Effect of Penetration Enhancers on Toenail Delivery of Efinaconazole from Hydroalcoholic Preparations
Abstract
:1. Introduction
2. Results
2.1. Effect of Lipophilic Penetration Enhancer on Transungual EFN Delivery
2.2. Combination of Hydrophilic Enhancer with Lipophilic Enhancer for Transungual EFN Delivery
2.3. Effect of Oil Solution for Transungual EFN Delivery
2.4. Physicochemical Stability of Optimized EFN-Loaded LH-HS Preparation
3. Materials and Methods
3.1. Materials
3.2. Preparation of EFN-Loaded Topical Solutions
3.3. Physicochemical Characteristics of EFN-Loaded Topical Preparations
3.4. Absorption/Evaporation Time of EFN-Loaded Topical Preparations
3.5. In Vitro Permeation Study of EFN-Loaded Topical Preparations
3.6. Physicochemical Stability of EFN-Loaded Topical Preparation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- de Berker, D. Nails and hair. Medicine 2009, 37, 286–290. [Google Scholar] [CrossRef]
- Sigurgeirsson, B.; Steingrímsson, O. Risk factors associated with onychomycosis. J. Eur. Acad. Dermatol. Venereol. 2004, 18, 48–51. [Google Scholar] [CrossRef]
- Siu, W.J.J.; Tatsumi, Y.; Senda, H.; Pillai, R.; Nakamura, T.; Sone, D.; Fothergill, A. Comparison of In Vitro ntifungal activities of efinaconazole and currently available antifungal agents against a variety of pathogenic fungi associated with onychomycosis. Antimicrob. Agents Chemother. 2013, 57, 1610–1616. [Google Scholar] [CrossRef] [Green Version]
- Tatsumi, Y.; Nagashima, M.; Shibanushi, T.; Iwata, A.; Kangawa, Y.; Inui, F.; Siu, W.J.J.; Pillai, R.; Nishiyama, Y. Mechanism of action of efinaconazole, a novel triazole antifungal agent. Antimicrob. Agents Chemother. 2013, 57, 2405–2409. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, K.; Sugimoto, N.; Hosaka, S.; Katafuchi-Nagashima, M.; Arakawa, Y.; Tatsumi, Y.; Siu, W.J.; Pillai, R. The low keratin affinity of efinaconazole contributes to its nail penetration and fungicidal activity in topical onychomycosis treatment. Antimicrob. Agents Chemother. 2014, 58, 3837–3842. [Google Scholar] [CrossRef] [Green Version]
- FDA Label of JUBLIA® (efinaconazole) Topical Solution. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/203567s000lbl.pdf (accessed on 21 October 2020).
- Walters, K.A.; Abdalghafor, H.M.; Lane, M.E. The human nail—Barrier characterisation and permeation enhancement. Int. J. Pharm. 2012, 435, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Tiwary, A.K.; Sapra, B. High failure rate of transungal drug delivery: Need for new strategies. Ther. Deliv. 2017, 8, 239–242. [Google Scholar] [CrossRef] [Green Version]
- Cutrín-Gómez, E.; Anguiano-Igea, S.; Delgado-Charro, M.B.; Gómez-Amoza, J.L.; Otero-Espinar, F.J. Effect of penetration enhancers on drug nail permeability from Cyclodextrin/Poloxamer-soluble polypseudorotaxane-based nail lacquers. Pharm. 2018, 10, 273. [Google Scholar] [CrossRef] [Green Version]
- Dykyj, J.D. Anatomy of the nail. Clin. Poditr. Med. Sur. 1989, 6, 521–528. [Google Scholar] [PubMed]
- Vikas, A.; Rashmin, P.; Mrunali, P.; Chavan, R.B.; Kaushik, T. Mechanistic insights of formulation approaches for the treatment of nail infection: Conventional and novel drug delivery approaches. AAPS PharmSciTech 2020, 21, 1–12. [Google Scholar] [CrossRef]
