Evaluation of Antioxidant and Enzyme Inhibition Properties of Croton hirtus L’Hér. Extracts Obtained with Different Solvents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Analysis
2.2. Antioxidant Ability
2.3. Enzyme Inhibitory Ability
2.4. K-Medoids Clustering
3. Materials and Methods
3.1. Preparation of Extracts
3.2. Spectrophotometric Assays for Total Phenolic and Flavonoids
3.3. Fingerprinting of Phytoconstituents by LC-DAD-ESI-MSn, LC-DAD-APCI-MSn
3.4. HPLC-(APCI)-MS Analysis of Phytosterols
3.5. NMR Analysis
3.6. Determination of Antioxidant and Enzyme Inhibitory Effects
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Salatino, A.; Salatino, M.L.F.; Negri, G. Traditional uses, chemistry and pharmacology of Croton species (Euphorbiaceae). J. Braz. Chem. Soc. 2007, 18, 11–33. [Google Scholar] [CrossRef]
- Daouda, T.; Prevost, K.; Gustave, B.; Joseph, D.A.; Nathalie, G.; Raphaël, O.; Rubens, D.; Claude, C.J.; Mireille, D.; Felix, T. Terpenes, Antibacterial and Modulatory Antibiotic Activity of Essential Oils from Croton hirtus L’ Hér. (Euphorbiaceae) from Ivory Coast. J. Essent. Oil Bear. Plants 2014, 17, 607–616. [Google Scholar] [CrossRef]
- De Lima, S.G.; Medeiros, L.B.P.; Cunha, C.N.L.C.; da Silva, D.; de Andrade, N.C.; Neto, J.M.M.; Lopes, J.A.D.; Steffen, R.A.; Araújo, B.Q.; Reis, F.d.A.M. Chemical composition of essential oils of Croton hirtus L’Her from Piauí (Brazil). J. Essent. Oil Res. 2012, 24, 371–376. [Google Scholar] [CrossRef]
- Rosandy, A.R.; Azman, A.A.; Khalid, R.; Othaman, R.; Lazim, A.M.; Choudary, I.M.; Syah, Y.M.; Latip, J.; Said, I.M.; Bakar, M.A. Isolation of New Rotundone from the Roots of Croton Hirtus (Euphorbiaceae). Malays. J. Anal. Sci. 2019, 23, 677–681. [Google Scholar]
- Subin, M.; Reghu, N. Phytochemical screening and antibacterial properties of Croton hirtus L’Her. plant against some important pathogenic bacteria. Nat. Environ. Pollut. Technol. 2012, 11, 59–64. [Google Scholar]
- Ezeabara, C.A.; Okonkwo, E. Comparison of phytochemical and proximate components of leaf, stem and root of Croton hirtus L’Herit and Croton lobatus Linn. J. Med. Health Res. 2016, 24, 33. [Google Scholar]
- Kim, M.J.; Kim, J.G.; Sydara, K.M.; Lee, S.W.; Jung, S.K. Croton hirtus L’Hér Extract Prevents Inflammation in RAW264. 7 Macrophages Via Inhibition of NF-κB Signaling Pathway. J. Microbiol. Biotechnol. 2020, 30, 490–496. [Google Scholar] [CrossRef]
- Morreel, K.; Saeys, Y.; Dima, O.; Lu, F.; Van de Peer, Y.; Vanholme, R.; Ralph, J.; Vanholme, B.; Boerjan, W. Systematic Structural Characterization of Metabolites in Arabidopsis via Candidate Substrate-Product Pair Networks. Plant Cell 2014, 26, 929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.-J.; Inbaraj, B.S.; Chen, B.-H. Determination of phenolic acids and flavonoids in Taraxacum formosanum Kitam by liquid chromatography-tandem mass spectrometry coupled with a post-column derivatization technique. Int. J. Mol. Sci. 2012, 13, 260–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bystrom, L.M.; Lewis, B.A.; Brown, D.L.; Rodriguez, E.; Obendorf, R.L. Characterisation of phenolics by LC–UV/Vis, LC–MS/MS and sugars by GC in Melicoccus bijugatus Jacq.‘Montgomery’ fruits. In Food Chem.; 2008; Volume 111, pp. 1017–1024. [Google Scholar]
