Application of Elicitors in Two Ripening Periods of Vitis vinifera L. cv Monastrell: Influence on Anthocyanin Concentration of Grapes and Wines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Grapes
2.1.1. Physicochemical Analysis in Grapes at Harvest
2.1.2. Analysis of Anthocyanins in Grapes at Harvest by HPLC
2.2. Wines
2.2.1. Analysis of Anthocyanins in Wines by HPLC
2.2.2. Wine Color Parameters
2.3. Multivariate Discriminant Analysis
3. Materials and Methods
3.1. Experimental Design
3.2. Physicochemical Analysis of Grapes at Harvest
3.3. Vinifications
3.4. Analysis of Anthocyanins in Grapes and Wines
3.5. Wine Color Parameters
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carrieri, C.; Milella, R.A.; Incampo, F.; Crupi, P.; Antonacci, D.; Semeraro, N.; Colucci, M. Antithrombotic activity of 12 table grape varieties. Relationship with polyphenolic profile. Food Chem. 2013, 140, 647–653. [Google Scholar] [CrossRef]
- Pignatelli, P.; Ghiselli, A.; Buchetti, B.; Carnevale, R.; Natella, F.; Germanò, G.; Fimognari, F.; Di Santo, S.; Lenti, L.; Violi, F. Polyphenols synergistically inhibit oxidative stress in subjects given red and white wine. Atherosclerosis 2006, 188, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Pezzuto, J.M. Grapes and human health: A perspective. J. Agric. Food Chem. 2008, 56, 6777–6784. [Google Scholar] [CrossRef] [PubMed]
- Mattivi, F.; Guzzon, R.; Vrhovsek, U.; Stefanini, M.; Velasco, R. Metabolite profiling of grape: Flavonols and anthocyanins. J. Agric. Food Chem. 2006, 54, 7692–7702. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Martinson, T.E.; Liu, R.H. Phytochemical profiles and antioxidant activities of wine grapes. Food Chem. 2009, 116, 332–339. [Google Scholar] [CrossRef]
- Gil-Muñoz, R.; Fernández-Fernández, J.I.; Vila-López, R.; Martinez-Cutillas, A. Anthocyanin profile in Monastrell grapes in six different areas from Denomination of Origen Jumilla during ripening stage. Int. J. Food Sci. Technol. 2010, 45, 1870–1877. [Google Scholar] [CrossRef]
- Romero-Azorín, P.; Fernández-Fernández, J.I.; Gil-Muñoz, R.; Botía, P. Vigour-yield-quality relationships in long-term deficit irrigated winegrapes grown under semiarid conditions. Theor. Exp. Plant Physiol. 2016. [Google Scholar] [CrossRef]
- Pérez-Lamela, C.; García-Falcón, M.S.; Simal-Gándara, J.; Orriols-Fernández, I. Influence of grape variety, vine system and enological treatments on the colour stability of young red wines. Food Chem. 2007, 101, 601–606. [Google Scholar] [CrossRef]
- Basile, B.; Marsal, J.; Mata, M.; Vallverdú, X.; Bellvert, J.; Girona, J. Phenological sensitivity of cabernet sauvignon to water stress: Vine physiology and berry composition. Am. J. Enol. Vitic. 2011, 62, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Louime, C.; Vasanthaiah, H.K.; Basha, S.M.; Lu, J. Perspective of biotic and abiotic stress research in grapevines (Vitis sp.). Int. J. Fruit Sci. 2010, 10, 79–86. [Google Scholar] [CrossRef]
- Gil-Muñoz, R.; Moreno-Olivares, J.D.; Paladines-Quezada, D.F.; Cebrían-Pérez, A.; Fernández-Fernández, J.I. High anthocyanin level of grape hybrids from Monastrell and their wines. Int. J. Hortic. Agric. 2018, 3, 1–8. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Gil-Muñoz, R.; Fernández-Fernández, J.I.; Crespo-Villegas, O.; Garde-Cerdán, T. Elicitors used as a tool to increase stilbenes in grapes and wines. Food Res. Int. 2017, 98, 34–39. [Google Scholar] [CrossRef]
- Ruiz-García, Y.; Romero-Cascales, I.; Bautista-Ortín, A.B.; Gil-Muñoz, R.; Martínez-Cutillas, A.; Gómez-Plaza, E. Increasing bioactive phenolic compounds in grapes: Response of six Monastrell grape clones to benzothiadiazole and methyl jasmonate treatments. Am. J. Enol. Vitic. 2013, 64, 459–465. [Google Scholar] [CrossRef]
