pyridyl oximes (Ln = lanthanide). Inorg. Chem. Commun. 2019, 108, 104478. [Google Scholar] [CrossRef]
- Tzani, S.; Lazarou, K.N.; Stoumpos, C.C.; Pissas, M.; Psycharis, V.; Sanakis, Y.; Raptopoulou, C.P. Iron (III) complexes with 2-pyridyl oxime ligands: Synthesis, structural and spectroscopic characterization, and magnetic studies. ChemistrySelect 2016, 2, 147–156. [Google Scholar] [CrossRef]
- Konidaris, K.F.; Polyzou, C.D.; Kostakis, G.E.; Tasiopoulos, A.J.; Roubeau, O.; Teat, S.J.; Manessi-Zoupa, E.; Powell, A.K.; Perlepes, S.P. Metal ion-assisted transformations of 2-pyridinealdoxime and hexafluorophosphate. Dalton Trans. 2012, 41, 2862–2865. [Google Scholar] [CrossRef]
- Milios, C.J.; Kefalloniti, E.; Raptopoulou, C.P.; Terzis, A.; Escuer, A.; Vicente, R.; Perlepes, S.P. 2-pyridinealdoxime [(py)CHNOH] in manganese(II) carboxylate chemistry: Mononuclear, dinuclear, tetranuclear and polymeric complexes, and partial transformation of (py)CHNOH to picolinate(-1). Polyhedron 2004, 23, 83–95. [Google Scholar] [CrossRef]
- Tsantis, S.T.; Bekiari, V.; Tzimopoulos, D.I.; Raptopoulou, C.P.; Psycharis, V.; Tsipis, A.; Perlepes, S.P. Reactivity of Coordinated 2-Pyridyl Oximes: Synthesis, Structure, Spectroscopic Characterization and Theroretical Studies of Dichlorodi{(2-pyridyl)Furoxan}Zinc(II) Obtained from the Reaction between Zinc(II) Nitrate and Pyridine-2-Chloroxime. Inorganics 2020, 8, 47. [Google Scholar] [CrossRef]
- Mazarakioti, E.C.; Soto Beobide, A.; Angelidou, V.; Eftymiou, C.G.; Terzis, A.; Psycharis, V.; Voyiatzis, G.A.; Perlepes, S.P. Modeling the Solvent Extraction of Cadmium(II) from Aqueous Chloride Solutions by 2-pyridyl Ketoximes: A Coordination Chemistry Approach. Molecules 2019, 24, 2219. [Google Scholar] [CrossRef] [Green Version]
- Danelli, P.; Lada, Z.G.; Raptopoulou, C.P.; Psycharis, V.; Stamatatos, T.C.; Perlepes, S.P. Doubly Thiocyanato(S,N)-Bridged Dinuclear Complexes of Mercury(II) from the Use of 2-pyridyl Oximes as Capping Ligands. Current Inorg. Chem. 2015, 5, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Yang, H. Trichloridotris{N-[phenyl(pyridin-2-yl)methylidene]hydroxylamine-k2N,N’}neodymium(III). Acta Crystallogr. Sect. E 2012, 68, m578–m579. [Google Scholar] [CrossRef] [Green Version]
- Lei, T.; Chen, W.; Chen, Y.; Hu, B.; Li, Y. Trichloridotris{N-[phenyl(pyridin-2-yl)methylidene]hydroxylamine-k2N,N’}samarium(III). Acta Crystallogr. Sect. E 2012, 68, m344–m345. [Google Scholar] [CrossRef] [PubMed]