- Kamel, M.S.; Mohamed, K.M.; Hassanean, H.A.; Ohtani, K.; Kasai, R.; Yamasaki, K. Iridoid and megastigmane glycosides from Phlomis aurea. Phytochemistry 2000, 55, 353–357. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, S.; Matsunami, K.; Otsuka, H.; Shinzato, T.; Takeda, Y. Crotonionosides A–G: Megastigmane glycosides from leaves of Croton cascarilloides Räuschel. Phytochemistry 2011, 72, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Anh, N.Q.; Yen, T.T.; Hang, N.T.; Anh, D.H.; Viet, P.H.; Van Doan, V.; Van Kiem, P. 1H-Indole-3-acetonitrile glycoside, phenolic and other compounds from Stixis suaveolens. Vietnam J. Chem. 2019, 57, 558–561. [Google Scholar] [CrossRef] [Green Version]
- Fabre, N.; Rustan, I.; de Hoffmann, E.; Quetin-Leclercq, J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Kachlicki, P.; Piasecka, A.; Stobiecki, M.; Marczak, Ł. Structural characterization of flavonoid glycoconjugates and their derivatives with mass spectrometric techniques. Molecules 2016, 21, 1494. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.Z.; Qiao, X.; Bo, T.; Wang, Q.; Guo, D.A.; Ye, M. Low energy induced homolytic fragmentation of flavonol 3-O-glycosides by negative electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2014, 28, 385–395. [Google Scholar] [CrossRef]
- Georgiev, M.I.; Ali, K.; Alipieva, K.; Verpoorte, R.; Choi, Y.H. Metabolic differentiations and classification of Verbascum species by NMR-based metabolomics. Phytochemistry 2011, 72, 2045–2051. [Google Scholar] [CrossRef] [PubMed]
- Abarca-Vargas, R.; Peña Malacara, C.F.; Petricevich, V.L. Characterization of Chemical Compounds with Antioxidant and Cytotoxic Activities in Bougainvillea x buttiana Holttum and Standl, (var. Rose) Extracts. Antioxidants 2016, 5, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocchetti, G.; Pagnossa, J.P.; Blasi, F.; Cossignani, L.; Hilsdorf Piccoli, R.; Zengin, G.; Montesano, D.; Cocconcelli, P.S.; Lucini, L. Phenolic profiling and in vitro bioactivity of Moringa oleifera leaves as affected by different extraction solvents. Food Res. Int. 2020, 127, 108712. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017, 2017. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.-P.-P.; Sulaiman Rahman, H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front. Pharmacol. 2018, 9, 1162. [Google Scholar] [CrossRef] [Green Version]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Nardi, G.M.; Felippi, R.; DalBó, S.; Siqueira-Junior, J.M.; Arruda, D.C.; Delle Monache, F.; Timbola, A.K.; Pizzolatti, M.G.; Ckless, K.; Ribeiro-do-Valle, R.M. Anti-inflammatory and antioxidant effects of Croton celtidifolius bark. Phytomedicine 2003, 10, 176–184. [Google Scholar] [CrossRef]