- Muñoz, R.G.; Bautista-Ortín, A.B.; Ruiz-García, Y.; Fernández-Fernández, J.I.; Gómez-Plaza, E. Improving phenolic and chromatic characteristics of Monastrell, Merlot and Syrah wines by using methyl jasmonate and benzothiadiazole. J. Int. Sci. Vigne Vin 2017, 51, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-García, Y.; Gil-Muñoz, R.; López-Roca, J.M.; Martínez-Cutillas, A.; Romero-Cascales, I.; Gómez-Plaza, E. Increasing the phenolic compound content of grapes by preharvest application of abcisic acid and a combination of methyl jasmonate and benzothiadiazole. J. Agric. Food Chem. 2013, 61, 3978–3983. [Google Scholar] [CrossRef]
- Ruiz-García, Y.; Romero-Cascales, I.; Gil-Muñoz, R.; Fernández-Fernández, J.I.; López-Roca, J.M.; Gómez-Plaza, E. Improving grape phenolic content and wine chromatic characteristics through the use of two different elicitors: Methyl jasmonate versus benzothiadiazole. J. Agric. Food Chem. 2012, 60, 1283–1290. [Google Scholar] [CrossRef]
- Delaunois, B.; Farace, G.; Jeandet, P.; Clément, C.; Baillieul, F.; Dorey, S.; Cordelier, S. Elicitors as alternative strategy to pesticides in grapevine? Current knowledge on their mode of action from controlled conditions to vineyard. Environ. Sci. Pollut. Res. 2014, 21, 4837–4846. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-García, Y.; Gómez-Plaza, E. Elicitors: A tool for improving fruit phenolic content. Agriculture 2013, 3, 33–52. [Google Scholar] [CrossRef] [Green Version]
- Boller, T.; Felix, G. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 2009, 60, 379–407. [Google Scholar] [CrossRef]
- Belhadj, A.; Saigne, C.; Telef, N.; Cluzet, S.; Bouscaut, J.; Corio-Costet, M.F.; Mérillon, J.M. Methyl jasmonate induces defense responses in grapevine and triggers protection against Erysiphe necator. J. Agric. Food Chem. 2006, 54, 9119–9125. [Google Scholar] [CrossRef]
- Vezzulli, S.; Civardi, S.; Ferrari, F.; Bavaresco, L. Methyl jasmonate treatment as a trigger of resveratrol synthesis in cultivated grapevine. Am. J. Enol. Vitic. 2007, 58, 530–533. [Google Scholar]
- Ruiz-García, Y.; López-Roca, J.M.; Bautista-Ortín, A.B.; Gil-Muñoz, R.; Gómez-Plaza, E. Effect of combined use of benzothiadiazole and methyl jasmonate on volatile compounds of Monastrell wine. Am. J. Enol. Vitic. 2014, 65, 238–243. [Google Scholar] [CrossRef]
- Shahab, M.; Roberto, S.R.; Ahmed, S.; Colombo, R.C.; Silvestre, J.P.; Koyama, R.; De Souza, R.T. Anthocyanin accumulation and color development of “Benitaka” table grape subjected to exogenous abscisic acid application at different timings of ripening. Agronomy 2019, 9, 164. [Google Scholar] [CrossRef] [Green Version]
- Giribaldi, M.; Hartung, W.; Schubert, A. The effects of abscisic acid on grape berry ripening are affected by the timing of treatment. Int. J. Vine Wine Sci. 2010, 44, 9–15. [Google Scholar]
- Shahab, M.; Roberto, S.R.; Ahmed, S.; Colombo, R.C.; Silvestre, J.P.; Koyama, R.; de Souza, R.T. Relationship between anthocyanins and skin color of table grapes treated with abscisic acid at different stages of berry ripening. Sci. Hortic. 2020, 259, 108859. [Google Scholar] [CrossRef]
- Peppi, M.C.; Fidelibus, M.W.; Dokoozlian, N.K. Timing and concentration of abscisic acid applications affect the quality of “Crimson seedless” grapes. Int. J. Fruit Sci. 2007, 7, 71–83. [Google Scholar] [CrossRef]
- Yamamoto, L.Y.; Koyama, R.; De Assis, A.M.; Borges, W.F.S.; De Oliveira, I.R.; Roberto, S.R. Color of berry and juice of “Isabel” grape treated with abscisic acid in different ripening stages. Pesqui. Agropecu. Bras. 2015, 50, 1160–1167. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.T.; Goto-Yamamoto, N.; Kobayashi, S.; Esaka, M. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci. 2004, 167, 247–252. [Google Scholar] [CrossRef]
- Gómez-Plaza, E.; Bautista-Ortín, A.B.; Ruiz-García, Y.; Fernández-Fernández, J.I.; Gil-Muñoz, R. Effect of elicitors on the evolution of grape phenolic compounds during the ripening period. J. Sci. Food Agric. 2017, 97, 977–983. [Google Scholar] [CrossRef]
- SIAM Sistema de Información Agrario de Murcia. Available online: http://siam.imida.es/apex/f?p=101:46:5540041647757103 (accessed on 20 December 2019).
