Novel Processes for the Extraction of Phenolic Compounds from Olive Pomace and Their Protection by Encapsulation
Abstract
:1. Introduction
2. Valorization of Olive Pomace
2.1. Extraction of Phenolic Compounds from Olive Pomace
2.1.1. Conventional Extraction
2.1.2. Ultrasound-Assisted Extraction (UAE)
2.1.3. Microwave-Assisted Extraction (MAE)
2.1.4. High Hydrostatic Pressure-Assisted Extraction (HHPAE)
2.1.5. Extraction by Using NADES
2.2. Protection of Phenolic Compounds of Olive Pomace
2.2.1. Microencapsulation (Freeze-Drying, Spray-Drying) of Phenolic Compounds from Olive Pomace
2.2.2. Protection of Phenolic Compounds of Olive Pomace by Incorporation in Nanoemulsion Formulations
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lourenço, S.C.; Mold, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewer, M.S. Natural Antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef] [Green Version]
- Chanioti, S.; Tzia, C. Extraction of phenolic compounds from olive pomace by using natural deep eutectic solvents and innovative extraction techniques. Innov. Food Sci. Emerg. Technol. 2018, 48, 228–239. [Google Scholar] [CrossRef]
- Omoni, A.O.; Aluko, R.E. The anti-carcinogenic and effects of lycopene: A review. Trends Food Sci. Technol. 2005, 16, 344–350. [Google Scholar] [CrossRef]
- Peschel, W.; Sanchez-Rabaneda, F.; Diekmann, W.; Plescher, A.; Gartzıa, I.; Lamuela-ravento, R.; Buxaderas, S.; Codina, C. An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem. 2006, 97, 137–150. [Google Scholar] [CrossRef]
- Mitterer-daltoé, M.; Bordim, J.; Lise, C.; Breda, L.; Casagrande, M. Consumer awareness of food antioxidants. Synthetic vs. Natural. Food Sci. Technol. 2020, 2061, 1–5. [Google Scholar]
- Chanioti, S.; Liadakis, G.; Tzia, C. Solid-liquid extraction. In Food Engineering Handbook; Varzakas, T., Tzia, C., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 253–286. [Google Scholar]
- Guo, X.; Zhao, W.; Liao, X.; Hu, X.; Wu, J.; Wang, X. Extraction of pectin from the peels of pomelo by high-speed shearing homogenization and its characteristics. LWT Food Sci. Technol. 2017, 79, 640–646. [Google Scholar] [CrossRef]
- Jerman, T.; Trebse, P.; Vodopivec, M. Ultrasound-assisted solid liquid extraction (USLE) of olive fruit (Olea europaea) phenolic compounds. Food Chem. 2010, 123, 175–182. [Google Scholar] [CrossRef]
- Shouqin, Z.; Jun, X.; Changzheng, W. High hydrostatic pressure extraction of flavonoids from propolis. J. Chem. Technol. Biotechnol. 2005, 80, 50–54. [Google Scholar] [CrossRef]
- Chanioti, S.; Tzia, C. Optimization of ultrasound-assisted extraction of oil from olive pomace using response surface technology: Oil recovery, unsaponifiable matter, total phenol content and antioxidant activity. LWT Food Sci. Technol. 2017, 79, 178–189. [Google Scholar] [CrossRef]
- Jafari, S.M. (Ed.) Nanoencapsulation Technologies for the Food and Nutraceutical Industries; Academic Press: Cambridge, MA, USA, 2017; ISBN 9780128094365. [Google Scholar]
- Casazza, A.A.; Aliakbarian, B.; Faveri, D.D.E.; Fiori, L.; Perego, P. Antioxidants from winemaking wastes: A study on extraction parameters using response surfase methodology. J. Food Biochem. 2012, 36, 28–37. [Google Scholar] [CrossRef]
- Sharma, S.; Cheng, S.F.; Bhattacharya, B.; Chakkaravarthi, S. Efficacy of free and encapsulated natural antioxidants in oxidative stability of edible oil: Special emphasis on nanoemulsion-based encapsulation. Trends Food Sci. Technol. 2019, 91, 305–318. [Google Scholar] [CrossRef]