- Bhatt, V.; Pillai, R. Efinaconazole topical solution, 10%: Formulation development program of a new topical treatment of toenail onychomycosis. J. Pharm. Sci. 2015, 104, 2177–2182. [Google Scholar] [CrossRef]
- Lee, B.C.; Pangeni, R.; Na, J.; Koo, K.-T.; Park, J.W. Preparation and in vivo evaluation of a highly skin- and nail-permeable efinaconazole topical formulation for enhanced treatment of onychomycosis. Drug Deliv. 2019, 26, 1167–1177. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.; Khengar, R.; Turner, R.; Forbes, B.; Traynor, M.; Evans, C.; Jones, S. Overcoming the nail barrier: A systematic investigation of ungual chemical penetration enhancement. Int. J. Pharm. 2009, 370, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutet, J.; Delgado-Charro, M.B. In vivo transungual iontophoresis: Effect of DC current application on ionic transport and on transonychial water loss. J. Control. Release 2009, 140, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Saner, M.V.; Kulkarni, A.D.; Pardeshi, C.V. Insights into drug delivery across the nail plate barrier. J. Drug Target. 2014, 22, 769–789. [Google Scholar] [CrossRef]
- Özdemir, G.; Sezgin, Ö.E. Keratin–rhamnolipids and keratin–sodium dodecyl sulfate interactions at the air/water interface. Colloids Surf. B Biointerfaces 2006, 52, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.B.; Sammeta, S.M.; Vaka, S.R.K.; Narasimha Murthy, S. A study on the effect of inorganic salts in transungual drug delivery of terbinafine. J. Pharm. Pharmacol. 2009, 61, 431–437. [Google Scholar] [CrossRef]
- Hui, X.; Wester, R.C.; Maibach, H.I. Nail penetration. In Textbook of Cosmetic Dermatology; Informa UK Limited: London, UK, 2010; pp. 63–72. [Google Scholar]
- Chouhan, P.; Saini, T.R. Hydroxypropyl-β-cyclodextrin: A Novel Transungual Permeation Enhancer for Development of Topical Drug Delivery System for Onychomycosis. J. Drug Deliv. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Haque, T.; Rahman, K.M.; Thurston, D.E.; Hadgraft, J.; Lane, M.E. Topical delivery of anthramycin I. Influence of neat solvents. Eur. J. Pharm. Sci. 2017, 104, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Salimi, A.; Hedayatipour, N.; Moghimipour, E. The effect of various vehicles on the naproxen permeability through rat skin: A mechanistic study by DSC and FT-IR Techniques. Adv. Pharm. Bull. 2016, 6, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Cutrín-Gómez, E.; Anguiano-Igea, S.; Delgado-Charro, M.B.; Gómez-Amoza, J.L.; Otero-Espinar, F.J. Effect on nail structure and transungual permeability of the ethanol and poloxamer ratio from cyclodextrin-soluble polypseudorotaxanes based nail lacquer. Pharm. 2018, 10, 156. [Google Scholar] [CrossRef] [Green Version]
- Angelo, T.; Borgheti-Cardoso, L.N.; Gelfuso, G.M.; Taveira, S.F.; Gratieri, T. Chemical and physical strategies in onychomycosis topical treatment: A review. Med. Mycol. 2016, 55, 461–475. [Google Scholar] [CrossRef] [Green Version]
- Finlay, A.Y.; Frost, P.; Keith, A.D.; Snipes, W. An assessment of factors influencing flexibility of human fingernails. Br. J. Dermatol. 1980, 103, 357–365. [Google Scholar] [CrossRef]
- Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef] [Green Version]
- Alessandrini, A.; Starace, M.; Bruni, F.; Piraccini, B.M. An open study to evaluate effectiveness and tolerability of a nail oil composed of vitamin E and essential oils in mild to moderate distal subungual onychomycosis. Ski. Appendage Disord. 2019, 6, 14–18. [Google Scholar] [CrossRef]
- Flores, F.C.; De Lima, J.A.; Ribeiro, R.F.; Alves, S.H.; Rolim, C.M.B.; Beck, R.C.R.; Da Silva, C.B. Antifungal activity of nanocapsule suspensions containing tea tree oil on the growth of trichophyton rubrum. Mycopathology 2013, 175, 281–286. [Google Scholar] [CrossRef]
- Hafeez, F.; Hui, X.; Selner, M.; Rosenthal, B.; Maibach, H. Ciclopirox delivery into the human nail plate using novel lipid diffusion enhancers. Drug Dev. Ind. Pharm. 2013, 40, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Vikas, A.; Rashmin, P.; Mrunali, P.; Sandip, M.; Kaushik, T. RP-HPLC method for quantitative estimation of Efinaconazole in topical microemulsion and microemulsion-based-gel formulations and in presence of its degradation products. Microchem. J. 2020, 155, 104753. [Google Scholar] [CrossRef]
- Nogueiras-Nieto, L.; Gomez-Amoza, J.L.; Delgado-Charro, M.B.; Otero-Espinar, F. Hydration and N-acetyl-l-cysteine alter the microstructure of human nail and bovine hoof: Implications for drug delivery. J. Control. Release 2011, 156, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Walter, R.; Edward, S.; Murray, J. Skin temperature response of normal human subjects to various conditions. Circulation 1952, 6, 862–867. [Google Scholar] [CrossRef] [Green Version]
HS base | L-HS1 | L-HS2 | L-HS3 | L-HS4 | L-HS5 | L-HS6 | |
---|---|---|---|---|---|---|---|
Compositions | |||||||
EFN (g) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Myristyl lactate (g) | - | 1.0 | - | - | - | - | - |
Diisopropyl adipate (g) | - | 1.2 | - | - | - | - | - |
Lauroglycol 90 (g) (1) | - | - | 2.2 | - | - | - | - |
Labrafac PG (g) (2) | - | - | - | 2.2 | - | - | - |
Medium-chain triglyceride (g) | - | - | - | - | 2.2 | - | - |
Isopropyl myristate (g) | - | - | - | - | - | 2.2 | - |
Isopropyl palmitate (g) | - | - | - | - | - | - | 2.2 |
Cyclomethicone (g) | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 |
EDTA (g) (3) | 0.000025 | 0.000025 | 0.000025 | 0.000025 | 0.000025 | 0.000025 | 0.000025 |
Distilled water (g) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Citric acid (g) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
BHT (g) (4) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Ethanol (g) | 6.82 | 5.38 | 5.38 | 5.38 | 5.38 | 5.38 | 5.38 |
Total (g) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
Physicochemical characteristics | |||||||
Appearance | Transparent | Transparent | Transparent | Transparent | Transparent | Transparent | Transparent |
pH (5) | 5.1 ± 0.0 | 4.8 ± 0.1 | 5.5 ± 0.1 | 5.2 ± 0.2 | 5.1 ± 0.00 | 4.9 ± 0.0 | 5.2 ± 0.0 |
Absorption/evaporation time (5) | 13.7 ± 0.5 | 60.0 ± 4.1 | 75.0 ± 12.2 | 70.0 ± 4.1 | 118.3 ± 8.5 | 93.3 ± 2.4 | 45.0 ± 2.4 |
LH-HS1 | LH-HS2 | LH-HS3 | LH-HS4 | |
---|---|---|---|---|