- Maniaki, D.; Perlepes, S.P.; Pilichos, E.; Christodoulou, S.; Rouzières, M.; Dechambenoit, P.; Clérac, R.; Perlepes, S.P. Asymmetric Dinuclear Lanthanide(III) Complexes from the Use of a Ligand Derived from 2-Acetylpyridine and Picolinohydrazide: Synthetic, Structural and Magnetic Studies. Molecules 2020, 25, 3153. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadis, N.C.; Granadeiro, C.M.; Mayans, J.; Raptopoulou, C.P.; Bekiari, V.; Cunha-Silva, L.; Psycharis, V.; Escuer, A.; Balula, S.S.; Konidaris, K.F.; et al. Multifunctionality in Two Families of Dinuclear Lanthanide(III) Complexes with a Tridentate Schiff-Base Ligand. Inorg. Chem. 2019, 58, 9581–9585. [Google Scholar] [CrossRef] [PubMed]
- Pilichos, E.; Mylonas-Margaritis, I.; Kontos, A.P.; Psycharis, V.; Klouras, N.; Raptopoulou, C.P.; Perlepes, S.P. Coordination and metal ion-mediated transformation of a polydentate ligand containing oxime, hydrazone and picolinoyl functionalities. Inorg. Chem. Commun. 2018, 94, 48–52. [Google Scholar] [CrossRef]
- Mylonas-Margaritis, I.; Mayans, J.; Sakellakou, S.-M.; Raptopoulou, C.P.; Psycharis, V.; Escuer, A.; Perlepes, S.P. Using the Singly Deprotonated Triethanolamine to Prepare Dinuclear Lanthanide(III) Complexes: Synthesis, Structural Characterization and Magnetic Studies. Magnetochemistry 2017, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Anastasiadis, N.C.; Mylonas-Margaritis, I.; Psycharis, V.; Raptopoulou, C.P.; Kalofolias, D.A.; Milios, C.J.; Klouras, N.; Perlepes, S.P. Dinuclear, tetrakis(acetato)-bridged lanthanide(III) complexes from the use of 2-acetylpyridine hydrazone. Inorg. Chem. Commun. 2015, 51, 99–102. [Google Scholar] [CrossRef]
- Anastasiadis, N.C.; Kalofolias, D.A.; Philippidis, A.; Tzani, S.; Raptopoulou, C.P.; Psycharis, V.; Milios, C.J.; Escuer, A.; Perlepes, S.P. A family of dinuclear lanthanide(III) complexes from the use of a tridentate Schiff base. Dalton Trans. 2015, 44, 10200–10209. [Google Scholar] [CrossRef]
- Nikolaou, H.; Terzis, A.; Raptopoulou, C.P.; Psycharis, V.; Bekiari, V.; Perlepes, S.P. Unique Dinuclear, Tetrakis(nitrato-O,O’)-Bridged Lanthanide(III) Complexes from the Use of Pyridine-2-Amidoxime: Synthesis, Structural Studies and Spectroscopic Characterization. J. Surf. Interfac. Mater. 2014, 2, 311–318. [Google Scholar] [CrossRef]
- Anastasiadis, N.C.; Granadeiro, C.M.; Klouras, N.; Cunha-Silva, L.; Raptopoulou, C.P.; Psycharis, V.; Bekiari, V.; Balula, S.S.; Escuer, A.; Perlepes, S.P. Dinuclear Lanthanide(III) Complexes by Metal-Ion Assisted Hydration of Di-2-pyridyl Ketone Azine. Inorg. Chem. 2013, 52, 4145–4147. [Google Scholar] [CrossRef]
- Bekiari, V.; Thiakou, K.A.; Raptopoulou, C.P.; Perlepes, S.P.; Lianos, P. Structure and photophysical behavior of 2,2′-bipyrimidine/lanthanide ion complexes in various environments. J. Lumin. 2008, 128, 481–488. [Google Scholar] [CrossRef]
- Messimeri, A.; Papadimitriou, C.; Raptopoulou, C.P.; Escuer, A.; Perlepes, S.P.; Boudalis, A.K. The benzoate/nitrate, 2,2′:6′,2′’-terpyridine “blend” in lanthanide(III) chemistry: Relevance to the separation of lanthanides and actinides by solvent extraction. Inorg. Chem. Commun. 2007, 10, 800–804. [Google Scholar] [CrossRef]
