Development and Validation of 2-Azaspiro [4,5] Decan-3-One (Impurity A) in Gabapentin Determination Method Using qNMR Spectroscopy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Specificity
- MA and MB are the molar mass of the analytes A and B;
- NA and NB are the number of nuclei generating the corresponding signal;
- P—purity of the analyte B.
- IImpA is the integral intensity of any characteristic ImpA signals (2.28; 3.24 ppm) or their mean;
- IGP is the integral intensity of any characteristic GP signals (2.45; 3.02 ppm) or their mean;
- mGP is the GP content in the test sample.
2.2. Limit of Quantification
2.3. Linearity and the Analytical Range
2.4. Accuracy
- The systemic fault must not exceed its confidence interval (criteria of statistical insignificance);
- The confidence interval must include 100% of the extraction coefficient value.
2.5. Repeatability and Intra-laboratory Precision
2.6. Robustness
2.7. Comparative Analysis of the ImpA Content Determining by qNMR and HPLC
3. Materials and Methods
3.1. Materials
3.2. NMR Spectroscopy Method
3.2.1. Model Solutions
3.2.2. Sample Preparation
3.2.3. Instrumentation and Experiments Conditions
3.3. Method Validation
3.3.1. Specificity
3.3.2. Limit of Quantitation
3.3.3. Analytical Range
3.3.4. Linearity
3.3.5. The Accuracy
3.3.6. Precision
3.3.7. Robustness
3.4. Reference Measurement with HPLC Method
3.4.1. Preparation of Solution
3.4.2. Instrumentation and Chromatographic Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Celikyurt, I.K.; Mutlu, O. Gabapentin, A GABA analogue, enhances cognitive performance in mice. Neurosci. Lett. 2011, 492, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Hiom, S.; Patel, G.K. Severe postherpetic neuralgia and other neuropathic pain syndromes alleviated by topical gabapentin. Br. J. Dermatol. 2015, 173, 300–302. [Google Scholar] [CrossRef] [PubMed]
- Burns, M.L.; Kinge, E. Pharmacokinetic variability, clinical use and therapeutic drug monitoring of antiepileptic drugs in special patient groups. Acta Neurol. Scand. 2019, 139, 446–454. [Google Scholar]
- USP43-NF38. Gabapentin. 2057. Available online: https://online.uspnf.com/ (accessed on 8 November 2020).
- Zong, Z.; Qiu, J. Kinetic model for solid-state degradation of gabapentin. J. Pharm. Sci. 2012, 101, 2123–2133. [Google Scholar] [CrossRef] [PubMed]
- Ranjous, Y.; Hsian, J. Improvement in the Physical and Chemical Stability of Gabapentin by Using Different Excipients. Int. J. Pharm. Sci. Rev. Res. 2013, 23, 81–86. [Google Scholar]
- Braga, D.; Grepioni, F. Polymorphic gabapentin: Thermal behaviour, reactivity and interconversion of forms in solution and solid-state. New J. Chem. 2008, 32, 1788–1795. [Google Scholar] [CrossRef]
- Ciavarella, A.B.; Gupta, A. Development and application of a validated HPLC method for the determination of gabapentin and its major degradation impurity in drug products. J. Pharm. Biomed. 2007, 43, 1647–1653. [Google Scholar] [CrossRef] [PubMed]
- Malz, F.; Jancke, H. Validation of quantitative nuclear magnetic resonance. J. Pharm. Biomed. 2005, 38, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Kuz’mina, N.E.; Moiseev, S.V. Possibilities of NMR spectrometry in determining trace components of mixtures. Russ. J. Anal. Chem. 2014, 69, 1052–1060. [Google Scholar] [CrossRef]
- Gottlieb, H.E.; Kotlyar, V. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem. 1997, 62, 7512–7515. [Google Scholar] [CrossRef] [PubMed]
- WHO. A WHO Guide to Good Manufacturing Practice (GMP) Requirements, Part 2; Validation, WHO/VSQ/97.02; WHO: Geneva, Switzerland, 1999; Available online: https://apps.who.int/iris/bitstream/handle/10665/64465/WHO_VSQ_97.02.pdf;sequence=2 (accessed on 8 November 2020).
