Effect of Substituents of Cerium Pyrazolates and Pyrrolates on Carbon Dioxide Activation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Homoleptic Ceric Pyrazolates
2.2. Cerium Pyrrolates and Carbazolates
2.3. Reactivity toward CO2
2.4. Difference between Pyrazolates and Pyrrolates/Carbazolates
3. Materials and Methods
3.1. General Procedures
3.2. Synthesis of Ce(Ph2pz)4∙tol (2)
3.3. Synthesis of [Ce(tBuMepz)4]n (3)
3.4. Synthesis of [Ce2(pyr)6(µ-pyr)2(thf)2][Li(thf)4]2 (4)
3.5. Synthesis of [Ce(cbz)4(thf)2][Li(thf)4] (5)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hou, Z.; Wakatsuki, Y. Reactions of Ketones with Low-Valent Lanthanides: Isolation and Reactivity of Lanthanide Ketyl and Ketone Dianion Complexes. In Lanthanides: Chemistry and Use in Organic Synthesis; Kobayashi, S., Ed.; Topics in Organometallic Chemistry; Springer: Berlin/Heidelberg, Germany, 1999; pp. 233–253. ISBN 978-3-540-69801-2. [Google Scholar]
- Bayer, U.; Anwander, R. Carbonyl Group and Carbon Dioxide Activation by Rare-Earth-Metal Complexes. Dalton Trans. 2020, 49, 17472–17493. [Google Scholar] [CrossRef] [PubMed]
- Martín, C.; Fiorani, G.; Kleij, A.W. Recent Advances in the Catalytic Preparation of Cyclic Organic Carbonates. ACS Catal. 2015, 5, 1353–1370. [Google Scholar] [CrossRef]
- Grice, K.A. Carbon Dioxide Reduction with Homogenous Early Transition Metal Complexes: Opportunities and Challenges for Developing CO2 Catalysis. Coord. Chem. Rev. 2017, 336, 78–95. [Google Scholar] [CrossRef]
- Huang, J.; Worch, J.C.; Dove, A.P.; Coulembier, O. Update and Challenges in Carbon Dioxide-Based Polycarbonate Synthesis. ChemSusChem 2020, 13, 469–487. [Google Scholar] [CrossRef] [PubMed]
- Bresciani, G.; Biancalana, L.; Pampaloni, G.; Marchetti, F. Recent Advances in the Chemistry of Metal Carbamates. Molecules 2020, 25, 3603. [Google Scholar] [CrossRef]
- Falkowski, P.; Scholes, R.J.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Högberg, P.; Linder, S.; et al. The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science 2000, 290, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.; Plattner, G.-K.; Knutti, R.; Friedlingstein, P. Irreversible Climate Change Due to Carbon Dioxide Emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef] [Green Version]
- Haszeldine, R.S. Carbon Capture and Storage: How Green Can Black Be? Science 2009, 325, 1647–1652. [Google Scholar] [CrossRef] [PubMed]
- Keith, D.W. Why Capture CO2 from the Atmosphere? Science 2009, 325, 1654–1655. [Google Scholar] [CrossRef] [PubMed]
- von der Assen, N.; Voll, P.; Peters, M.; Bardow, A. Life Cycle Assessment of CO2 Capture and Utilization: A Tutorial Review. Chem. Soc. Rev. 2014, 43, 7982–7994. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, D.M.; Smit, B.; Long, J.R. Carbon Dioxide Capture: Prospects for New Materials. Angew. Chem. Int. Ed. 2010, 49, 6058–6082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.-H.; Huang, C.-H.; Tan, C.-S. A Review of CO2 Capture by Absorption and Adsorption. Aerosol Air Qual. Res. 2012, 12, 745–769. [Google Scholar] [CrossRef] [Green Version]
- Sumida, K.; Rogow, D.L.; Mason, J.A.; McDonald, T.M.; Bloch, E.D.; Herm, Z.R.; Bae, T.-H.; Long, J.R. Carbon Dioxide Capture in Metal–Organic Frameworks. Chem. Rev. 2012, 112, 724–781. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Pérez, E.S.; Murdock, C.R.; Didas, S.A.; Jones, C.W. Direct Capture of CO2 from Ambient Air. Chem. Rev. 2016, 116, 11840–11876. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Kong, C.; Zhang, Q.; Chen, L. Metal-Organic Frameworks for Carbon Dioxide Capture and Methane Storage. Adv. Energy Mater. 2017, 7. [Google Scholar] [CrossRef]
- Sakakura, T.; Choi, J.-C.; Yasuda, H. Transformation of Carbon Dioxide. Chem. Rev. 2007, 107, 2365–2387. [Google Scholar] [CrossRef] [PubMed]