- Jia, J.-H.; Li, Q.-W.; Chen, Y.-C.; Liu, J.L.; Tong, M.-L. Luminescent single-molecule magnets based on lanthanides: Design strategies, recent advances and magneto-luminescent studies. Coord. Chem. Rev. 2019, 378, 365–381. [Google Scholar] [CrossRef]
- Long, J.; Guari, Y.; Ferreira, R.A.S.; Carlos, L.D.; Larionova, J. Recent advances in luminescent lanthanide based Single-Molecule Magnets. Coord. Chem. Rev. 2018, 363, 57–70. [Google Scholar] [CrossRef]
- Habib, F.; Murugesu, M. Lessons learned from dinuclear lanthanide nano-magnets. Chem. Soc. Rev. 2013, 42, 3278–3288. [Google Scholar] [CrossRef] [Green Version]
- March, J. Advanced Organic Chemistry, 4th ed.; Wiley: New York, NY, USA, 1992; pp. 887–888. [Google Scholar]
- Moorthy, J.N.; Singhal, N. Facile and Highly Selective Conversion of Nitriles to Amides via Indirect Acid-Catalyzed Hydration Using TFA or AcOH-H2SO4. J. Org. Chem. 2005, 70, 1926–1929. [Google Scholar] [CrossRef]
- Constable, E.C. Metals and Ligand Reactivity; VCH: Weinheim, Germany, 1996; pp. 65–72. [Google Scholar]
- Raptopoulou, C.P.; Boudalis, A.K.; Sanakis, Y.; Psycharis, V.; Clemente-Juan, J.M.; Fardis, M.; Diamantopoulos, G.; Papavassiliou, G. Hexanuclear Iron(III) Salicylaldoximato Complexes Presenting the [Fe6(μ3-O)2(μ-OR)2]12+ Core: Syntheses, Crystal Structures, and Spectroscopic and Magnetic Characterization. Inorg. Chem. 2006, 45, 2317–2326. [Google Scholar] [CrossRef]
- Erxleben, A.; Mutikainen, I.; Lippert, B. Conversion of Acetonitrile into Acetamide in the Coordination Spheres of cis- and trans-MII(amine)2 (M = Pt or Pd). Solution and Crystal Structural Studies. J. Chem. Soc. Dalton Trans. 1994, 3667–3675. [Google Scholar] [CrossRef]
- Kukushkin, V.Y.; Pombeiro, A.J.L. Additions to Metal-Activated Organonitriles. Chem. Rev. 2002, 102, 1771–1802. [Google Scholar] [CrossRef]
- Zhou, X.; Peng, J.-L.; Wen, C.-Y.; Liu, Z.-Y.; Wang, X.-H.; Wu, J.-Z.; Ou, Y.-C. Tuning the structure and Zn(II) sensing of lanthanide complexes with two phenylimidazophenanthrolines by acetonitrile hydrolysis. Cryst. Eng. Commun. 2017, 19, 6533–6539. [Google Scholar] [CrossRef]
- Coxall, R.A.; Harris, S.G.; Henderson, D.K.; Parsons, S.; Tasker, P.A.; Winpenny, R.E.P. Inter-ligand reactions: In situ formation of new polydentate ligands. J. Chem. Soc. Dalton Trans. 2000, 2349–2356. [Google Scholar] [CrossRef]
- Niu, S.; Yang, Z.; Yang, Q.; Yang, B.; Chao, J.; Yang, G.; Shen, E.Z. Structure and magnetism of tetra acetate bridged binuclear NdIII complex. Polyhedron 1997, 16, 1629–1635. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.; Bo, L.; Zhu, T.; Yang, X.; Zhang, L.; Jiang, D.; Chen, H.; Huang, S. Synthesis, crystal structures and NIR luminescence properties of binuclear lanthanide Schiff Base complexes. Inorg. Chem. Commun. 2017, 85, 52–55. [Google Scholar] [CrossRef]