- Lopes, M.I.L.e.; Saffi, J.; Echeverrigaray, S.; Henriques, J.A.P.; Salvador, M. Mutagenic and antioxidant activities of Croton lechleri sap in biological systems. J. Ethnopharmacol. 2004, 95, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Aderogba, M.A.; McGaw, L.J.; Bezabih, M.; Abegaz, B.M. Isolation and characterisation of novel antioxidant constituents of Croton zambesicus leaf extract. Nat. Prod. Res. 2011, 25, 1224–1233. [Google Scholar] [CrossRef]
- Azevedo, M.M.B.; Chaves, F.C.M.; Almeida, C.A.; Bizzo, H.R.; Duarte, R.S.; Campos-Takaki, G.M.; Alviano, C.S.; Alviano, D.S. Antioxidant and Antimicrobial Activities of 7-Hydroxy-calamenene-Rich Essential Oils from Croton cajucara Benth. Molecules 2013, 18, 1128–1137. [Google Scholar] [CrossRef] [Green Version]
- Bouasla, I.; Hamel, T.; Barour, C.; Bouasla, A.; Hachouf, M.; Bouguerra, O.M.; Messarah, M. Evaluation of solvent influence on phytochemical content and antioxidant activities of two Algerian endemic taxa: Stachys marrubiifolia Viv. and Lamium flexuosum Ten. (Lamiaceae). Eur. J. Integr. Med. 2021, 42, 101267. [Google Scholar] [CrossRef]
- Amalraj, S.; Mariyammal, V.; Murugan, R.; Gurav, S.S.; Krupa, J.; Ayyanar, M. Comparative evaluation on chemical composition, in vitro antioxidant, antidiabetic and antibacterial activities of various solvent extracts of Dregea volubilis leaves. S. Afr. J. Bot. 2021, 138, 115–123. [Google Scholar] [CrossRef]
- Yoshida, Y.; Niki, E. Antioxidant effects of phytosterol and its components. J. Nutr. Sci. Vitaminol. 2003, 49, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-C.; Kuo, H.-C.; Huang, K.-E. The Effects of Phytosterols Extracted from Diascorea alata on the Antioxidant Activity, Plasma Lipids, and Hematological Profiles in Taiwanese Menopausal Women. Nutrients 2017, 9, 1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, D.; Kefi, K.; Barbe, U.; Bausero, P.; Visioli, F. Polyunsaturated fatty acids as antioxidants. Pharmacol. Res. 2008, 57, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, S.; Romano, A. Inhibitory Properties of Phenolic Compounds Against Enzymes Linked with Human Diseases; IntechOpen: London, UK, 2017. [Google Scholar]
- Ramsay, R.R.; Tipton, K.F. Assessment of enzyme inhibition: A review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs. Molecules 2017, 22, 1192. [Google Scholar] [CrossRef] [Green Version]
- Vinholes, J.; Silva, B.M.; Silva, L.R. Hydroxycinnamic acids (HCAS): Structure, biological properties and health effects. Adv. Med. Biol. 2015, 88, 105–130. [Google Scholar]
- Szwajgier, D.; Borowiec, K. Phenolic acids from malt are efficient acetylcholinesterase and butyrylcholinesterase inhibitors. J. Inst. Brew. 2012, 118, 40–48. [Google Scholar] [CrossRef]
- Khan, H.; Marya; Amin, S.; Kamal, M.A.; Patel, S. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. Biomed. Pharmacother. 2018, 101, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Szwajgier, D.; Borowiec, K.; Zapp, J. Activity-guided isolation of cholinesterase inhibitors quercetin, rutin and kaempferol from Prunus persica fruit. Z. Nat. C 2020, 75, 87–96. [Google Scholar] [CrossRef]