- Centi, G.; Perathoner, S. Opportunities and Prospects in the Chemical Recycling of Carbon Dioxide to Fuels. Catal. Today 2009, 148, 191–205. [Google Scholar] [CrossRef]
- Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W.A.; Kühn, F.E. Transformation of Carbon Dioxide with Homogeneous Transition-Metal Catalysts: A Molecular Solution to a Global Challenge? Angew. Chem. Int. Ed. 2011, 50, 8510–8537. [Google Scholar] [CrossRef] [PubMed]
- Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the Valorization of Exhaust Carbon: From CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2. Chem. Rev. 2014, 114, 1709–1742. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Using Carbon Dioxide as a Building Block in Organic Synthesis. Nat. Commun. 2015, 6, 5933. [Google Scholar] [CrossRef]
- Artz, J.; Müller, T.E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chem. Rev. 2018, 118, 434–504. [Google Scholar] [CrossRef] [PubMed]
- Modak, A.; Bhanja, P.; Dutta, S.; Chowdhury, B.; Bhaumik, A. Catalytic Reduction of CO2 into Fuels and Fine Chemicals. Green Chem. 2020, 22, 4002–4033. [Google Scholar] [CrossRef]
- Vitanova, D.V.; Hampel, F.; Hultzsch, K.C. Rare Earth Metal Complexes Based on β-Diketiminato and Novel Linked Bis(β-Diketiminato) Ligands: Synthesis, Structural Characterization and Catalytic Application in Epoxide/CO2-Copolymerization. J. Organomet. Chem. 2005, 690, 5182–5197. [Google Scholar] [CrossRef]
- Cui, D.; Nishiura, M.; Hou, Z. Alternating Copolymerization of Cyclohexene Oxide and Carbon Dioxide Catalyzed by Organo Rare Earth Metal Complexes. Macromolecules 2005, 38, 4089–4095. [Google Scholar] [CrossRef]
- Lazarov, B.B.; Hampel, F.; Hultzsch, K.C. Synthesis and Structural Characterization of β-Diketiminato Yttrium Complexes and Their Application in Epoxide/CO2-Copolymerization. Z. Anorg. Allg. Chem. 2007, 633, 2367–2373. [Google Scholar] [CrossRef]
- Cui, D.; Nishiura, M.; Tardif, O.; Hou, Z. Rare-Earth-Metal Mixed Hydride/Aryloxide Complexes Bearing Mono(Cyclopentadienyl) Ligands. Synthesis, CO2 Fixation, and Catalysis on Copolymerization of CO2 with Cyclohexene Oxide. Organometallics 2008, 27, 2428–2435. [Google Scholar] [CrossRef]
- Zhang, Z.; Cui, D.; Liu, X. Alternating Copolymerization of Cyclohexene Oxide and Carbon Dioxide Catalyzed by Noncyclopentadienyl Rare-Earth Metal Bis(Alkyl) Complexes. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 6810–6818. [Google Scholar] [CrossRef]
- Decortes, A.; Haak, R.M.; Martín, C.; Belmonte, M.M.; Martin, E.; Benet-Buchholz, J.; Kleij, A.W. Copolymerization of CO2 and Cyclohexene Oxide Mediated by Yb(Salen)-Based Complexes. Macromolecules 2015, 48, 8197–8207. [Google Scholar] [CrossRef]
- Xu, B.; Wang, P.; Lv, M.; Yuan, D.; Yao, Y. Transformation of Carbon Dioxide into Oxazolidinones and Cyclic Carbonates Catalyzed by Rare-Earth-Metal Phenolates. ChemCatChem 2016, 8, 2466–2471. [Google Scholar] [CrossRef]
- Yasuda, H. Organo-Rare-Earth-Metal Initiated Living Polymerizations of Polar and Nonpolar Monomers. J. Organomet. Chem. 2002, 647, 128–138. [Google Scholar] [CrossRef]
- Ion, A.; Parvulescu, V.; Jacobs, P.; de Vos, D. Sc and Zn-Catalyzed Synthesis of Cyclic Carbonates from CO2 and Epoxides. Appl. Catal. Gen. 2009, 363, 40–44. [Google Scholar] [CrossRef]
- Qin, J.; Wang, P.; Li, Q.; Zhang, Y.; Yuan, D.; Yao, Y. Catalytic Production of Cyclic Carbonates Mediated by Lanthanide Phenolates under Mild Conditions. Chem. Commun. 2014, 50, 10952–10955. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Dai, Z.; Sun, Y.; Tang, N.; Wu, J. Yttrium Complex Supported by a Sterically Encumbering N-Anchored Tris-Arylphenoxide Ligand: Heteroselective ROP of Rac-Lactide and CO2/Epoxide Coupling. Inorg. Chem. Commun. 2015, 56, 69–72. [Google Scholar] [CrossRef]