- Guo, M.; Xu, Y.; Wu, J.; Zhao, L.; Tang, J. Geometry and magnetic interaction modulations in dinuclear Dy2 single-molecule magnets. Dalton Trans. 2017, 46, 8252–8258. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-B.; Chen, Y.-C.; Liu, J.-L.; Jia, J.-H.; Wang, L.-F.; Li, Q.-W.; Tong, M.-L. A Piezochromic Dysprosium(III) Single-Molecule Magnet Based on an Aggregation-Induced-Emission-Active Tetraphenylethene Derivative Ligand. Inorg. Chem. 2017, 56, 8730–8734. [Google Scholar] [CrossRef] [PubMed]
- She, S.; Su, G.; Wang, B.; Lei, Q.; Yang, Y.; Gong, L.; Liu, B. Two dysprosium(III) based single-molecule magnets derived from the phen (phen = 1,10-phenathroline) ligand and different anion ions act as bridging groups. Eur. J. Inorg. Chem. 2017, 2406–2410. [Google Scholar] [CrossRef]
- Maniaki, D.; Mylonas-Margaritis, I.; Mayans, J.; Savvidou, A.; Raptopoulou, C.P.; Bekiari, V.; Psycharis, V.; Escuer, A.; Perlepes, S.P. Slow magnetic relaxation and luminescence properties in lanthanide(III)/anil complexes. Dalton Tans. 2018, 47, 11859–11872. [Google Scholar] [CrossRef]
- Mylonas-Margaritis, I.; Maniaki, D.; Mayans, J.; Ciammaruchi, L.; Bekiari, V.; Raptopoulou, C.P.; Psycharis, V.; Christodoulou, S.; Escuer, A.; Perlepes, S.P. Mononuclear Lanthanide(III)-Salicylideneaniline Complexes: Synthetic, Structural, Spectroscopic, and Magnetic Studies. Magnetochemistry 2018, 4, 45. [Google Scholar] [CrossRef] [Green Version]
- Llunell, M.; Casanova, D.; Girera, J.; Alemany, P.; Alvaréz, S. SHAPE, Continuous Shape Measures Calculation; Version 2.0; Universitat de Barcelona: Barcelona, Spain, 2010. [Google Scholar]
- Panagiotopoulos, A.; Zafiropoulos, T.F.; Perlepes, S.P.; Bakalbassis, E.; Masson-Ramade, I.; Kahn, A.; Terzis, A.; Raptopoulou, C.P. Molecular Structure and Magnetic Properties of Acetato-Bridged Lanthanide(III) Dimers. Inorg. Chem. 1995, 34, 4918–4920. [Google Scholar] [CrossRef]
- Liu, W.-J.; Li, Z.-Y.; Wei, Z.-Q.; Yue, S.-T. Tetra-μ-acetato-k4O:O’;k3O,O’:O’;k3O:O,O’-bis[(acetato-k2O,O’)(1,10-phenathroline-k2N,N’)europium(III)]. Acta Crystallogr. Sect. E 2020, 66, m606. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Li, B.; Qin, Y.; Liu, L.; Chen, Z. Synthesis, Structure, and Magnetic Properties of a Series of Dinuclear Lanthanide Complexes Assembled by Acetate and a Schiff Base Ligand. Z. Anorg. Allg. Chem. 2016, 642, 521–526. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed.; Wiley: New York, NY, USA, 1986; pp. 254–257. [Google Scholar]