- Coombe, B.G.; Bishop, G.R. Development of the grape berry. II. Changes in diameter and deformability during veraison. Aust. J. Agric. Res. 1980, 31, 499–509. [Google Scholar] [CrossRef]
- Reyero, J.R.; Garijo, J.; Pardo, F.; Salinas, M.R. Influencia del riego excesivo en la producción y en el contenido polifenólico de diferentes variedades viníferas. Enólogos 1999, 3, 17–21. [Google Scholar]
- Gerós, H.; Chaves, M.M.; Delrot, S. The Biochemistry of the Grape Berry; Gerós, H., Chaves, M.M., Delrot, S., Eds.; Bentham Science Publishers Ltd.: Soest, The Netherlands, 2012; ISBN 978-1-60805-360-5. [Google Scholar]
- Flamini, R.; Mattivi, F.; De Rosso, M.; Arapitsas, P.; Bavaresco, L. Advanced knowledge of three important classes of grape phenolics: Anthocyanins, stilbenes and flavonols. Int. J. Mol. Sci. 2013, 14, 19651–19669. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Pérez, A.A. Técnicas Enológicas de frío y Enzimáticas Aplicadas a la Extractabilidad de Syrah, Cabernet Sauvignon y Monastrell. Ph.D. Thesis, Universidad de Murcia, Murcia, Spain, 2013. [Google Scholar]
- Ortega-Regules, A. Antocianos, Taninos y Composición de la Pared Celular en Distintas Variedades de uva. Evolución Durante la Maduración e Implicaciones Tecnológicas. Ph.D. Thesis, Universidad de Murcia, Murcia, Spain, 2006. [Google Scholar]
- Paladines-Quezada, D.F.; Moreno-Olivares, J.D.; Fernández-Fernández, J.I.; Bautista-Ortín, A.B.; Gil-Muñoz, R. Influence of methyl jasmonate and benzothiadiazole on the composition of grape skin cell walls and wines. Food Chem. 2019, 277, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Portu, J.; Santamaría, P.; López-Alfaro, I.; López, R.; Garde-Cerdán, T. Methyl jasmonate foliar application to tempranillo vineyard improved grape and wine phenolic content. J. Agric. Food Chem. 2015, 63, 2328–2337. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Portu, J.; López, R.; Santamaría, P. Effect of methyl jasmonate application to grapevine leaves on grape amino acid content. Food Chem. 2016, 203, 536–539. [Google Scholar] [CrossRef]
- Jackson, R.S. Wine Science: Principles and Applications, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Bergqvist, J.; Dokoozlian, N.; Ebisuda, N. Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the Central San Joaquin Valley of California. Am. J. Enol. Vitic. 2001, 52, 1–7. [Google Scholar]
- Spayd, S.E.; Tarara, J.M.; Mee, D.L.; Ferguson, J.C. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. Am. J. Enol. Vitic. 2002, 53, 171–182. [Google Scholar]
- Portu, J.; López, R.; Santamaría, P.; Garde-Cerdán, T. Methyl jasmonate treatment to increase grape and wine phenolic content in Tempranillo and Graciano varieties during two growing seasons. Sci. Hortic. 2018, 240, 378–386. [Google Scholar] [CrossRef]
- Fernández-Marín, M.I.; Puertas, B.; Guerrero, R.F.; García-Parrilla, M.C.; Cantos-Villar, E. Preharvest methyl jasmonate and postharvest UVC treatments: Increasing stilbenes in wine. J. Food Sci. 2014, 79. [Google Scholar] [CrossRef]