- USP43-NF38. <761> Nuclear Magnetic Resonance. 6984. Available online: https://online.uspnf.com/ (accessed on 8 November 2020).
- USP43-NF38. Gabapentin Capsules. 2058. Available online: https://online.uspnf.com/ (accessed on 8 November 2020).
- USP43-NF38. Gabapentin Tablets. 2060. Available online: https://online.uspnf.com/ (accessed on 8 November 2020).
Content of ImpA, µg/mL (w % Relative to GP) | IImpA | Mean Value IImpA | Content of ImpA, µg/mL (w % Relative to GP) | IImpA | Mean Value IImpA |
---|---|---|---|---|---|
0.0 (0.0) | 0.00 | 0.00 | 50.65 (0.126) | 1.40 1.41 1.41 | 1.41 |
10.13 (0.025) | 0.28 0.29 0.27 | 0.28 | 101.30 (0.253) | 2.74 2.69 2.71 | 2.71 |
20.26 (0.051) | 0.57 0.57 0.58 | 0.57 | 151.95 (0.379) | 4.33 4.35 4.31 | 4.33 |
30.39 (0.076) | 0.84 0.86 0.84 | 0.85 | 202.60 (0.505) | 5.68 5.70 5.74 | 5.71 |
40.52 (0.101) | 1.14 1.13 1.14 | 1.14 | 253.25 (0.632) | 7.03 7.05 7.01 | 7.03 |
Statistical Characteristic | Result |
---|---|
Slope (b) | 0.028 |
Segment on ordinate (a) | −0.0052 |
Significance interval (p = 95%) | −0.06 ÷ 0.05 |
Correlation coefficient (r) | 0.9997 |
ImpA Added, µg/mL | ImpA Found, µg/mL | Zi, % | ImpA Added, µg/mL | ImpA Found, µg/mL | Zi, % |
---|---|---|---|---|---|
10.13 | 10.11 | 99.80 | 101.30 | 98.94 | 97.67 |
10.47 | 103.36 | 97.13 | 95.88 | ||
9.75 | 96.25 | 97.85 | 96.59 | ||
20.26 | 20.58 | 101.58 | 151.95 | 156.35 | 102.90 |
20.58 | 101.58 | 157.07 | 103.37 | ||
20.94 | 103.36 | 155.63 | 102.42 | ||
30.39 | 30.33 | 99.80 | 202.60 | 205.09 | 101.23 |
31.05 | 102.17 | 205.82 | 101.59 | ||
30.33 | 99.80 | 207.26 | 102.30 | ||
40.52 | 41.16 | 101.58 | 253.25 | 253.84 | 100.23 |
40.80 | 100.69 | 254.56 | 100.52 | ||
41.16 | 101.58 | 253.12 | 99.95 | ||
50.65 | 50.55 | 99.80 | |||
50.91 | 100.51 | ||||
50.91 | 100.51 | ||||
Mean (), % | 100.63 | ||||
Systematic error (δ), % | 0.63 | ||||
Standard deviation (s), % | 2.067 | ||||
Coefficient of variation (R.S.D.), % | 1.86 | ||||
Significant interval (Δ), % | ±0.82 |
ImpA Added, µg/mL | Operator 1 | Operator 2 | ||
---|---|---|---|---|
Found, µg/mL | Zi, % | Found, µg/mL | Zi, % | |
10.13 | 10.11 | 99.80 | 10.11 | 99.80 |
10.47 | 103.36 | 10.11 | 99.80 | |
9.75 | 96.25 | 9.39 | 92.69 | |
50.65 | 50.55 | 99.80 | 51.27 | 101.22 |
50.91 | 100.51 | 50.19 | 99.09 | |
50.91 | 100.51 | 50.91 | 100.51 | |
253.25 | 253.84 | 100.23 | 253.48 | 100.09 |
254.56 | 100.52 | 253.12 | 99.95 | |
253.12 | 99.95 | 253.84 | 100.23 | |
Mean (i), % | 100,103 | 99.264 | ||