- Ali, M.; Muhammad, S.; Shah, M.R.; Khan, A.; Rashid, U.; Farooq, U.; Ullah, F.; Sadiq, A.; Ayaz, M.; Ali, M. Neurologically potent molecules from Crataegus oxyacantha; isolation, anticholinesterase inhibition, and molecular docking. Front. Pharmacol. 2017, 8, 327. [Google Scholar] [CrossRef] [PubMed]
- Oboh, G.; Ademosun, A.O.; Ayeni, P.O.; Omojokun, O.S.; Bello, F. Comparative effect of quercetin and rutin on α-amylase, α-glucosidase, and some pro-oxidant-induced lipid peroxidation in rat pancreas. Comp. Clin. Path. 2015, 24, 1103–1110. [Google Scholar] [CrossRef]
- Taira, J.; Tsuchida, E.; Uehara, M.; Ohhama, N.; Ohmine, W.; Ogi, T. The leaf extract of Mallotus japonicus and its major active constituent, rutin, suppressed on melanin production in murine B16F1 melanoma. Asian Pac. J. Trop. Biomed. 2015, 5, 819–823. [Google Scholar] [CrossRef] [Green Version]
- Park, K.-Y.; Kim, J. Synthesis and biological evaluation of the anti-melanogenesis effect of coumaric and caffeic acid-conjugated peptides in human melanocytes. Front. Pharmacol. 2020, 11, 922. [Google Scholar] [CrossRef]
- Truong, X.T.; Park, S.-H.; Lee, Y.-G.; Jeong, H.Y.; Moon, J.-H.; Jeon, T.-I. Protocatechuic acid from pear inhibits melanogenesis in melanoma cells. Int. J. Mol. Sci. 2017, 18, 1809. [Google Scholar] [CrossRef] [Green Version]
- Shahwar, D.; Ahmad, N.; Yasmeen, A.; Khan, M.A.; Ullah, S.; Atta-ur, R. Bioactive constituents from Croton sparsiflorus Morong. Nat. Prod. Res. 2015, 29, 274–276. [Google Scholar] [CrossRef]
- Keerthana, G.; Kalaivani, M.; Sumathy, A. In-vitro alpha amylase inhibitory and anti-oxidant activities of ethanolic leaf extract of Croton bonplandianum. Asian J. Pharm. Clin. Res. 2013, 6, 32–36. [Google Scholar]
- Morocho, V.; Sarango, D.; Cruz-Erazo, C.; Cumbicus, N.; Cartuche, L.; Suárez, A.I. Chemical Constituents of Croton thurifer Kunth as α-Glucosidase Inhibitors. Chemistry 2020, 19, 20. [Google Scholar] [CrossRef]
- Zengin, G.; Aktumsek, A. Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci: An endemic plant to Turkey. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 481–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sut, S.; Pavela, R.; Kolarčik, V.; Lupidi, G.; Maggi, F.; Dall’Acqua, S.; Benelli, G. Isobutyrylshikonin and isovalerylshikonin from the roots of Onosma visianii inhibit larval growth of the tobacco cutworm Spodoptera littoralis. Ind. Crops Prod. 2017, 109, 266–273. [Google Scholar] [CrossRef]
- Sharan Shrestha, S.; Sut, S.; Ferrarese, I.; Barbon Di Marco, S.; Zengin, G.; De Franco, M.; Pant, D.R.; Mahomoodally, M.F.; Ferri, N.; Biancorosso, N. Himalayan Nettle Girardinia diversifolia as a Candidate Ingredient for Pharmaceutical and Nutraceutical Applications—Phytochemical Analysis and In Vitro Bioassays. Molecules 2020, 25, 1563. [Google Scholar] [CrossRef] [Green Version]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
Compound No. | Compounds or Class of Compounds Atom Position | δ H | δ c | Correlations in HMBC or COSY |
---|---|---|---|---|
1 | Protocatechuic acid (HMDB0001856) | |||
