Low-Temperature Synthesis of Solution Processable Carbon Nitride Polymers
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Materials Synthesis
3.2. Materials Characterization
3.3. Dye Degradation Experiments
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Kessler, F.K.; Zheng, Y.; Schwarz, D.; Merschjann, C.; Schnick, W.; Wang, X.; Bojdys, M.J. Functional carbon nitride materials—Design strategies for electrochemical devices. Nat. Rev. Mater. 2017, 2, 17030. [Google Scholar] [CrossRef]
- Lakhi, K.S.; Park, D.-H.; Al-Bahily, K.; Cha, W.; Viswanathan, B.; Choy, J.-H.; Vinu, A. Mesoporous carbon nitrides: Synthesis, functionalization, and applications. Chem. Soc. Rev. 2017, 46, 72–101. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Huang, F.; Zhang, R.Q. Recent developments in carbon nitride based films for photoelectrochemical water splitting. Sustain. Energy Fuels 2020, 4, 485–503. [Google Scholar] [CrossRef]
- Barrio, J.; Mateo, D.; Albero, J.; García, H.; Shalom, M. A Heterogeneous carbon nitride–Nickel photocatalyst for efficient low-temperature CO2 methanation. Adv. Energy Mater. 2019, 9, 1902738. [Google Scholar] [CrossRef]
- Qin, J.; Wang, S.; Ren, H.; Hou, Y.; Wang, X. Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid. Appl. Catal. B Environ. 2015, 179, 1–8. [Google Scholar] [CrossRef]
- Hasija, V.; Raizada, P.; Sudhaik, A.; Sharma, K.; Kumar, A.; Singh, P.; Jonnalagadda, S.B.; Thakur, V.K. Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: A review. Appl. Mater. Today 2019, 15, 494–524. [Google Scholar] [CrossRef]
- Khamrai, J.; Ghosh, I.; Savateev, A.; Antonietti, M.; König, B. Photo-Ni-dual-catalytic C(sp2)-C(sp3) cross-coupling reactions with mesoporous graphitic carbon nitride as a heterogeneous organic semiconductor photocatalyst. ACS Catal. 2020, 10, 3526–3532. [Google Scholar] [CrossRef]
- Savateev, A.; Antonietti, M. Heterogeneous organocatalysis for photoredox chemistry. ACS Catal. 2018, 8, 9790–9808. [Google Scholar] [CrossRef]
- Savateev, A.; Ghosh, I.; König, B.; Antonietti, M. Photoredox Catalytic organic transformations using heterogeneous carbon nitrides. Angew. Chem. Int. Ed. 2018, 57, 15936–15947. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, Q.; Wu, H.; Chen, Y.; Lu, C.H.; Chi, Y.; Yang, H.H. Graphitic carbon nitride materials: Sensing, imaging and therapy. Small 2016, 12, 5376–5393. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, H.; Antonietti, M. Graphitic carbon nitride “reloaded”: Emerging applications beyond (photo)catalysis. Chem. Soc. Rev. 2016, 45, 2308–2326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Shalom, M. Conjugated carbon nitride as an emerging luminescent material: Quantum dots, thin films and their applications in imaging, sensing, optoelectronic devices and photoelectrochemistry. ChemPhotoChem 2019, 3, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Barrio, J.; Volokh, M.; Shalom, M. Polymeric carbon nitrides and related metal-free materials for energy and environmental applications. J. Mater. Chem. A 2020, 8, 11075–11116. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 2012, 51, 68–89. [Google Scholar] [CrossRef]
- Li, L.; Zhao, Y.; Antonietti, M.; Shalom, M. New organic semiconducting scaffolds by supramolecular preorganization: Dye intercalation and dye oxidation and reduction. Small 2016, 12, 6090–6097. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Shalom, M.; Zhao, Y.; Barrio, J.; Antonietti, M. Surface polycondensation as an effective tool to activate organic crystals: From “boxed” semiconductors for water oxidation to 1d carbon nanotubes. J. Mater. Chem. A 2017, 5, 18502–18508. [Google Scholar] [CrossRef] [Green Version]
- Barrio, J.; Karjule, N.; Qin, J.; Shalom, M. Condensation of supramolecular assemblies at low temperatures as a tool for the preparation of photoactive C3N3O materials. ChemCatChem 2019, 11, 6295–6300. [Google Scholar] [CrossRef]
- Keshavarzi, N.; Cao, S.; Antonietti, M. A new conducting polymer with exceptional visible-light photocatalytic activity derived from barbituric acid polycondensation. Adv. Mater. 2020, 32, 1907702. [Google Scholar] [CrossRef] [Green Version]
- Barrio, J.; Shalom, M. Rational design of carbon nitride materials by supramolecular preorganization of monomers. ChemCatChem 2018, 10, 5573–5586. [Google Scholar] [CrossRef]
- Zhou, Z.; He, F.; Shen, Y.; Chen, X.; Yang, Y.; Liu, S.; Mori, T.; Zhang, Y. Coupling multiphase-Fe and hierarchical N-doped graphitic carbon as trifunctional electrocatalysts by supramolecular preorganization of precursors. Chem. Commun. 2017, 53, 2044–2047. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.C.; Li, Z.S.; Zou, Z.G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 2009, 25, 10397–10401. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhang, J.; Zhang, M.; Wang, X. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem. 2012, 22, 8083–8091. [Google Scholar] [CrossRef]