Systematic error (δ), % | 0.103 | 0.736 | ||
Standard deviation (s), % | 1.809 | 2.532 | ||
Coefficient of variation (R.S.D.), % | 1.807 | 2.551 | ||
Significant interval, % (Δ, p = 95%) | ±1.391 | ±1.946 | ||
Combined mean ( ), % | 99.684 | |||
Combined standard deviation, % | 2.20 | |||
Combined coefficient of variation, % | 2.207 | |||
Combined significant interval, % | ±1.555 | |||
Fisher’s F test (Ftab = 3.44) | Ffact = 0.51 | |||
Student’s t test (ttab = 2.12) | tfact = 0.81 |
Sample | Content of ImpA, w % | |
---|---|---|
NMR | HPLC | |
API A | Not found | Not found |
API B | BQL | BQL |
Capsule I | 0.10 (RSD 5.6%) | 0.13 (RSD 4.9%) |
Capsule II | 0.08 (RSD 7.5%) | 0.07 (RSD 7.2%) |
№ | V I mL | V III µL | V DMSO-D6 µL | V D2O µL | C GP mg/mL | C ImpA µg/mL | w % ImpA Relative to GP |
---|---|---|---|---|---|---|---|
1 | 0.4 | 0 | 10 | 590 | 40.09 | 0 | 0 |
2 | 0.4 | 20 | 10 | 570 | 40.09 | 10.13 | 0.025 |
3 | 0.4 | 40 | 10 | 550 | 40.09 | 20.26 | 0.051 |
4 | 0.4 | 60 | 10 | 530 | 40.09 | 30.39 | 0.076 |
5 | 0.4 | 80 | 10 | 510 | 40.09 | 40.52 | 0.101 |
6 | 0.4 | 100 | 10 | 490 | 40.09 | 50.65 | 0.126 |
7 | 0.4 | 200 | 10 | 390 | 40.09 | 101.30 | 0.253 |
8 | 0.4 | 300 | 10 | 290 | 40.09 | 151.95 | 0.379 |
9 | 0.4 | 400 | 10 | 190 | 40.09 | 202.60 | 0.505 |
10 | 0.4 | 500 | 10 | 90 | 40.09 | 253.25 | 0.632 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuz’mina, N.E.; Moiseev, S.V.; Khorolskiy, M.D.; Lutceva, A.I. Development and Validation of 2-Azaspiro [4,5] Decan-3-One (Impurity A) in Gabapentin Determination Method Using qNMR Spectroscopy. Molecules 2021, 26, 1656. https://doi.org/10.3390/molecules26061656
Kuz’mina NE, Moiseev SV, Khorolskiy MD, Lutceva AI. Development and Validation of 2-Azaspiro [4,5] Decan-3-One (Impurity A) in Gabapentin Determination Method Using qNMR Spectroscopy. Molecules. 2021; 26(6):1656. https://doi.org/10.3390/molecules26061656
Chicago/Turabian StyleKuz’mina, Nataliya E., Sergey V. Moiseev, Mikhail D. Khorolskiy, and Anna I. Lutceva. 2021. "Development and Validation of 2-Azaspiro [4,5] Decan-3-One (Impurity A) in Gabapentin Determination Method Using qNMR Spectroscopy" Molecules 26, no. 6: 1656. https://doi.org/10.3390/molecules26061656
APA StyleKuz’mina, N. E., Moiseev, S. V., Khorolskiy, M. D., & Lutceva, A. I. (2021). Development and Validation of 2-Azaspiro [4,5] Decan-3-One (Impurity A) in Gabapentin Determination Method Using qNMR Spectroscopy. Molecules, 26(6), 1656. https://doi.org/10.3390/molecules26061656