- D’Onofrio, C.; Matarese, F.; Cuzzola, A. Effect of methyl jasmonate on the aroma of Sangiovese grapes and wines. Food Chem. 2018, 242, 352–361. [Google Scholar] [CrossRef]
- Fernandez-Marin, M.I.; Guerrero, R.F.; Puertas, B.; Garcia-Parrilla, M.C.; Collado, I.G.; Cantos-Villar, E. Impact of preharvest and postharvest treatment combinations on increase of stilbene content in grape. J. Int. Sci. Vigne Vin 2013, 47, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Gamboa, G.; Pérez-Álvarez, E.P.; Rubio-Bretón, P.; Garde-Cerdán, T. Changes on grape volatile composition through elicitation with methyl jasmonate, chitosan, and a yeast extract in Tempranillo (Vitis vinifera L.) grapevines. Sci. Hortic. 2019, 244, 257–262. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Gutiérrez-Gamboa, G.; Baroja, E.; Rubio-Bretón, P.; Pérez-Álvarez, E.P. Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages. Food Res. Int. 2018, 112, 274–283. [Google Scholar] [CrossRef]
- Romero-Cascales, I.; Ortega-Regules, A.; López-Roca, J.M.; Fernández-Fernández, J.I.; Gómez-Plaza, E. Differences in anthocyanin extractability from grapes to wines according to variety. Am. J. Enol. Vitic. 2005, 56, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Paladines-Quezada, D.F.; Moreno-Olivares, J.D.; Fernández-Fernández, J.I.; Bleda-Sánchez, J.A.; Martínez-Moreno, A.; Gil-Muñoz, R. Elicitors and pre-fermentative cold maceration: Effects on polyphenol concentration in Monastrell grapes and wines. Biomolecules 2019, 9, 671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamane, T.; Jeong, S.T.; Goto-Yamamoto, N.; Koshita, Y.; Kobayashi, S. Effects of temperature on anthocyanin biosynthesis in grape berry skins. Am. J. Enol. Vitic. 2006, 57, 54–59. [Google Scholar]
- Vivas de Gaulejac, N.; Vivas, N.; Guerra, C.; Nonier, M. Anthocyanin in grape skins during the maturation of Vitis vinifera L. cv. Cabernet Sauvignon and Merlot Noir from different Bordeaux terroirs. J. Int. Sci. Vigne Vin 2001, 35, 149–156. [Google Scholar] [CrossRef]
- Cacho, J.; Fernandez, P.; Ferreira, V.; Castells, J.E. Evolution of five anthocyanidin-3-glucosides in the skin of the Tempranillo, Moristel, and Garnacha grape varieties and influence of climatological variables. Am. J. Enol. Vitic. 1992, 432, 44–248. [Google Scholar]
- Romero-Azorín, P.; García-García, J.; Fernández-Fernández, J.I.; Gil-Muñoz, R.; del Amor Saavedra, F.; Martínez-Cutillas, A. Improving berry and wine quality attributes and vineyard economic efficiency by long-term deficit irrigation practices under semiarid conditions. Sci. Hortic. 2016, 203, 69–85. [Google Scholar] [CrossRef]
- O’Donnell, P.J.; Schmelz, E.; Block, A.; Miersch, O.; Wasternack, C.; Jones, J.B.; Klee, H.J. Multiple hormones act sequentially to mediate a susceptible tomato pathogen defense response. Plant Physiol. 2003, 133, 1181–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Considine, M.; Croft, K.; Gordon, C.; Ching, S. Salicylic acid overrides the effect of methyl jasmonate on the total antioxidant capacity of table grapes. Acta Hortic. 2009, 841, 495–498. [Google Scholar] [CrossRef]