- Dong, F.; Wang, Z.; Sun, Y.; Ho, W.K.; Zhang, H. Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. J. Colloid Interface Sci. 2013, 401, 70–79. [Google Scholar] [CrossRef]
- Shipeng, W.; Man, O.; Qin, Z.; Shule, Z.; Wei, C. Supramolecular synthesis of multifunctional holey carbon nitride nanosheet with high-efficiency photocatalytic performance. Adv. Opt. Mater. 2017, 5, 1700536. [Google Scholar] [CrossRef]
- Song, X.; Tang, D.; Chen, Y.; Yin, M.; Yang, Q.; Chen, Z.; Zhou, L. A facile and green combined strategy for improving photocatalytic activity of carbon nitride. ACS Omega 2019, 4, 6114–6125. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Xu, S.A. Preparation and fire behavior of rigid polyurethane foams synthesized from modified urea-melamine-formaldehyde resins. RSC Adv. 2018, 8, 17879–17887. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Wu, G.; Wang, Z.; Zhang, X. Generation of 2D organic microsheets from protonated melamine derivatives: Suppression of the self assembly of a particular dimension by introduction of alkyl chains. Chem. Sci. 2012, 3, 3227–3230. [Google Scholar] [CrossRef]
- Tian, L.; Li, J.; Liang, F.; Wang, J.; Li, S.; Zhang, H.; Zhang, S. Molten salt synthesis of tetragonal carbon nitride hollow tubes and their application for removal of pollutants from wastewater. Appl. Catal. B Environ. 2018, 225, 307–313. [Google Scholar] [CrossRef]
- Azoulay, A.; Barrio, J.; Tzadikov, J.; Volokh, M.; Albero, J.; Gervais, C.; Amo-Ochoa, P.; García, H.; Zamora, F.; Shalom, M. Synthesis of metal-free lightweight materials with sequence-encoded properties. J. Mater. Chem. A 2020, 8, 8752–8760. [Google Scholar] [CrossRef]
- Harrell, M.L.; Bergbreiter, D.E. Using 1h nmr spectra of polymers and polymer products to illustrate concepts in organic chemistry. J. Chem. Educ. 2017, 94, 1668–1673. [Google Scholar] [CrossRef]
- Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Müller, H.; Schnick, W. Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by x-ray powder diffractometry, solid-state NMR, and theoretical studies. J. Am. Chem. Soc. 2003, 125, 10288–10300. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.; Zhang, Z.; Lin, W.; Huang, S.; Zhang, X.; Wang, X.; Huang, Y. Copolymerization with 2,4,6-triaminopyrimidine for the rolling-up the layer structure, tunable electronic properties, and photocatalysis of g-C3N4. ACS Appl. Mater. Interfaces 2015, 7, 5497–5505. [Google Scholar] [CrossRef] [PubMed]
- Sattler, A.; Pagano, S.; Zeuner, M.; Zurawski, A.; Gunzelmann, D.; Senker, J.; Müller-Buschbaum, K.; Schnick, W. Melamine-melem adduct phases: Investigating the thermal condensation of melamine. Chem. Eur. J. 2009, 15, 13161–13170. [Google Scholar] [CrossRef] [PubMed]
- Karjule, N.; Phatake, R.; Volokh, M.; Hod, I.; Shalom, M. Solution-processable carbon nitride polymers for photoelectrochemical applications. Small Methods 2019, 3, 1900401. [Google Scholar] [CrossRef]
- Sun, J.; Phatake, R.; Azoulay, A.; Peng, G.; Han, C.; Barrio, J.; Xu, J.; Wang, X.; Shalom, M. Covalent functionalization of carbon nitride frameworks through cross-coupling reactions. Chem. Eur. J. 2018, 24, 14921–14927. [Google Scholar] [CrossRef]
- Kumru, B.; Barrio, J.; Zhang, J.; Antonietti, M.; Shalom, M.; Schmidt, B.V.K.J. Robust carbon nitride-based thermoset coatings for surface modification and photochemistry. ACS Appl. Mater. Interfaces 2019, 11, 9462–9469. [Google Scholar] [CrossRef] [Green Version]
- Kumru, B.; Antonietti, M. Colloidal properties of the metal-free semiconductor graphitic carbon nitride. Adv. Colloid Interface Sci. 2020, 283, 102229. [Google Scholar] [CrossRef]
- Volokh, M.; Peng, G.; Barrio, J.; Shalom, M. Carbon nitride materials for water splitting photoelectrochemical cells. Angew. Chem. Int. Ed. 2019, 58, 6138–6151. [Google Scholar] [CrossRef]
- Tian, L.; Li, J.; Liang, F.; Chang, S.; Zhang, H.; Zhang, M.; Zhang, S. Facile molten salt synthesis of atomically thin boron nitride nanosheets and their co-catalytic effect on the performance of carbon nitride photocatalyst. J. Colloid Interface Sci. 2019, 536, 664–672. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Karjule, N.; Qin, J.; Wang, Y.; Barrio, J.; Shalom, M. Low-Temperature Synthesis of Solution Processable Carbon Nitride Polymers. Molecules 2021, 26, 1646. https://doi.org/10.3390/molecules26061646
Li J, Karjule N, Qin J, Wang Y, Barrio J, Shalom M. Low-Temperature Synthesis of Solution Processable Carbon Nitride Polymers. Molecules. 2021; 26(6):1646. https://doi.org/10.3390/molecules26061646
Chicago/Turabian StyleLi, Junyi, Neeta Karjule, Jiani Qin, Ying Wang, Jesús Barrio, and Menny Shalom. 2021. "Low-Temperature Synthesis of Solution Processable Carbon Nitride Polymers" Molecules 26, no. 6: 1646. https://doi.org/10.3390/molecules26061646
APA StyleLi, J., Karjule, N., Qin, J., Wang, Y., Barrio, J., & Shalom, M. (2021). Low-Temperature Synthesis of Solution Processable Carbon Nitride Polymers. Molecules, 26(6), 1646. https://doi.org/10.3390/molecules26061646