2 | 7.53 | 115 | 167.0 (HMBC); 7.48 (COSY) | |
5 | 6.90 | 115.4 | 7.48 (COSY) | |
6 | 7.48 | 124.7 | 167.0 (HMBC) 7.53; 6.90 (COSY) | |
Caffeic acid moieties | ||||
7 | 7.59 | 143.9 | 167.5; 130.0 (HMBC); 6.45 (COSY) | |
8 | 6.45 | 115.6 | 127.4; 7.59 (COSY) | |
Aromatic ring protons | 7.14–6.80 | 127.5, 122.3 114.7, 115.6 | 145.3, 151.0; 127.0, 145; 114 (HMBC) | |
Flavonoids | ||||
H 6-8 of glycosidic flavonols | 6.10–6.22 | 98.5–99.7 | 165–155 99 101 (HMBC) | |
Ring B quercetin | 7.40–6-23 | 115.0, 129, 125, 118 | 150.0, 145.3, 131.0 (HMBC) | |
Ring B kaempferol (HMDB0005801) | 7.98 | 130.5 | 165.0, 130.5 (HMBC); 6.80 (COSY) | |
6.80 | 115.0 | 115; 7.98 (COSY) | ||
Sugar linked to phenolic portions (Flavonol-O-glycosides or hydroxycinnamic esters) | ||||
Anomeric positions | 4.85 | 109.5 | ||
4.67 | 99.8 | 165.0–160 (HMBC with position 7 of flavonol moieties); 3.30–3.40 (COSY) | ||
4.43-4.50 | 101.7 | 133.8 (HMBC with position 3 of flavonol moieties); 3.18 (COSY) | ||
4.22 | 104.7 | 3.18–3.28 (COSY) | ||
5.42 | 103 | 133.5 (HMBC position 3 flavonol) | ||
Anomeric positions | ||||
H-1 (rhamnose) | 4.60 brs | 99.7 | 3.18 (COSY) | |
H-1 (hexose or pentose) | 4.50–4.70 d | 100.0–101.1 | 3.16, 3.23 (COSY) | |
H-1 (hexose or pentose) | 4.50–4.70 | 100.0–101.1 | 3.16, 3.23 (COSY) | |
H-6 (hexose) free position | 3.30–3.50 | 60.5 | ||
H-6 (hexose) glycosidic linked | 3.30–3.50 | 64.5 | ||
CH bearing ester linkage (from sugar residue) | 4.95 | 73.4 | 165, 104, 71 | |
CH bearing ester linkage (from sugar residue) | 5.08 | 71.2 | 165, 89, 63 | |
Megastigmane (aglycone part) | ||||
H-2 Icariside B | 5.85–5.90 | 128.7 | 200, (HMBC) | |
CH2-6 Icariside B | 2.58 | 54.0 | 200, 72.0 (HMBC) | |
CH3 Icariside B | 1.02 | 24.2 | 77 (HMBC) | |
H-7 Corchionoside | 5.75 | 125.7 | ||
H-8 Corchionoside | 5.86 | 131.9 | ||
CH3 Corchioside | 1.21 | 19.6 | 73.0, 125.7 (HMBC) | |
dehydro Ionol derivatives | ||||
H3 | 5.30, 5.2 | 127.5 | 141, 59, 36 (HMBC) | |
CH3 linked to double bond | 2.02 | 20.5 | 141, 127 | |
Geminal methyl groups, secondary methyl group of the butanol chain | 0.95–1.04 | 23.9–24.1 | 36.0 51.0 72.0 | |
Fatty acid derivatives | ||||
terminal methyl groups | 0.93 | 17.5 | 40.0, 23.0 | |
CH2 | 2.02 | 19.5 | 24.2, 30.0 | |
sp2 | 5.35–5.40 | 122.5 |
Compound No. | Retention Time | [M − H]− | Fragments | Formula | Identification and Reference | mg/g |
---|---|---|---|---|---|---|
Flavonoid glycosides | ||||||
1 | 16.5 | 755 | 593 300(300→271 255 179 151) (271→243 227) | C33H40O20 | Quercetin-3-O-di(deoxyhexoside)-7-O-hexoside | 0.61 ± 0.01 |
2 | 19.1 | 755 | 593 300 (300→271 255 179 151) (271→243 227) | C36H36O18 | Quercetin-3-deoxyhexoside-hexoside- deoxyhexoside | 0.22 ± 0.01 |
3 | 18.9 | 609 | 301 300 (301→271 255 179 151) (271→243 227) | C27H30O16 | Quercetin-hexoside-deoxyhexoside | 1.59 ± 0.05 |
4 | 18.5 | 739 | 593 577 447 430 285 257 | C33H40O19 | Kaempferol-7-O-hexoside-3-O-deoxyhexoside-deoxyhexoside | 3.68 ± 0.04 |
5 | 19.4 | 755 | 609 591 489 300 271 255 | C36H36O18 | Quercetin-3-deoxyhexoside-hexoside-p-coumaroyl | 3.64 ± 03.04 |