- Chatzidaki, M.D.; Mitsou, E.; Yaghmur, A.; Xenakis, A.; Papadimitriou, V. Formulation and characterization of food-grade microemulsions as carriers of natural phenolic antioxidants. Colloids Surf. A Physicochem. Eng. Asp. 2015, 483, 130–136. [Google Scholar] [CrossRef]
- Asnaashari, M.; Farhoosh, R.; Sharif, A. Antioxidant activity of gallic acid and methyl gallate in triacylglycerols of Kilka fish oil and its oil-in-water emulsion. Food Chem. 2014, 159, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Sessa, M.; Casazza, A.A.; Perego, P.; Tsao, R.; Ferrari, G.; Donsì, F. Exploitation of polyphenolic extracts from grape marc as natural antioxidants by encapsulation in lipid-based nanodelivery systems. Food Bioprocess Technol. 2013, 6, 2609–2620. [Google Scholar] [CrossRef]
- Liu, F.; Ma, D.; Luo, X.; Zhang, Z.; He, L.; Gao, Y.; McClements, D.J. Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol. Food Hydrocoll. 2018, 79, 450–461. [Google Scholar] [CrossRef]
- Valta, K.; Aggeli, E.; Papadaskalopoulou, C.; Panaretou, V.; Sotiropoulos, A.; Malamis, D.; Moustakas, K.; Haralambous, K.-J. Adding value to olive oil production through waste and wastewater treatment and valorisation: The case of greece. Waste Biomass Valorization 2015, 6, 913–925. [Google Scholar] [CrossRef]
- Seçmeler, Ö.; Güçlü, Ö.; Fernández-bolaños, J.; Rodríguez-gutiérrez, G. Effect of subcritical water and steam explosion pretreatments on the recovery of sterols, phenols and oil from olive pomace. Food Chem. 2018, 265, 298–307. [Google Scholar] [CrossRef] [Green Version]
- Cioffi, G.; Sabina, M.; Caprariis, P.; Braca, A.; Severino, L.; Tommasi, N. Phenolic compounds in olive oil and olive pomace from Cilento (Campania, Italy) and their antioxidant activity. Food Chem. 2010, 121, 105–111. [Google Scholar] [CrossRef]
- Chanioti, S.; Siamandoura, P.; Tzia, C. Evaluation of extracts prepared from olive oil by-products using microwave-assisted enzymatic extraction: Effect of encapsulation on the stability of final products. Waste Biomass Valorization 2016, 7. [Google Scholar] [CrossRef]
- Nakilcioğlu, E.; Semih, T. The optimization of solid-liquid extraction of polyphenols from olive stone by response surface methodology. J. Food Meas. Charact. 2019, 13, 1497–1507. [Google Scholar] [CrossRef]
- Böhmer-Maas, B.W.; Otero, D.M.; Zambiazi, R.C.; Aranha, B.C. Optimization of the extraction of phenolic compounds from olive pomace using response surface methodology. Rev. Ceres 2020, 67, 181–190. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Alli, I.; Ereifej, K.; Alhamad, M.; Al-Tawaha, A.R.; Rababah, T. Optimisation, characterisation and quantification of phenolic compounds in olive cake. Food Chem. 2010, 123, 117–122. [Google Scholar] [CrossRef]
- Cepo, D.; Radic, K.; Jurmanovic, S.; Jug, M.; Rajkovic, M.; Pedisic, S.; Moslavac, T.; Albahari, P. Valorization of olive pomace-based nutraceuticals as antioxidants in chemical, food, and biological models. Molecules 2018, 23, 2070. [Google Scholar] [CrossRef] [Green Version]
- Mitar, A.; Prlić Kardum, J. Intensification of mass transfer in the extraction process with a nanofluid prepared in a natural deep eutectic solvent. Chem. Eng. Technol. 2020, 43, 2286–2294. [Google Scholar] [CrossRef]
- Garcia Borrego, A.; Rodriguez, J.; Fernandez, B. Extraction of phenolic compounds from olive pomace by Deep Eutectic Solvents (DESs). In Proceedings of the 4th International Conference on Past and Present Research Systems of Green Chemistry, Atlanta, TX, USA, 16–18 October 2017; Volume 3, p. 9889. [Google Scholar]