- Iriti, M.; Rossoni, M.; Borgo, M.; Faoro, F. Benzothiadiazole enhances resveratrol and anthocyanin biosynthesis in grapevine, meanwhile improving resistnce to Botrytis cinerea. J. Agric. Food Chem. 2004, 52, 4406–4413. [Google Scholar] [CrossRef]
- Matsushima, J.; Hiratsuka, S.; Taniguchi, N.; Wada, R.; Suzaki, N. Anthocyanin accumulation and sugar content in the skin of grape cultivar Olympia treated with ABA. J. Jpn. Soc. Hortic. Sci. 1989, 58, 551–556. [Google Scholar] [CrossRef] [Green Version]
- Bautista-Ortín, A.B.; Martínez-Hernández, A.; Ruiz-García, Y.; Gil-Muñoz, R.; Gómez-Plaza, E. Anthocyanins influence tannin-cell wall interactions. Food Chem. 2016, 206, 239–248. [Google Scholar] [CrossRef]
- Fernandes, A.; Oliveira, J.; Teixeira, N.; Mateus, N.; De Freitas, V. A review of the current knowledge of red wine colour. J. Int. Sci. Vigne Vin 2017, 51, 1–21. [Google Scholar] [CrossRef]
- Gómez-Plaza, E.; Gil-Muñoz, R.; López-Roca, J.M.; Martínez-Cutillas, A.; Fernández-Fernández, J.I. Phenolic compounds and color stability of red wines: Effect of skin maceration time. Am. J. Enol. Vitic. 2001, 52, 266–270. [Google Scholar] [CrossRef]
- D.O.P. Jumilla Denominación de Origen Protegida Vinos de Jumilla. Available online: https://vinosdejumilla.org/wp-content/uploads/2017/03/Informacion-general-D-O-Jumilla-2017.pdf (accessed on 12 December 2020).
- Glories, Y. La couleur des vins rouges. lre partie: Les équilibres des anthocyanes et des tanins. OENO One 1984, 18, 195–217. [Google Scholar] [CrossRef] [Green Version]
Year | Control | Veraison | Mid Ripening | |||||
---|---|---|---|---|---|---|---|---|
MeJ | BTH | MeJ + BTH | MeJ | BTH | MeJ + BTH | |||
Weight 100 berries (g) | 147.8 ± 6.2 a | 146.7 ± 7.8 a | 143.1 ± 10.7 a | 162.9 ± 7.1 bc | 156.1 ± 6.1 b | 166.2 ± 9.5 c | 160.6 ± 7.2 bc | |
°Brix | 25.9 ± 0.4 abc | 25.2 ± 0.3 ab | 25.6 ± 0.7 abc | 26.1± 0.5 bc | 25.0 ± 0.6 a | 26.7 ± 0.6 c | 25.5 ± 0.7 ab | |
pH | 3.9 ± 0.0 a | 3.8 ± 0.0 a | 3.8 ± 0.1 a | 3.9 ± 0.0 a | 3.8 ± 0.1 a | 3.9 ± 0.1 a | 3.9 ± 0.1 a | |
2016 | Total acidity (g/L) | 2.9 ± 0.4 a | 2.8 ± 0.3 a | 2.7 ± 0.1 a | 2.7 ± 0.3 a | 2.6 ± 0.4 a | 2.8 ± 0.1 a | 2.7 ± 0.1 a |
Tartaric acid (g/L) | 4.1 ± 0.7 a | 4.1 ± 0.8 a | 3.8 ± 0.4 a | 4.0 ± 0.5 a | 3.8 ± 0.5 a | 3.8 ±0.5 a | 3.9 ± 0.3 a | |
Malic acid (g/L) | 1.5 ± 0.2 b | 1.3 ± 0.0 ab | 1.2 ± 0.1 a | 1.5 ± 0.2 b | 1.2 ± 0.1 a | 1.5 ± 0.1 b | 1.5 ± 0.1 b | |
Weight 100 berries (g) | 160.0 ± 7.2 a | 157.4 ± 7.7 a | 166.3 ± 10.3 a | 166.7 ± 3.3 a | 182.3 ± 0.8 b | 178.0 ± 4.3 b | 161.4 ± 3.1 a | |
°Brix | 22.6 ± 0.6 b | 21.5 ± 0.9 a | 22.8 ± 1.1 b | 22.2 ± 0.4 ab | 22.6 ± 0.5 b | 24.2 ± 0.6 c | 22.1 ± 0.6 ab | |
pH | 3.9 ± 0.1 c | 3.8 ± 0.1 ab | 3.9 ± 0.1 bc | 3.7 ± 0.0 a | 3.8 ± 0.1 abc | 3.8 ± 0.1 abc | 3.8 ± 0.1 ab | |
2017 | Total acidity (g/L) | 2.5 ± 0.4 a | 3.1 ± 0.5 a | 2.7 ± 0.4 a | 3.1 ± 0.1 a | 2.8 ± 0.4 a | 2.8 ± 0.3 a | 2.9 ± 0.3 a |
Tartaric acid (g/L) | 3.7 ± 0.5 a | 4.5 ± 1.5 a | 3.9 ± 0.6 a | 4.0 ± 0.7 a | 4.0 ± 0.6 a | 3.9 ± 0.5 a | 3.9 ± 0.6 a | |
Malic acid (g/L) | 1.2 ± 0.0 ab | 1.3 ± 0.1 bc | 1.1 ± 0.1 a | 1.3 ± 0.1 bc | 1.2 ± 0.1 abc | 1.3 ± 0.1 bc | 1.2 ± 0.1 abc |