- Bünzli, J.-C.G. On the design of highly luminescent lanthanide complexes. Coord. Chem. Rev. 2015, 293–294, 19–47. [Google Scholar] [CrossRef]
- Armelao, L.; Quici, S.; Barigelletti, F.; Accorsi, G.; Bottaro, G.; Cavazzini, M.; Tondello, E. Design of luminescent lanthanide complexes: From molecules to highly efficient photo-emitting materials. Coord. Chem. Rev. 2010, 254, 487–505. [Google Scholar] [CrossRef]
- de Bettencourt-Dias, A. Editorial for the Virtual Issue on Photochemistry and Photophysics of Lanthanide Compounds. Inorg. Chem. 2016, 55, 3199–3202. [Google Scholar] [CrossRef] [Green Version]
- Marin, R.; Brunet, G.; Muregesu, M. Shining new light on multifunctional lanthanide single-molecule magnets. Angew. Chem. Int. Ed. 2021, 60, 1728–1746. [Google Scholar] [CrossRef] [PubMed]
- Thiakou, K.; Bekiari, V.; Raptopoulou, C.P.; Psycharis, V.; Lianos, P.; Perlepes, S.P. Dinuclear lanthanide(III) complexes from the use of di-2-pyridyl ketone: Preparation, structural characterization and spectroscopic studies. Polyhedron 2006, 25, 2869–2879. [Google Scholar] [CrossRef]
- Aguilà, D.; Barrios, L.A.; Velasco, V.; Roubeau, O.; Repollés, A.; Alonso, P.J.; Sesé, J.; Teat, S.J.; Luis, F.; Aromi, G. Heterodimetallic [LnLn’] Lanthanide Complexes: Toward a Chemical Design of Two-Qubit Molecular Spin Quantum Gates. J. Am. Chem. Soc. 2014, 136, 14215–14222. [Google Scholar] [CrossRef] [Green Version]
- Langley, S.K.; Vignesh, K.R.; Gupta, T.; Gartshore, C.J.; Rajaraman, G.; Forsyth, C.M.; Murray, K.S. New examples of triangular terbium(III) and holmium(III) and hexagonal dysprosium(III) single molecule toroics. Dalton Trans. 2019, 48, 15657–15667. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-L.; Chen, Y.-C.; Guo, F.-S.; Tong, M.-L. Recent advances in the design of magnetic molecules for use as cryogenic magnetic coolants. Coord. Chem. Rev. 2014, 281, 26–49. [Google Scholar] [CrossRef]
- Woodruff, D.N.; Winpenny, R.E.P.; Layfield, R.A. Lanthanide Single-Molecule Magnets. Chem. Rev. 2013, 113, 5110–5148. [Google Scholar] [CrossRef]
- Cador, O.; Le Guennic, B.; Pointillart, F. Electro-activity and magnetic switching in lanthanide-based single-molecule magnets. Inorg. Chem. Front. 2019, 6, 3398–3417. [Google Scholar] [CrossRef] [Green Version]
- Harriman, K.L.M.; Errulat, D.; Murugesu, M. Magnetic Axiality: Design Principles from Molecules to Materials. Trends Chem. 2019, 1, 425–439. [Google Scholar] [CrossRef]
- Zhu, Z.; Guo, M.; Li, X.-L.; Tang, J. Molecular magnetism of lanthanide: Advances and perspectives. Coord. Chem. Rev. 2019, 378, 350–364. [Google Scholar] [CrossRef]
- Liddle, S.T.; van Slageren, J. Improving f-element single-molecule magnets. Chem. Soc. Rev. 2015, 44, 6655–6669. [Google Scholar] [CrossRef] [Green Version]