- Goldsmith, C.D.; Vuong, Q.V.; Stathopoulos, C.E.; Roach, P.D.; Scarlett, C.J. Ultrasound increases the aqueous extraction of phenolic compounds with high antioxidant activity from olive pomace. LWT Food Sci. Technol. 2018, 89, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Nunes, M.A.; Costa, A.S.G.; Bessada, S.; Santos, J.; Puga, H.; Alves, R.C.; Freitas, V.; Oliveira, M.B.P.P. Science of the total environment olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components. Sci. Total Environ. 2018, 644, 229–236. [Google Scholar] [CrossRef]
- Xie, P.; Huang, L.; Zhang, C.; Deng, Y.; Wang, X.; Cheng, J. Enhanced extraction of hydroxytyrosol, maslinic acid and oleanolic acid from olive pomace: Process parameters, kinetics and thermodynamics, and greenness assessment. Food Chem. 2019, 276, 662–674. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Alvarino, T.; Cortina, J.L.; Saurina, J.; Granados, M. Olive mill and winery wastes as viable sources of bioactive compounds: A study on polyphenols recovery. Antioxidants 2020, 9, 1074. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, C.; Zhang, C.; Li, W. Ultrasound-assisted enzyme catalyzed hydrolysis of olive waste and recovery of antioxidant phenolic compounds. Innov. Food Sci. Emerg. Technol. 2017, 44, 224–234. [Google Scholar] [CrossRef]
- Fernández, M.d.L.Á.; Espino, M.; Gomez, F.J.V.; Silva, M.F. Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chem. 2018, 239, 671–678. [Google Scholar] [CrossRef]
- Jurmanović, S.; Jug, M.; Safner, T.; Radić, K.; Domijan, A.M.; Pedisić, S.; Šimić, S.; Jablan, J.; Čepo, D.V. Utilization of olive pomace as a source of polyphenols: Optimization of microwave-assisted extraction and characterization of spray-dried extract. J. Food Nutr. Res. 2019, 58, 51–62. [Google Scholar]
- Andreou, V.; Psarianos, M.; Dimopoulos, G.; Tsimogiannis, D.; Taoukis, P. Effect of pulsed electric fields and high pressure on improved recovery of high-added-value compounds from olive pomace. J. Food Sci. 2020, 85, 1–13. [Google Scholar] [CrossRef]
- Gullon, B.; Lú-chau, T.; Moreira, M.; Lema, J.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Technol. 2017, 67, 220–235. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Sahin, A.; Salmi, R. Ultrasonics Sonochemistry Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrason. Sonochem. 2013, 20, 595–602. [Google Scholar] [CrossRef]
- Gullon, P.; Gullon, B.; Astray, G.; Carpena, M.; Fraga-Corral, M.; Prieto, M.; Simal-Gándara, J. Valorization of by-products from olive oil industry and added-value applications for innovative functional foods. Food Res. Int. 2020, 137, 109683. [Google Scholar] [CrossRef] [PubMed]
- Vitali Čepo, D.; Albahari, P.; Zovko Končić, M.; Radić, K.; Jurmanović, S.; Jug, M. Solvent extraction and chromatographic determination of polyphenols in olive pomace. Food Health Dis. 2017, 6, 7–14. [Google Scholar]
- Kumar, K.; Srivastav, S.; Singh, V. Ultrasonics—Sonochemistry Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Savic, I.M.; Savic Gajic, I.M. Optimization of ultrasound-assisted extraction of polyphenols from wheatgrass (Triticum aestivum L.). J. Food Sci. Technol. 2020, 57, 2809–2818. [Google Scholar] [CrossRef] [PubMed]
- Gajic, I.S.; Savic, I.; Boskov, I.; Žerajić, S.; Markovic, I.; Gajic, D. Optimization of ultrasound-assisted extraction of phenolic compounds from black locust (Robiniae pseudoacaciae) flowers and comparison with conventional methods. Antioxidants 2019, 8, 248. [Google Scholar] [CrossRef] [Green Version]