Compositions | ||||
EFN (g) | 1.0 | 1.0 | 1.0 | 1.0 |
Labrafac PG (g) | 1.5 | 1.5 | 1.5 | 1.5 |
SLS (g) | 0.3 | - | - | - |
DEPC (g) (2) | - | 0.3 | - | - |
HP-β-CD (g) | - | - | 0.3 | 0.6 |
EDTA (g) | 0.000025 | 0.000025 | 0.000025 | 0.000025 |
Distilled water (g) | 1.2 | 1.2 | 1.2 | 1.2 |
Citric acid (g) | 0.01 | 0.01 | 0.01 | 0.01 |
BHT (g) | 0.01 | 0.01 | 0.01 | 0.01 |
Ethanol (g) | 5.78 | 5.78 | 5.78 | 5.48 |
Total (g) | 10.0 | 10.0 | 10.0 | 10.0 |
Physicochemical characteristics | ||||
Appearance | Transparent | Transparent | Transparent | Transparent |
pH (3) | 6.7 ± 0.0 | 5.2 ± 0.0 | 5.2 ± 0.1 | 5.2 ± 0.1 |
Absorption/evaporation time (3) | 46.0 ± 2.9 | 54.0 ± 2.9 | 75.0 ± 4.1 | 70.0 ± 4.1 |
OS1 | OS2 | OS3 | |
---|---|---|---|
Compositions | |||
EFN (g) | 1.0 | 1.0 | 1.0 |
Labrafac PG (g) | 8.0 | - | - |
Peppermint oil (g) | - | 8.0 | - |
Almond oil (g) | - | - | 8.0 |
Distilled water (g) | 0.01 | 0.01 | 0.01 |
Ethanol (g) | 0.89 | 0.89 | 0.89 |
Total (g) | 10.0 | 10.0 | 10.0 |
Physicochemicalcharacteristics | |||
Appearance | Transparent | Transparent | Transparent |
pH (1) | 9.0 ± 0.0 | 6.0 ± 0.0 | 6.2 ± 0.0 |
Absorption/evaporation time (1) | 71.0 ± 2.9 | 27.3 ± 2.1 | 176.7 ± 4.7 |
Formulas | Flux (μg∙cm−2·h−1) | Permeated (%) |
---|---|---|
HL base | 97.6 ± 27.5 | 18.2 ± 5.1 |
L-HS1 | 112.0 ± 45.0 | 20.9 ± 8.4 |
L-HS2 | 129.9 ± 18.6 | 24.3 ± 3.5 |
L-HS3 | 138.1 ± 35.0 | 25.8 ± 6.5 |
L-HS4 | 120.8 ± 22.8 | 22.6± 4.2 |
L-HS5 | 110.5 ± 38.9 | 20.6 ± 7.3 |
L-HS6 | 83.9 ± 47.6 | 15.7± 8.9 |
LH-HS1 | 115.0 ± 5.8 | 21.4 ± 2.2 |
LH-HS2 | 81.8 ± 6.67 | 15.3 ± 1.8 |
LH-HS3 | 161.0 ± 8.6 *, ** | 30.3 ± 2.6 *, ** |
LH-HS4 | 200.2 ± 8.9 *, ** | 37.4 ± 3.5 *, ** |
OS1 | 93.0 ± 1.5 | 17.4 ± 0.3 |
OS2 | 79.5 ± 38.5 | 14.8 ± 7.2 |
OS3 | 71.0 ± 39.0 | 13.3± 7.3 |
After Preparation | Under Stress Conditions | Under Ambient Conditions | |
---|---|---|---|
Appearance | Transparent | Transparent | Transparent |
pH (1) | 5.2 ± 0.1 | 5.2 ± 0.0 | 5.3 ± 0.01 |
Drug content (%) (1) | 97.3 ± 1.8 | 94.0 ± 1.1 | 94.8 ± 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.S.; Kim, J.S.; Ho, M.J.; Park, D.W.; Kim, E.A.; Choi, Y.S.; Jang, S.W.; Kang, M.J. Effect of Penetration Enhancers on Toenail Delivery of Efinaconazole from Hydroalcoholic Preparations. Molecules 2021, 26, 1650. https://doi.org/10.3390/molecules26061650
Park JS, Kim JS, Ho MJ, Park DW, Kim EA, Choi YS, Jang SW, Kang MJ. Effect of Penetration Enhancers on Toenail Delivery of Efinaconazole from Hydroalcoholic Preparations. Molecules. 2021; 26(6):1650. https://doi.org/10.3390/molecules26061650
Chicago/Turabian StylePark, Jun Soo, Jeong Soo Kim, Myoung Jin Ho, Dong Woo Park, Eun A. Kim, Yong Seok Choi, Sun Woo Jang, and Myung Joo Kang. 2021. "Effect of Penetration Enhancers on Toenail Delivery of Efinaconazole from Hydroalcoholic Preparations" Molecules 26, no. 6: 1650. https://doi.org/10.3390/molecules26061650
APA StylePark, J. S., Kim, J. S., Ho, M. J., Park, D. W., Kim, E. A., Choi, Y. S., Jang, S. W., & Kang, M. J. (2021). Effect of Penetration Enhancers on Toenail Delivery of Efinaconazole from Hydroalcoholic Preparations. Molecules, 26(6), 1650. https://doi.org/10.3390/molecules26061650