- Ungur, L.; Chibotaru, L.F. Strategies toward High-Temperature Lanthanide-Based Single-Molecule Magnets. Inorg. Chem. 2016, 55, 10043–10056. [Google Scholar] [CrossRef]
- Gupta, S.K.; Murugavel, R. Enriching lanthanide single-ion magnetism through symmetry and axiality. Chem. Commun. 2018, 54, 3685–3696. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.-S.; Day, B.M.; Chen, Y.-C.; Tang, M.-L.; Mansikkamäki, A.; Layfield, R.A. Magnetic hysteresis up to 80 Kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362, 1400–1403. [Google Scholar] [CrossRef] [Green Version]
- Vignesh, K.R.; Alexandropoulos, D.I.; Dolinar, B.S.; Dunbar, K.R. Hard versus soft: Zero-field dinuclear Dy(III) oxygen bridged SMM and theoretical predictions of the sulfur and selenium analogues. Dalton Trans. 2019, 48, 2872–2876. [Google Scholar] [CrossRef]
- Long, J.; Habib, F.; Chibotaru, L.F.; Murugesu, M. Single-Molecule Magnet Behavior for an Antiferromagnetically Superexchange-Coupled Dinuclear Dysprosium(III) Complex. J. Am. Chem. Soc. 2011, 133, 5319–5328. [Google Scholar] [CrossRef] [PubMed]
- Roy, L.E.; Hughbanks, T. Magnetic Coupling in Dinuclear Gd Complexes. J. Am. Chem. Soc. 2016, 128, 568–575. [Google Scholar]
- Riggle, K.; Lynde-Kernell, T.; Schlemper, E.O. Synthesis and X-ray Structures of Ni(II) Complexes of 1-(2-Pyridinyl)ethenone Oxime. J. Coord. Chem. 1992, 25, 117–125. [Google Scholar] [CrossRef]
- Kettle, S.F.A. Physical Inorganic Chemistry—A Coordination Chemistry Approach; Oxford University Press: Oxford, UK, 1998; pp. 462–465. [Google Scholar]
- CrystalClear; Rigaku: The Woodlands, TX, USA; MSC Inc.: The Woodlands, TX, USA, 2005.
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Diamond, Crystal and Molecular Structure Visualization; Version 3.1; Crystal Impact: Bonn, Germany, 2018.
- Errulat, D.; Marin, R.; Gálico, D.A.; Harriman, K.L.M.; Pialat, A.; Gabidullin, B.; Iikawa, F.; Couto, O.D.D., Jr.; Moilanen, J.O.; Hemmer, E.; et al. A Luminescent Thermometer Exhibiting Slow Relaxation of the Magnetization: Toward Self-Monitored Building Blocks for Next-Generation Optomagnetic Devices. ACS Cent. Sci. 2019, 5, 1187–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zakrzewski, J.J.; Zychowicz, M.; Vieru, V.; Chibotaru, L.F.; Nakabayashi, K.; Chorazy, S.; Ohkoshi, S. Holmium(III) molecular nanomagnets for optical thermometry exploring the luminescence re-absorption effect. Chem. Sci. 2021, 12, 730–741. [Google Scholar] [CrossRef]
Interatomic Distances (Å) | ||
1 (Ln = Nd) | 5 (Ln = Dy) | |
Ln1⋯Ln1′ | 3.877 (1) | 3.795 (1) |
Ln1-O2 | 2.555 (6) | 2.453 (9) |
Ln1-O3 | 2.577 (5) | 2.499 (10) |
Ln1-O5 | 2.426 (5) | 2.343 (7) |
Ln1-O6′ | 2.404 (4) | 2.312 (8) |
Ln1-O7 | 2.503 (5) | 2.421 (8) |
Ln1-O8 | 2.578 (4) | 2.522 (8) |
Ln1-O8′ | 2.385 (5) | 2.281 (7) |