- Gajic, I.M.S.; Savic, I.M.; Gajic, D.G.; Dosic, A. Ultrasound-assisted extraction of carotenoids from orange peel using olive oil and its encapsulation in ca-alginate beads. Biomolecules 2021, 11, 225. [Google Scholar] [CrossRef]
- Andreou, V.; Dimopoulos, G.; Dermesonlouoglou, E.; Taoukis, P. Application of pulsed electric fields to improve product yield and waste valorization in industrial tomato processing. J. Food Eng. 2020, 270. [Google Scholar] [CrossRef]
- Wei, Z.; Qi, X.; Li, T.; Luo, M.; Wang, W.; Zu, Y.; Fu, Y. Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography. Sep. Purif. Technol. 2015, 149, 237–244. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, F.; Jiang, J.; Qiao, Y.; Wu, T.; Voglmeir, J.; Chen, Z. Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents. Food Chem. 2016, 221, 1400–1407. [Google Scholar] [CrossRef]
- García, A.; Rodríguez-juan, E.; Rodríguez-gutiérrez, G.; Rios, J.; Fernández-bolaños, J. Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chem. 2016, 197, 554–561. [Google Scholar] [CrossRef]
- Fernández-Arche, A.; Marquez-Martín, A.; de la Puerta Vazquez, R.; Perona, J.S.; Terencio, C.; Perez-Camino, C.; Ruiz-Gutierrez, V. Long-chain fatty alcohols from pomace olive oil modulate the release of proinflammatory mediators. J. Nutr. Biochem. 2009, 20, 155–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarone, A.G.; Cazarin, C.B.B.; Marostica, M.R., Jr. Anthocyanins: New techniques and challenges in microencapsulation. Food Res. Int. 2020, 133. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Chambin, O. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- Paini, M.; Aliakbarian, B.; Casazza, A.A.; Lagazzo, A.; Botter, R.; Perego, P. Microencapsulation of phenolic compounds from olive pomace using spray drying: A study of operative parameters. LWT Food Sci. Technol. 2015, 62, 177–186. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandari, B. Comparing the efficiency of protein and maltodextrin on spray drying of bayberry juice. Food Res. Int. 2012, 48, 478–483. [Google Scholar] [CrossRef]
- Aliakbarian, B.; Paini, M.; Alberto, A. Effect of encapsulating agent on physical-chemical characteristics of olive pomace polyphenols-Rich Extracts. Chem. Eng. Trans. 2015, 43, 97–102. [Google Scholar] [CrossRef]
- Shin, G.H.; Kim, J.T.; Park, H.J. Recent Developments in Nanoformulations of Lipophilic Functional Foods. Trends Food Sci Technol. 2015, 46, 144–157. [Google Scholar] [CrossRef]
- Cheong, A.M.; Tan, K.W.; Tan, C.P.; Nyam, K.L. Improvement of physical stability properties of kenaf (Hibiscus cannabinus L.) seed oil-in-water nanoemulsions. Ind. Crop. Prod. 2016, 80, 77–85. [Google Scholar] [CrossRef]
- Kabri, T.; Arab-Tehrany, E.; Belhaj, N.; Linder, M. Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3. J. Nanobiotechnol. 2011, 9, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClements, D.J. Food Emulsions and Principles, Practices, and Techniques, 3rd ed.; CRC Press/Taylor & Francis Group: New York, USA, 2016; ISBN 978-1-4987-2668-9. [Google Scholar]
- Gomes, A.; Costa, A.L.R.; De Assis Perrechil, F.; Da Cunha, R.L. Role of the phases composition on the incorporation of gallic acid in O/W and W/O emulsions. J. Food Eng. 2016, 168, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Souilem, S.; Kobayashi, I.; Neves, M.A.; Sayadi, S.; Ichikawa, S.; Nakajima, M. Preparation of monodisperse food-grade oleuropein-loaded W/O/W emulsions using microchannel emulsification and evaluation of their storage stability. Food Bioprocess Technol. 2014, 7, 2014–2027. [Google Scholar] [CrossRef]