Year | Anthocyanins (µg/g Skin) | Control | Veraison | Mid Ripening | ||||
---|---|---|---|---|---|---|---|---|
MeJ | BTH | MeJ + BTH | MeJ | BTH | MeJ + BTH | |||
Dp | 1129 ± 161 a | 1457 ± 255 b | 1361 ± 34 b | 1401 ± 57 b | 1349 ± 51 ab | 1274 ± 34 ab | 1423 ± 110 b | |
Cy | 1271 ± 6 ab | 1442 ± 19 abc | 1296 ± 40 ab | 1708 ± 21 bc | 1425± 61 ab | 1068 ± 225 a | 1858 ± 612 c | |
Pt | 1276 ± 81 a | 1667 ± 117 d | 1609 ± 16 d | 1492 ± 8 b | 1551 ± 56 bc | 1482 ± 33 b | 1624 ± 69 d | |
Pn | 1387 ± 102 ab | 1731 ± 6 ab | 1673 ± 24 ab | 1684 ± 17 ab | 1610 ± 110 ab | 1333 ± 291 a | 1786 ± 492 b | |
Mv | 4108 ± 195 a | 5579 ± 587 cd | 5714 ± 171 d | 4535 ± 367 ab | 5247± 305 bcd | 5204 ± 165 bcd | 4932 ± 727 bc | |
Dp Ac | 31 ± 9 a | 46 ± 4 b | 42 ± 4 ab | 44 ± 3 b | 45 ± 8 b | 51 ± 10 b | 49 ± 8 b | |
Cy Ac | 30 ± 3 a | 44 ± 3 bc | 39 ± 4 ab | 45 ± 3 bc | 43 ± 4 bc | 35 ± 7 ab | 52 ± 13 c | |
Pt Ac | 54 ± 7 a | 90 ± 9 c | 85 ± 8 bc | 75 ± 4 b | 73 ± 4 b | 80 ± 4 bc | 75 ± 6 b | |
2016 | Pn Ac | 41 ± 5 a | 59 ± 4 b | 58 ± 9 b | 52 ± 9 ab | 54 ± 7 ab | 49 ± 10 ab | 62 ± 3 b |
Mv Ac | 208 ± 22 a | 311 ± 18 cd | 315 ± 13 d | 260 ± 20 b | 286 ± 20 bcd | 315 ± 18 d | 275 ± 29 bc | |
Mv Coum cis | 27 ± 5 a | 33 ± 3 bc | 41 ± 3 d | 30 ± 3 ab | 34 ± 2 bc | 34 ± 1 bc | 37 ± 3 cd | |
Dp Coum | 113 ± 23 a | 133 ± 9 b | 161 ± 3 c | 138 ± 8 b | 151± 4 bc | 143 ± 10 bc | 146 ± 8 bc | |
Mv Caf | 26 ± 0 a | 28 ± 4 ab | 32 ± 2 ab | 26 ± 1 a | 32 ± 2 ab | 32 ± 4 ab | 34 ± 7 b | |
Cy Coum | 141 ± 2 a | 149 ± 10 ab | 164 ± 9 ab | 174 ± 9 bc | 157 ± 9 ab | 143 ± 17 a | 196 ± 35 c | |
Pt Coum | 196 ± 31 a | 224 ± 23 ab | 291 ± 4 e | 228 ± 15 bc | 262 ± 7 de | 255 ± 14 bcd | 259 ± 17 cde | |
Pn Coum | 163 ± 17 ab | 160 ± 41 a | 211 ± 34 ab | 180 ± 26 ab | 190± 16 ab | 186 ± 27 ab | 213 ± 23 b | |
Mv Coum trans | 808 ± 70 a | 1105 ± 125 bc | 1251 ± 39 c | 932 ± 92 a | 1115 ± 125 bc | 1154 ± 25 bc | 1078 ± 117 b | |
Dp | 759 ± 21 a | 859 ± 120 ab | 783 ± 56 a | 1039 ± 49 d | 1093 ± 10 d | 986 ± 45 cd | 912 ± 79 bc | |
Cy | 511 ± 42 a | 1145 ± 270 b | 573 ± 124 a | 1120 ± 70 b | 1925 ± 56 c | 867 ± 93 ab | 1964 ± 382 c | |
Pt | 889 ± 17 a | 846 ± 120 a | 885 ± 55 a | 1061 ± 43 bc | 1130 ± 24 c | 1094 ± 66 bc | 1009 ± 60 b | |
Pn | 567 ± 52 a | 749 ± 137 b | 539 ± 43 a | 995 ± 1 b | 1578 ± 45 d | 1026 ± 98 c | 1489 ± 101 c | |
Mv | 3048 ± 187 bc | 2080 ± 246 a | 2675 ± 295 b | 2968 ± 106 b | 2975 ± 73 b | 3447 ± 315 c | 2765 ± 81 b | |
Dp Ac | 29 ± 2 a | 30 ± 2 a | 31 ± 1 ab | 32 ± 2 abc | 37 ± 1 c | 36 ± 4 bc | 36 ± 1 bc | |
Cy Ac | 22 ± 1 a | 33 ± 4 b | 23 ± 1 a | 35 ± 1 b | 59 ± 1 c | 35 ± 2 b | 58 ± 7 c | |
Pt Ac | 53 ± 2 b | 46 ± 8 a | 52 ± 3 b | 58 ± 1 cd | 60 ± 3 de | 66 ± 3 e | 59 ± 2 d | |
2017 | Pn Ac | 24 ± 1 a | 24 ± 3 a | 23 ± 1 a | 32 ± 0 b | 54 ± 1 d | 42 ± 2 c | 51 ± 3 d |
Mv Ac | 217 ± 15 cd | 133 ± 14 a | 176 ± 21 b | 173 ± 2 b | 194 ± 0 bc | 225 ± 20 d | 185 ± 18 b | |
Mv Coum cis | 34 ± 2 c | 23 ± 2 a | 31 ± 4 bc | 25 ± 1 a | 25 ± 1 a | 27 ± 2 ab | 25 ± 1 a | |
Dp Coum | 113 ± 2 c | 82 ± 14 a | 105 ± 10 bc | 99 ± 9 bc | 93 ± 2 ab | 100 ± 6 bc | 96 ± 4 ab | |