Ln1-N1 | 2.582 (6) | 2.510 (11) |
Ln1-N2 | 2.612 (5) | 2.535 (9) |
N3-O2 | 1.273 (8) | 1.289 (15) |
N3-O3 | 1.243 (8) | 1.266 (13) |
N3-O4 | 1.228 (8) | 1.230 (13) |
C8-O5 | 1.265 (8) | 1.274 (13) |
C8-O6 | 1.251 (8) | 1.253 (14) |
C10-O7 | 1.227 (8) | 1.236 (13) |
C10-O8 | 1.289 (9) | 1.293 (12) |
N1-O1 | 1.390 (7) | 1.386 (13) |
Interatomic Angles (o) | ||
N1-Ln1-N2 | 61.1 (2) | 62.9 (3) |
O2-Ln1-O3 | 49.8 (2) | 52.4 (3) |
O7-Ln1-O8 | 50.7 (2) | 52.6 (2) |
N2-Ln1-O8′ | 148.7 (2) | 147.1 (3) |
O6′-Ln1-O7 | 91.8 (2) | 90.2 (3) |
O2-Ln1-O5 | 120.4 (2) | 123.4 (3) |
O2-Ln1-O8 | 154.9 (2) | 150.1 (3) |
Ln1-O8-Ln1′ | 102.7 (2) | 104.3 (3) |
Interatomic Distances (Å) | Interatomic Angles (o) | ||
---|---|---|---|
Dy1⋯Dy1′ | 3.859 (1) | N1-Dy1-N2 | 61.9 (2) |
Dy1-O2 | 2.413 (5) | O2-Dy1-O3 | 53.7 (2) |
Dy1-O3 | 2.421 (5) | O7-Dy1-O8 | 52.0 (2) |
Dy1-O5 | 2.361 (5) | O2-Dy1-O8′ | 83.8 (2) |
Dy1-O6′ | 2.382 (5) | O3-Dy1-O6′ | 130.6 (2) |
Dy1-O7 | 2.414 (5) | O5-Dy1-O7 | 81.4 (2) |
Dy1-O8 | 2.561 (5) | O3-Dy1-O8 | 143.0 (2) |
Dy1-O8′ | 2.296 (5) | O3-Dy1-O8′ | 81.4 (2) |
Dy1-N1 | 2.593 (8) | O2-Dy1-O8 | 147.0 (2) |
Dy1-N2 | 2.525 (7) | O2-Dy1-O5 | 128.4 (2) |
C11-O2 | 1.259 (9) | N1-Dy1-O5 | 142.5 (2) |
C11-O3 | 1.254 (9) | N1-Dy1-O8 | 109.8 (2) |
C13-O5 | 1.242 (9) | N2-Dy1-O3 | 72.9 (2) |
C13-O6 | 1.279 (9) | N2-Dy1-O5 | 84.6 (2) |
C15-O7 | 1.252 (8) | N2-Dy1-O8 | 119.9 (2) |
C15-O8 | 1.262 (8) | Dy1-O8-Dy1′ | 105.1 (2) |
N1-O1 | 1.395 (9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyzou, C.D.; Nikolaou, H.; Raptopoulou, C.P.; Konidaris, K.F.; Bekiari, V.; Psycharis, V.; Perlepes, S.P. Dinuclear Lanthanide(III) Complexes from the Use of Methyl 2-Pyridyl Ketoxime: Synthetic, Structural, and Physical Studies. Molecules 2021, 26, 1622. https://doi.org/10.3390/molecules26061622
Polyzou CD, Nikolaou H, Raptopoulou CP, Konidaris KF, Bekiari V, Psycharis V, Perlepes SP. Dinuclear Lanthanide(III) Complexes from the Use of Methyl 2-Pyridyl Ketoxime: Synthetic, Structural, and Physical Studies. Molecules. 2021; 26(6):1622. https://doi.org/10.3390/molecules26061622
Chicago/Turabian StylePolyzou, Christina D., Helen Nikolaou, Catherine P. Raptopoulou, Konstantis F. Konidaris, Vlasoula Bekiari, Vassilis Psycharis, and Spyros P. Perlepes. 2021. "Dinuclear Lanthanide(III) Complexes from the Use of Methyl 2-Pyridyl Ketoxime: Synthetic, Structural, and Physical Studies" Molecules 26, no. 6: 1622. https://doi.org/10.3390/molecules26061622
APA StylePolyzou, C. D., Nikolaou, H., Raptopoulou, C. P., Konidaris, K. F., Bekiari, V., Psycharis, V., & Perlepes, S. P. (2021). Dinuclear Lanthanide(III) Complexes from the Use of Methyl 2-Pyridyl Ketoxime: Synthetic, Structural, and Physical Studies. Molecules, 26(6), 1622. https://doi.org/10.3390/molecules26061622