- Donsì, F. Applications of nanoemulsions in foods. In Nanoemulsions: Formulation, Applications, and Characterization; Academic Press: Cambridge, MA, USA, 2018; pp. 349–377. ISBN 9780128118399. [Google Scholar]
- Katsouli, M.; Giannou, V.; Tzia, C. Enhancement of physicochemical and encapsulation stability of O1/W/O2 multiple nanoemulsions loaded with coenzyme Q10 or conjugated linoleic acid by incorporating polyphenolic extract. Food Funct. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, F.; Ma, C.; Yuan, F.; Gao, Y. Effect of carrier oils on the physicochemical properties of orange oil beverage emulsions. Food Res. Int. 2015, 74, 260–268. [Google Scholar] [CrossRef]
- Polychniatou, V.; Tzia, C. Study of the emulsifying ability of olive oil endogenous compounds in co-surfactant free olive oil w/o nanoemulsions with food grade non-ionic surfactants. Food Bioprocess Technol. 2016, 9, 882–891. [Google Scholar] [CrossRef]
- Polychniatou, V.; Tzia, C. Study of formulation and stability of co-surfactant free water-in-olive oil nano-and submicron emulsions with food grade non-ionic surfactants. J. Am. Oil Chem. Soc. 2014, 2014 91, 79–88. [Google Scholar] [CrossRef]
- Katsouli, M.; Polychniatou, V.; Tzia, C. Influence of surface-active phenolic acids and aqueous phase ratio on w/o nano-emulsions properties; model fitting and prediction of nano-emulsions oxidation stability. J. Food Eng. 2017, 214. [Google Scholar] [CrossRef]
- Katsouli, M.; Giannou, V.; Tzia, C. A comparative study of O/W nanoemulsions using extra virgin olive or olive-pomace oil: Impacts on formation and stability. J. Am. Oi Chem. Soc. 2018. [Google Scholar] [CrossRef]
- Katsouli, M.; Tzia, C. Development and stability assessment of coenzyme Q10-loaded oil-in-water nanoemulsions using as carrier oil: Extra virgin olive and olive-pomace oil. Food Bioprocess Technol. 2019, 12. [Google Scholar] [CrossRef]
- Wang, L.; Gao, Y.; Li, J.; Subirade, M.; Song, Y.; Liang, L. Effect of resveratrol or ascorbic acid on the stability of a-tocopherol in O/W emulsions stabilized by whey protein isolate: Simultaneous encapsulation of the vitamin and the protective antioxidant. Food Chem. 2016, 196, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Di Mattia, C.D.; Sacchetti, G.; Mastrocola, D.; Pittia, P. Effect of phenolic antioxidants on the dispersion state and chemical stability of olive oil O/W emulsions. Food Res. Int. 2009, 42, 1163–1170. [Google Scholar] [CrossRef]
- Cheng, C.; Yu, X.; McClements, D.J.; Huang, Q.; Tang, H.; Yu, K.; Xiang, X.; Chen, P.; Wang, X.; Deng, Q. Effect of flaxseed polyphenols on physical stability and oxidative stability of flaxseed oil-in-water nanoemulsions. Food Chem. 2019, 301, 125207. [Google Scholar] [CrossRef]
- Cheong, A.M.; Tan, C.P.; Nyam, K.L. Physicochemical, oxidative and anti-oxidant stabilities of kenaf seed oil-in-water nanoemulsions under different storage temperatures. Ind. Crop. Prod. 2017, 95, 374–382. [Google Scholar] [CrossRef]
- Francesco, D.; Sessa, M.; Mediouni, H.; Mgaidi, A.; Ferreri, G. Encapsulation of bioactive compounds in nanoemulsion- based delivery systems. Procedia Food Sci. 2011, 1, 1666–1671. [Google Scholar]
- Polychniatou, V.; Tzia, C. Evaluation of surface-active and antioxidant effect of olive oil endogenous compounds on the stabilization of water-in-olive-oil nanoemulsions. Food Chem. 2018, 1146–1153. [Google Scholar] [CrossRef] [PubMed]