6 | 18.5 | 595 | 463 300 271 255 (300→271 255) (271→243 227 215 199) | C26H28O16 | Quercetin-3-apiofuranosyl-glucopyranoside | 16.13 ± 0.04 |
7 | 19.3 | 609 | 301 447 285 255 | C27H30O16 | Rutin* | 3.02 ± 0.04 |
8 | 20.5 | 579 | 447 429 285 (285→255) (255→227 213 211 187) | C25H28O15 | Kaempferol-3-O-hexosyl pentoside | 2.52 ± 0.06 |
9 | 19.9 | 463 | 301 229 179 | C21H20O12 | Quercetin-3-O-glucoside* | 4.21 ± 0.03 |
10 | 23.1 | 623 | 315 300 299 271 255 243 (315→300 272 255) | C28H30O16 | Isorhamnetin-3-O-rutinoside* | 25.91 ± 0.09 |
11 | 21.6 | 609 | 315 301 (301→271 255 179 151) (271→243 227) | C27H30O16 | Isorhamnetin -3-O-hexosyl pentoside | 4.93 ± 0.03 |
12 | 22.3 | 447 | 301 255 | C21H20O11 | Quercetin-3-O-rhamnoside* | 1.39 ± 0.04 |
13 | 23.5 | 477 | 314 285 271 | C21H20O11 | Isorhamnetin-7-O-glucoside* | 4.46 ± 0.06 |
14 | 25.8 | 447 | 314 285 271 (314→300 285 271) | C21H20O11 | Isorhamnetin-7-O-rhamnoside* | 1.97 ± 0.03 |
15 | 21.6 | 593 | 447 285 | C27H30O15 | Kaempferol-3-O-hexosil-deoxyhexoside | 18.00 ± 0.09 |
16 | 18.4 | 329 | 314 299 271 243 226 199 | C17H18O7 | Dimethoxy quercetin | 4.49 ± 0.02 |
Other phenolics | ||||||
17 | 2.3 | 341 | 179 | C15H18O9 | Caffeic acid hexoside | 4.36 ± 0.04 |
18 | 5.8 | 315 | 153 | C13H16O9 | Protocatechuic acid hexoside | 5.66 ± 0.03 |
19 | 7.8 | 401 | 269 161 | C20H18O9 | Benzyl alcohol hexose pentose | 4.04 ± 0.05 |
20 | 11.28 | 487 | 337 279 261 | C21H28O13 | Synapoyl pentose-pentose | 1.08 ± 0.02 |
21 | 17.2 | 431 | 261 187 (187→125) (125→97) | Gallic acid benzoic acid derivative | 8.84 ± 0.03 | |
22 | 19.4 | 769 | 605 475 315 299 | C35H46O19 | Leonoside A | 10.04 ± 0.02 |
23 | 20.4 | 755 | 623 593 315 297 | C34H44O19 | Forsythoside B | 6.31 ± 0.05 |
24 | 32.6 | 797 | 603 474 456 327 167 | C37H50O19 | Ferruginoside C isomer | 7.60 ± 0.05 |
25 | 35.5 | 797 | 603 474 456 327 167 | C37H50O19 | Ferruginoside C | 14.21 ± 0.08 |
26 | 33.9 | 663 | 517 485 467 | C31H36O16 | Feruloyl-coumaroyl saccharose | 15.97 ± 0.08 |
27 | 36.4 | 663 | 517 485 467 | C31H36O16 | Feruloyl-coumaroyl saccharose | 12.21 ± 0.08 |
28 | 39.9 | 663 | 517 485 467 | C31H36O16 | Feruloyl-coumaroyl saccharose | 11.20 ± 0.06 |
29 | 41.5 | 663 | 517 485 467 | C31H36O16 | Feruloyl-coumaroyl saccharose | 13.06 ± 0.09 |
30 | 44.2 | 663 | 517 485 467 | C31H36O16 | Feruloyl-coumaroyl saccharose | 9.06 ± 0.07 |
Hydrophylic Terpenoids (positive electrospray (ESI)) | ||||||
31 | 13.1 | 433 [M + HCOOH − H]− | 387.5 223 205 161 153 (153→138–122) | C19H32O8 + CH2O2 | Icariside B5 | 9.15 ± 0.06 |
32 | 13.9 | 431 [M + HCOOH − H]− | 385.5 223 205 161 153 (153→138–122) | C19H30O8 + CH2O2 | Corchoionoside C/Roseoside | 3.63 ± 0.06 |
33 | 22.97 | 487 | 355 337 289 279 261 167 | C24H40O10 | dihydro α ionol-O-[arabinosil(1-6) glucoside] | 132.72 ± 0.11 |
34 | 24.07 | 487 | 355 337 289 271 | C24H40O10 | dihydro β ionol-O-[arabinosil(1-6) glucoside] | 79.57 ± 0.11 |
35 | 53.4 | 331 | 295 277 215 185 | C20H28O4 | Kongensin D | 0.72 ± 0.02 |