Mv Caf | 26 ± 6 a | 18 ± 5 a | 19 ± 1 a | 17 ± 2 a | 18 ± 1 a | 25 ± 7 a | 22 ± 6 a | |
Cy Coum | 89 ± 10 a | 93 ± 8 ab | 86 ± 8 a | 113 ± 9 b | 134 ± 2 c | 107 ± 13 ab | 137 ± 17 c | |
Pt Coum | 199 ± 6 d | 113 ± 25 a | 175 ± 24 cd | 141 ± 9 b | 154 ± 4 bc | 166 ± 12 bc | 153 ± 7 bc | |
Pn Coum | 94 ± 8 bc | 68 ± 7 a | 83 ± 10 b | 102 ± 4 c | 140 ± 3 e | 127 ± 4 d | 125 ± 3 d | |
Mv Coum trans | 769 ± 58 c | 378 ± 50 a | 627 ± 117 b | 513 ± 26 b | 545 ± 0 b | 632 ± 53 b | 534 ± 60 b |
Veraison | Mid-Ripening | |||||||
---|---|---|---|---|---|---|---|---|
Year | Anthocyanins | Control | MeJ | BTH | MeJ + BTH | MeJ | BTH | MeJ + BTH |
Dp | 46 ± 2 bc | 54 ± 0 de | 58 ± 1 ef | 60 ± 0 f | 50 ± 4 cd | 42 ± 3 b | 33 ± 2 a | |
Cy | 24 ± 1 bc | 21 ± 2 ab | 22 ± 2 abc | 26 ± 0 c | 32 ± 3 d | 20 ± 2 ab | 18 ± 1 a | |
Pt | 79 ± 1 b | 89 ± 1 cd | 95 ± 4 d | 93 ± 4 d | 81 ± 8 bc | 71 ± 6 b | 59 ± 3 a | |
Pn | 58 ± 1 ab | 49 ± 7 a | 54 ± 7 ab | 54 ± 7 ab | 64 ± 3 b | 52 ± 1 ab | 46 ± 3 a | |
Mv | 319 ± 4 bc | 368 ± 16 de | 403 ± 19 e | 353 ± 5 cd | 325 ± 16 bc | 308 ± 24 ab | 275 ±14 a | |
Vitisin A | 7.1 ± 3.0 b | 5.3 ± 0.1 ab | 4.8 ± 0.3 ab | 5.9 ± 0.5 ab | 5.3 ± 0.2 ab | 4.7 ± 0.2 ab | 3.9 ± 0.5 a | |
Dp acetate | 20 ± 10 a | 13 ± 1 a | 13 ± 1 a | 14 ± 0 a | 12 ± 1 a | 11 ± 1 a | 10 ± 2 a | |
Vitisin B | 8.8 ± 4.4 a | 10.0 ± 3.7 a | 8.2 ± 2.3 a | 11 ± 3 a | 8.6 ± 2.9 a | 7.9 ± 2.3 a | 7.1 ± 1.9 a | |
2016 | Acetyl vitisin A | 9.4 ± 8.9 a | 6.9 ± 4.5 a | 6.4 ± 4.2 a | 4.6 ± 1.8 a | 7.2 ± 5.2 a | 5.0 ± 0.1 a | 3.6 ± 1.2 a |
Cy acetate | 12 ± 5 a | 9.4 ± 0.2 a | 9.0 ± 0.6 a | 9.6 ± 0.7 a | 9.2 ± 0.1 a | 8.3 ± 0.1 a | 7.3 ± 0.7 a | |
Pt acetate | 7.2 ± 5.9 a | 6.5 ± 4.1 a | 5.1 ± 2.6 a | 6.6 ± 4.4 a | 6.2 ± 0.8 a | 4.8 ± 1.2 a | 5.1 ± 2.8 a | |
Pn acetate | 15 ± 2 a | 15 ± 1 a | 17 ± 2 a | 14 ± 1 a | 15 ± 3 a | 14 ± 2 a | 13 ± 3 a | |
Mv acetate + Dp coum | 25 ± 6 a | 25 ± 1 a | 26 ± 1 a | 23 ± 1 a | 22 ± 1 a | 22 ± 1 a | 21 ± 2 a | |
Pn caf | 9.3 ± 4.0 a | 7.6 ± 0.4 a | 5.9 ± 0.1 a | 7.4 ± 0.7 a | 5.8 ± 0.2 a | 6.1 ± 0.1 a | 5.8 ± 0.6 a | |
Cy caf + coum | 11 ± 4 a | 8.4 ± 0.5 a | 9.3 ± 0.5 a | 8.3 ± 0.9 a | 10 ± 1 a | 8.5 ± 0.2 a | 7.7 ± 0.7 a | |
Pt coum | 15 ± 5 ab | 14 ± 1 ab | 18 ± 2 b | 12 ± 0 ab | 14 ± 2 ab | 12 ± 1 ab | 11 ± 2 a | |
Mv coum cis | 8.8 ± 2.0 b | 4.0 ± 0.2 a | 3.9 ± 0.9 a | 4.2 ± 1.3 a | 3.9 ± 0.0 a | 2.9 ± 0.7 a | 3.5 ± 0.1 a | |
Pn coum | 23 ± 5 b | 10 ± 4 a | 11 ± 2 a | 7.9 ± 0.4 a | 10 ± 1 a | 10 ± 1 a | 8.5 ± 1.6 a | |
Mv coum trans | 42 ± 0 ab | 50 ± 1 c | 65 ± 1 d | 38 ± 3 a | 50 ± 2 c | 43 ± 4 ab | 44 ± 3 bc | |
Dp | 22 ± 2 a | 26 ± 1 ab | 37 ± 3 c | 31 ± 0 bc | 34 ± 3 bc | 33 ± 0 bc | 29 ± 6 ab | |
Cy | 9.9 ± 0.1 a | 16 ± 2 ab | 17 ± 1 ab | 19 ± 1 b | 30 ± 2 c | 17 ± 0 ab | 24 ± 8 bc | |
Pt | 41 ± 4 a | 41 ± 5 a | 61 ± 10 b | 46 ± 0 a | 52 ± 2 ab | 53 ± 1 ab | 46 ± 8 a | |
Pn | 25 ± 1 a | 28 ± 5 ab | 42 ± 3 bc | 33 ± 1 abc | 55 ± 4 d | 41 ± 0 bc | 46 ± 12 cd | |
Mv | 203 ± 18 ab | 164 ± 15 a | 264 ± 36 c | 179 ± 3 a | 204 ± 3 ab | 229 ± 13 bc | 196 ± 18 ab | |