- Pimentel-Moral, S.; Rodríguez-Pérez, C.; Segura-Carretero, A.; Martínez-Férez, A. Development and stability evaluation of water-in-edible oils emulsions formulated with the incorporation of hydrophilic Hibiscus sabdariffa extract. Food Chem. 2018, 260, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Nishad, J.; Dutta, A.; Saha, S.; Rudra, S.G.; Varghese, E.; Sharma, R.R.; Tomar, M.; Kumar, M.; Charanjit, K. Ultrasound-assisted development of stable grapefruit peel polyphenolic nano-emulsion: Optimization and application in improving oxidative stability of mustard oil. Food Chem. 2021, 334, 127561. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Jafari, S.M.; Esfanjani, A.F.; Akhavan, S. Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food Chem. 2016, 190, 513–519. [Google Scholar] [CrossRef]
- Maqsoudlou, A.; Assadpour, E.; Mohebodini, H.; Jafari, S.M. Improving the efficiency of natural antioxidant compounds via different nanocarriers. Adv. Colloid Interface Sci. 2020, 278, 102122. [Google Scholar] [CrossRef] [PubMed]
Total Phenolic Content (mg of gallic acid (GA)/g dw) | Reference | |
---|---|---|
10.2 to 40.0 | [21] | |
Main phenolic compounds (mg/g dw) | ||
Hydroxytyrosol | 0.61–8.70 | [4,22] |
Oleuropein | 1.22–13.50 | |
Vanillin | 0.92–3.64 | |
Apigenin | 0.41–0.60 | |
Rutin | 0.21–1.70 | |
Luteolin | 0.02–0.14 |
Optimum Extraction Parameters | Extraction Efficiency of Extracts | Reference | |
---|---|---|---|
Conventional extraction | |||
Solvent: citric buffer pH = 4.5 and 1% enzyme solution in volume (v/v) Temperature: 40 °C Extraction time: 4 h L:S: 12.5:1 mL/g Apparatus: Water bath | TPC: 11.41 mg GA/g dw | DPPH: 24.17 mg Trolox/g dw | [23] |
oleuropein: 0.55 mg/g dw; hydroxytyrosol: 0.93 mg/g dw; rutin: 0.22 mg/g dw; total determined phenolic compounds by HPLC: 2.41 mg/g dw | |||
Solvent: Methanol Temperature: 40 °C Extraction time: 89.49 min L:S: 2:1 mL/g Apparatus: Water bath | TPC: 210 mg GA/kg dw | DPPH: 16.97% | [24] |
hydroxytyrosol: 24.29 mg/kg dw; syringic acid: 0.68 mg/kg dw; oleuropein: 33.22 mg/kg dw | |||
Solvent: 40% and 80% (v/v) methanol Temperature: 45 and 70 °C Extraction time: 180 min Apparatus: Water bath | TPC: 23.06 mg GA/g dw | DPPH: 20.41 mg Trolox/g dw | [25] |
hydroxytyrosol: 154.90 mg/kg dw; tyrosol: 1115.40 mg/kg dw; syringic acid: 153.20 mg/kg dw; total determined phenolic compounds by HPLC: 1481.30 mg/kg dw | |||
Solvent: Methanol Temperature: 60 °C Extraction time: 12 h Apparatus: Water bath | TPC: 4.07 mg GA/g dw | DPPH: 76.67% | [26] |
protocatechuic acid: 16.3%; syringic acid: 3.10%; vanillic acid: 4.60%; rutin: 24.60%; hesperidin: 23.50% | |||
Solvent: 60% (v/v) ethanol Temperature: 70 °C Extraction time: 120 min L:S: 5:1 mL/g Apparatus: Water bath | TPC: 3.62 mg GA/g | DPPH: 3.64 mg Trolox/g | [27] |
hydroxytyrosol: 81.80 mg/kg; tyrosol: 86.05 mg/kg; oleuropein: 115.14 mg/kg | |||
Solvent: Malic acid (Ma), D-fructose (Fru), and Glycerol (Gly) Temperature: 60 °C Extraction time: 2 h Apparatus: Magnetic stirrer | TPC: 15.02 mg GA/g dw | [28] | |
Solvent: choline chloride-xylitol Temperature: 40 °C Extraction time: 1 h L:S: 1:1 mL/g Apparatus: Magnetic stirrer | TPC: ~20.00 mg GA/g dw | [29] | |
Ultrasound-assisted extraction | |||
Solvent: Water Temperature: 30 °C Power: 250 W Frequency: 50 Hz Extraction time: 75 min L:S: 50:1 mL/g Apparatus: ultrasonic bath | TPC: 19.71 mg GA/g | DPPH: 31.23 mg Trolox/g | [30] |