Phytosterols and terpenoids | Positive atmospheric pressure chemical ionization (APCI) | |||||
[M − H20 + H]+ | ||||||
36 | 60.0 | 397 | C29H50O | β-sitosterol* | 48.60 ± 0.14 | |
37 | 53.8 | 383 | C28H48O | Campesterol* | 3.04 ± 0.08 | |
38 | 51.3 | 399 | C29H52O | Stigmastanol* | 4.37 ± 0.08 |
Extracts | Extraction Yields (%) | Total Phenolic Content (mg GAE/g) | Total Flavonoid Content (mg RE/g) |
---|---|---|---|
DCM | 2.13 | 24.24 ± 0.90 a | 14.37 ± 0.12 c |
EA | 2.34 | 22.51 ± 0.52 b | 29.28 ± 1.89 b |
Infusion | 9.95 | 22.38 ± 0.34 b | 12.54 ± 0.32 c |
MeOH | 13.18 | 17.96 ± 0.03 c | 50.16 ± 2.53 a |
Extracts | DPPH (mgTE/g) | ABTS (mgTE/g) | CUPRAC (mgTE/g) | FRAP (mgTE/g) | Phosphomolybdenum (mmol TE/g) | Chelating Ability (mg EDTAE/g) |
---|---|---|---|---|---|---|
DCM | 22.78 ± 0.52 c | 32.32 ± 2.49 c | 88.67 ± 1.08 a | 26.35 ± 0.09 c | 2.70 ± 0.13 a | 15.18 ± 1.08 b |
EA | 23.66 ± 1.14 c | 18.59 ± 1.64 d | 69.04 ± 0.40 c | 24.15 ± 0.21 d | 2.33 ± 0.27 ab | 18.26 ± 0.22 a |
Infusion | 41.08 ± 1.65 a | 64.84 ± 2.71 a | 78.17 ± 0.16 b | 45.67 ± 0.86 a | 1.46 ± 0.01 c | 17.94 ± 0.16 a |
MeOH | 30.62 ± 0.54 b | 42.02 ± 1.11 b | 62.50 ± 2.30 d | 30.94 ± 0.35 b | 1.97± 0.10 b | 13.96 ± 0.10 b |
Extracts | AChE Inhibition (mgGALAE/g) | BChE Inhibition (mgGALAE/g) | Tyrosinase Inhibition (mgKAE/g) | Amylase Inhibition (mmolACAE/g) | Glucosidase Inhibition (mmol ACAE/g) |
---|---|---|---|---|---|
DCM | 5.03 ± 0.16 a | 16.41 ± 1.68 a | 24.39 ± 0.98 c | 0.71 ± 0.01 ab | 1.68 ± 0.14 |
EA | 4.84 ± 0.19 a | 15.86 ± 0.74 a | 34.81 ± 2.67 b | 0.75 ± 0.03 a | na |
Infusion | 1.01 ± 0.13 c | 14.44 ± 0.34 a | na | 0.14 ± 0.01 c | na |
MeOH | 4.09 ± 0.02 b | 16.11 ± 0.25 a | 49.83 ± 3.94 a | 0.69 ± 0.02 b | na |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dall’Acqua, S.; Sinan, K.I.; Sut, S.; Ferrarese, I.; Etienne, O.K.; Mahomoodally, M.F.; Lobine, D.; Zengin, G. Evaluation of Antioxidant and Enzyme Inhibition Properties of Croton hirtus L’Hér. Extracts Obtained with Different Solvents. Molecules 2021, 26, 1902. https://doi.org/10.3390/molecules26071902
Dall’Acqua S, Sinan KI, Sut S, Ferrarese I, Etienne OK, Mahomoodally MF, Lobine D, Zengin G. Evaluation of Antioxidant and Enzyme Inhibition Properties of Croton hirtus L’Hér. Extracts Obtained with Different Solvents. Molecules. 2021; 26(7):1902. https://doi.org/10.3390/molecules26071902
Chicago/Turabian StyleDall’Acqua, Stefano, Kouadio Ibrahime Sinan, Stefania Sut, Irene Ferrarese, Ouattara Katinan Etienne, Mohamad Fawzi Mahomoodally, Devina Lobine, and Gokhan Zengin. 2021. "Evaluation of Antioxidant and Enzyme Inhibition Properties of Croton hirtus L’Hér. Extracts Obtained with Different Solvents" Molecules 26, no. 7: 1902. https://doi.org/10.3390/molecules26071902
APA StyleDall’Acqua, S., Sinan, K. I., Sut, S., Ferrarese, I., Etienne, O. K., Mahomoodally, M. F., Lobine, D., & Zengin, G. (2021). Evaluation of Antioxidant and Enzyme Inhibition Properties of Croton hirtus L’Hér. Extracts Obtained with Different Solvents. Molecules, 26(7), 1902. https://doi.org/10.3390/molecules26071902