Vitisin A | 3.8 ± 1.0 a | 3.6 ± 0.5 a | 4.7 ± 0.3 a | 4.1 ± 0.3 a | 4.8 ± 0.7 a | 3.7 ± 0.2 a | 3.7 ± 1.1 a | |
Dp acetate | 6.2 ± 0.1 a | 6.2 ± 1.0 a | 8.7 ± 0.9 bc | 6.9 ± 0.1 a | 7.4 ± 1.1 ab | 9.0 ± 0.4 c | 7.2 ± 0.2 ab | |
Vitisin B | 1.9 ± 0.2 a | 2.0 ± 0.1 a | 2.2 ± 0.2 a | 2.2 ± 0.0 a | 2.4 ± 0.1 a | 2.5 ± 0.2 a | 2.3 ± 0.5 a | |
2017 | Acetyl vitisin A | 4.5 ± 0.3 a | 4.4 ± 0.5 a | 5.0 ± 0.1 ab | 4.9 ± 0.0 ab | 5.0 ± 0.2 a | 5.7 ± 0.2 b | 4.7 ± 0.9 a |
Cy acetate | 4.1 ± 0.5 a | 5.4 ± 1.8 a | 9.8 ± 0.9 b | 8.3 ± 0.1 b | 11 ± 0 b | 10 ± 0 b | 9.4 ± 1.8 b | |
Pt acetate | 5.3 ± 0.4 a | 4.9 ± 0.4 a | 6.9 ± 0.0 b | 5.3 ± 0.0 a | 6.6 ± 0.2 b | 6.8 ± 0.3 b | 6.0 ± 0.9 ab | |
Pn acetate | 8.0 ± 0.8 ab | 6.8 ± 1.0 a | 11 ± 1 c | 7.7 ± 0.2 ab | 11 ± 0 c | 11 ± 1 c | 9.7 ± 1.8 bc | |
Mv acetate + Dp coum | 15 ± 1 ab | 12 ± 3 a | 18 ± 2 b | 12 ± 0 a | 16 ± 1 ab | 17 ± 1 b | 15 ± 1 ab | |
Pn caf | 3.8 ± 0.1 cd | 2.7 ± 0.1 a | 4.5 ± 0.3 e | 3.0 ± 0.1 ab | 3.6 ± 0.1 bc | 4.2 ± 0.5 de | 3.5 ± 0.1 bc | |
Cy caf + coum | 4.1 ± 0.0 a | 3.8 ± 0.4 a | 6.3 ± 0.6 c | 4.5 ± 0.1 ab | 7.1 ± 0.0 c | 5.9 ± 0.0 c | 5.7 ± 1.2 bc | |
Pt coum | 6.8 ± 0.7 bc | 4.6 ± 0.2 a | 9.3 ± 1.3 d | 5.1 ± 0.2 ab | 7.7 ± 0.3 cd | 8.0 ± 0.7 cd | 7.0 ± 1.3 bc | |
Mv coum cis | 2.9 ± 0.2 ab | 2.2 ± 0.0 a | 3.1 ± 0.3 b | 2.1 ± 0.3 a | 2.8 ± 0.2 ab | 3.2 ± 0.7 b | 2.8 ± 0.0 ab | |
Pn coum | 4.2 ± 0.0 a | 3.0 ± 0.4 a | 7.1 ± 0.6 c | 3.6 ± 0.1 a | 6.7 ± 0.2 bc | 6.8 ± 0.0 bc | 5.6 ± 1.2 b | |
Mv coum trans | 25 ± 3 a | 15 ± 1 a | 32 ± 4 d | 16 ± 1 ab | 23 ± 1 c | 27 ± 3 cd | 22 ± 3 bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paladines-Quezada, D.F.; Fernández-Fernández, J.I.; Moreno-Olivares, J.D.; Bleda-Sánchez, J.A.; Gómez-Martínez, J.C.; Martínez-Jiménez, J.A.; Gil-Muñoz, R. Application of Elicitors in Two Ripening Periods of Vitis vinifera L. cv Monastrell: Influence on Anthocyanin Concentration of Grapes and Wines. Molecules 2021, 26, 1689. https://doi.org/10.3390/molecules26061689
Paladines-Quezada DF, Fernández-Fernández JI, Moreno-Olivares JD, Bleda-Sánchez JA, Gómez-Martínez JC, Martínez-Jiménez JA, Gil-Muñoz R. Application of Elicitors in Two Ripening Periods of Vitis vinifera L. cv Monastrell: Influence on Anthocyanin Concentration of Grapes and Wines. Molecules. 2021; 26(6):1689. https://doi.org/10.3390/molecules26061689
Chicago/Turabian StylePaladines-Quezada, Diego F., José I. Fernández-Fernández, Juan D. Moreno-Olivares, Juan A. Bleda-Sánchez, José C. Gómez-Martínez, José A. Martínez-Jiménez, and Rocío Gil-Muñoz. 2021. "Application of Elicitors in Two Ripening Periods of Vitis vinifera L. cv Monastrell: Influence on Anthocyanin Concentration of Grapes and Wines" Molecules 26, no. 6: 1689. https://doi.org/10.3390/molecules26061689
APA StylePaladines-Quezada, D. F., Fernández-Fernández, J. I., Moreno-Olivares, J. D., Bleda-Sánchez, J. A., Gómez-Martínez, J. C., Martínez-Jiménez, J. A., & Gil-Muñoz, R. (2021). Application of Elicitors in Two Ripening Periods of Vitis vinifera L. cv Monastrell: Influence on Anthocyanin Concentration of Grapes and Wines. Molecules, 26(6), 1689. https://doi.org/10.3390/molecules26061689