total determined phenolic compounds by HPLC: 62.05 μg tyrosol/g | |||
Solvent: Water Temperature: 25 °C Power: 160 W Frequency: 20 KHz Extraction time: 5 min L:S: 50:1 mL/g Apparatus: Multi-frequency Multimode Modulated (MMM) ultrasonic device | TPC: 402 µg GA/mL | DPPH≈ 1.180 µg TE/mL | [31] |
hydroxytyrosol: 83.60 mg/100 g; tyrosol: 3.40 mg/100 g | |||
Solvent: 90% (v/v) ethanol Temperature: 50 °C Frequency: 20 kHz Extraction time: 3 min L:S: 30:1 mL/g Apparatus: ultrasonic probe | hydroxytyrosol: 55.11 mg/g; maslinic acid: 381.20 mg/g; oleonolic acid: 29.80 mg/g | [32] | |
Solvent: 50% (v/v) ethanol Temperature: 20 °C Extraction time: 30 min L:S: 20:1 mL/g Apparatus: ultrasonic bath | TPC: 8.05 mg GA/g | ABTS: 31.63 mg Trolox/g | [33] |
Solvent: disodium hydrogen phosphate-citric acid buffer Enzymes: cellulase, hemicellulase and pectinase Temperature: 55 °C Power: 200 W Frequency: 40 kHz Extraction time: 40 min pH: 5.75 L:S: 4:1 mL/g Apparatus: ultrasonic bath | Phenolic compounds yield: 4% | [34] | |
Solvent: Choline chloride-caffeic acid (CCA) Temperature: 60 °C Power: 280 W Frequency: 60 kHz Extraction time: 30 min L:S: 12.5:1 mL/g Apparatus: ultrasonic bath | TPC: 20.14 mg GA/g dw | DPPH: 20.69 g dw/g DPPH | [4] |
oleuropein: 0.85 mg/g dw; hydroxytyrosol: 1.05 mg/g dw; rutin: 0.40 mg/g dw; total determined phenolic compounds: 2.51 mg/g dw | |||
Solvent: Lactic acid, glucose and 15% water Temperature: 40 °C Power: 200 W Frequency: 20 kHz Extraction time: 30 min L:S: 75:1 mL/g Apparatus: ultrasonic bath | apigenin: 0.08 mg/g dw; hydroxytyrosol: 0.11 mg/g dw; rutin: 0.01 mg/g dw; luteolin: 0.45 mg/g dw | [35] | |
Microwave-assisted extraction | |||
Solvent: 90% (v/v) ethanol Temperature: 50 °C Power: 600 W Frequency: 2.45 GHz Extraction time: 5 min L:S: 30:1 mL/g | hydroxytyrosol: 53.20 mg/g; maslinic acid: 356.00 mg/g; oleonolic acid: 26.30 mg/g | [32] | |
Solvent: 50% (v/v) ethanol Temperature: 90 °C Extraction time: 5 min L:S: 20:1 mL/g | TPC: ̴10.00 mg GA/g | [33] | |
Solvent: 20% (v/v) ethanol Power: 700 W Extraction time: 10 min L:S: 50:1 mL/g Apparatus: closed-vessel microwave extraction system | TPC: 50.18 mg GA/g dw | DPPH: 45.42 mg Trolox/g dw | [36] |
oleuropein: 0.03 mg/g dw; hydroxytyrosol: 1.22 mg/g dw; tyrosol: 0.13 mg/g dw | |||
Solvent: Citric acid buffer Enzyme: pectin lyase and polygalacturonase Temperature: 60 °C pH: 4.5 Power: 400 W Extraction time: 30 min L:S: 12.5:1 mL/g Apparatus: laboratory microwave equipment | TPC: 14.37 mg GA/g dw | DPPH: 20.23 g dw/g DPPH | [23] |
oleuropein: 0.55 mg/g dw; hydroxytyrosol: 1.02 mg/g dw; rutin: 0.23 mg/g dw; total determined phenolic compounds by HPLC: 2.46 mg/g dw | |||
Solvent: Choline chloride-lactic acid (CLA) Temperature: 60 °C Power:280 W Frequency: 60 kHz Extraction time: 30 min L:S: 12.5:1 mL/g Apparatus: laboratory microwave equipment | TPC: 29.57 mg GA/g dw | DPPH: 17.51 g dw/g DPPH | [4] |
oleuropein: 7.56 mg/g dw; hydroxytyrosol: 0.89 mg/g dw; rutin: 0.74 mg/g dw; total determined phenolic compounds by HPLC: 9.49 mg/g dw | |||
Homogenate-assisted extraction | |||
Solvent: Choline chloride-caffeic acid (CCA) Temperature: 60 °C Homogenization speed: 12,000 rpm Extraction time: 30 min L:S: 12.5:1 mL/g Apparatus: high speed homogenizer | TPC: 34.08 mg GA/g dw | DPPH: 5.11 g dw/g DPPH | [4] |
oleuropein: 12.86 mg/g dw; hydroxytyrosol: 3.37 mg/g dw; rutin: 1.71 mg/g dw; total determined phenolic compounds by HPLC: 18.30 mg/g dw | |||
High hydrostatic pressure-assisted extraction | |||
Solvent: 50% (v/v) ethanol Pressure: 200 MPa Extraction time: 10 min L:S: 10:1 mL/g Apparatus: high pressure unit | TPC: 2.06 mg GA/L | [37] | |
oleuropein: 84.65 mg/L; hydroxytyrosol: 2001.56 mg/L; tyrosol: 124.88 mg/L; rutin: 17.59 mg/L; luteolin: 39.27 mg /L | |||
Solvent: Choline chloride-lactic acid (CLA) Pressure: 600 MPa Extraction time: 10 min L:S: 12.5:1 mL/g Apparatus: high pressure unit | TPC: 25.96 mg GA/g dw | DPPH: 15.67 g dw/g DPPH | [4] |
oleuropein: 1.94 mg/g dw; hydroxytyrosol: 2.57 mg/g dw; rutin: 0.66 mg/g dw; total determined phenolic compounds by HPLC: 5.31 mg/g dw |
Microencapsulation Conditions | Microencapsulation Performance | References | |
Technique: Spray-drying Agent: Maltodextrins (MD) 16.5–19.5 DE MD concentration: 100 g/L Air flow: 30 m3/h Inlet Temperature: 130 °C Feed Flow: 10 mL/min | TPC: 39.5 mg CA/g dw | DPPH: 33.8 mmol DPPH/L extract | [54] |
Encapsulation yield: 87.3%; Microencapsulation efficiency: 76%; Water solubility: 85% | |||
Technique: Spray-drying Agent: Hydroxypropyl-β-cyclodextrin Inlet Temperature: 130 °C Aspirator: 100% Feed Flow: 6.5 mL/min | TPC: 13.57 mg GA/g dw | DPPH: 17.85 mg Trolox/g dw | [36] |
Encapsulation yield: 82.40%; Mean spherical diameter: 3.66 μm | |||
Technique: Spray-drying Agent: Maltodextrins (MD) 16.5–19.5 DE and gum arabic (GA) MD:GA ratio: 60:40 MD concentration: 100 g/L Air flow: 30 m3/h Inlet Temperature: 160 °C Feed Flow: 5 mL/min | TPC: 36.9 mg CA/g dw | DPPH: 12.5 mmol DPPH/L extract | [56] |
Encapsulation yield: 94%; Water solubility: 69.4% | |||
Technique: Freeze-drying Agent: Maltodextrin (MD) 19DE Phenolic compounds: MD Ratio: 1:20 w/w | DPPH: 0.69–1.25 mg Trolox/g dw | [23] | |
Encapsulation efficiency: 82–90%; Water solubility: 91–97%, Hygroscopicity: 7–23 g H2O/100 g dw | |||
Technique: Spray-drying Agent: βCD, HPβCD, RAMEB, or γCD Air flow: 500 L/h Inlet Temperature: 120 °C Air pressure: 6 bar Feed Flow: 5 mL/min | Antioxidant protection: 0.1–3%; Antioxidant activity: HPβCD: 1.242 mg/g of Trolox equivalents and RAMEB: 1.422 mg/g of Trolox equivalents | [27] |
Emulsification Techniques | Emulsifier and Lipid Phase | Droplet Size t0 | Droplet Size tstorage | Encapsulation Stability/Storage Conditions | References |
Oil-in-water nanoemulsion (o/w) | |||||
|
|
|
|
| [71] |
|
| - |
|
| [72] |
|
|
|
|
| [73] |
|
|
|
|
| [74] |
|
|
|
|
| [61] |
|
|
|
|
| [75] |
Water-in-oil nanoemulsion (w/o) | |||||
|
|
|
|
| [61] |
|
|
|
|
| [76] |
|
|
|
|
| [77] |
|
|
| - |
| [78] |
|
|
| - |
| [79] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanioti, S.; Katsouli, M.; Tzia, C. Novel Processes for the Extraction of Phenolic Compounds from Olive Pomace and Their Protection by Encapsulation. Molecules 2021, 26, 1781. https://doi.org/10.3390/molecules26061781
Chanioti S, Katsouli M, Tzia C. Novel Processes for the Extraction of Phenolic Compounds from Olive Pomace and Their Protection by Encapsulation. Molecules. 2021; 26(6):1781. https://doi.org/10.3390/molecules26061781
Chicago/Turabian StyleChanioti, Sofia, Maria Katsouli, and Constantina Tzia. 2021. "Novel Processes for the Extraction of Phenolic Compounds from Olive Pomace and Their Protection by Encapsulation" Molecules 26, no. 6: 1781. https://doi.org/10.3390/molecules26061781
APA StyleChanioti, S., Katsouli, M., & Tzia, C. (2021). Novel Processes for the Extraction of Phenolic Compounds from Olive Pomace and Their Protection by Encapsulation. Molecules, 26(6), 1781. https://doi.org/10.3390/molecules26061781