- Martínez, J.; Fernández-Baeza, J.; Sánchez-Barba, L.F.; Castro-Osma, J.A.; Lara-Sánchez, A.; Otero, A. An Efficient and Versatile Lanthanum Heteroscorpionate Catalyst for Carbon Dioxide Fixation into Cyclic Carbonates. ChemSusChem 2017, 10, 2886–2890. [Google Scholar] [CrossRef]
- Zhao, Z.; Qin, J.; Zhang, C.; Wang, Y.; Yuan, D.; Yao, Y. Recyclable Single-Component Rare-Earth Metal Catalysts for Cycloaddition of CO2 and Epoxides at Atmospheric Pressure. Inorg. Chem. 2017, 56, 4568–4575. [Google Scholar] [CrossRef] [PubMed]
- Sodpiban, O.; Gobbo, S.D.; Barman, S.; Aomchad, V.; Kidkhunthod, P.; Ould-Chikh, S.; Poater, A.; D’Elia, V.; Basset, J.-M. Synthesis of Well-Defined Yttrium-Based Lewis Acids by Capturing a Reaction Intermediate and Catalytic Application for Cycloaddition of CO2 to Epoxides under Atmospheric Pressure. Catal. Sci. Technol. 2019, 9, 6152–6165. [Google Scholar] [CrossRef]
- Bayer, U.; Werner, D.; Maichle-Mössmer, C.; Anwander, R. Effective and Reversible Carbon Dioxide Insertion into Cerium Pyrazolates. Angew. Chem. Int. Ed. 2020, 59, 5830–5836. [Google Scholar] [CrossRef] [PubMed]
- Bayer, U.; Liang, Y.; Anwander, R. Cerium Pyrazolates Grafted onto Mesoporous Silica SBA-15: Reversible CO2 Uptake and Catalytic Cycloaddition of Epoxides and Carbon Dioxide. Inorg. Chem. 2020, 59, 14605–14614. [Google Scholar] [CrossRef] [PubMed]
- Bordwell, F.G. Equilibrium Acidities in Dimethyl Sulfoxide Solution. Acc. Chem. Res. 1988, 21, 456–463. [Google Scholar] [CrossRef]
- Bochkarev, M.; Fedorova, E.A.; Radkov, Y.F.; Ya, S.; Kalinina, G.S.; Razuvaev, G.A. Carbon Dioxide Fixation by Lanthanide Complexes. J. Organomet. Chem. 1983, 258, C29–C33. [Google Scholar] [CrossRef]
- Radkov, Y.F.; Fedorova, E.A.; Khorshev, S.Y.; Kalinina, G.S.; Bochkarev, M.N.; Razuvaev, G.A. Reactions of Carbon Dioxide with Bis(Trimethylsilyl)Amino Derivaties of Lanthanides. Zhur. Obshchei Khimii 1986, 56, 386–389. [Google Scholar]
- Yin, H.; Carroll, P.J.; Schelter, E.J. Reactions of a cerium(iii) amide with heteroallenes: Insertion, silyl-migration and de-insertion. Chem. Commun. 2016, 52, 9813–9816. [Google Scholar] [CrossRef] [PubMed]
- Jenter, J.; Gamer, M.T.; Roesky, P.W. 2,5-Bis{N-(2,6-Diisopropylphenyl)Iminomethyl}pyrrolyl Complexes of the Divalent Lanthanides: Synthesis and Structures. Organometallics 2010, 29, 4410–4413. [Google Scholar] [CrossRef]
- Wang, L.; Liu, D.; Cui, D. NNN-Tridentate Pyrrolyl Rare-Earth Metal Complexes: Structure and Catalysis on Specific Selective Living Polymerization of Isoprene. Organometallics 2012, 31, 6014–6021. [Google Scholar] [CrossRef]
- Johnson, K.R.D.; Hannon, M.A.; Ritch, J.S.; Hayes, P.G. Thermally Stable Rare Earth Dialkyl Complexes Supported by a Novel Bis(Phosphinimine)Pyrrole Ligand. Dalton Trans. 2012, 41, 7873–7875. [Google Scholar] [CrossRef]
- Kaneko, H.; Dietrich, H.M.; Schädle, C.; Maichle-Mössmer, C.; Tsurugi, H.; Törnroos, K.W.; Mashima, K.; Anwander, R. Synthesis of Rare-Earth-Metal Iminopyrrolyl Complexes from Alkyl Precursors: Ln→Al N-Ancillary Ligand Transfer. Organometallics 2013, 32, 1199–1208. [Google Scholar] [CrossRef]
- Levine, D.S.; Tilley, T.D.; Andersen, R.A. Evidence for the Existence of Group 3 Terminal Methylidene Complexes. Organometallics 2017, 36, 80–88. [Google Scholar] [CrossRef]
- Knott, J.P.; Hänninen, M.M.; Rautiainen, J.M.; Tuononen, H.M.; Hayes, P.G. Insights into the Decomposition Pathway of a Lutetium Alkylamido Complex via Intramolecular C–H Bond Activation. J. Organomet. Chem. 2017, 845, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Sampson, J.; Choi, G.; Akhtar, M.N.; Jaseer, E.A.; Theravalappil, R.; Garcia, N.; Agapie, T. Early Metal Di(Pyridyl) Pyrrolide Complexes with Second Coordination Sphere Arene−π Interactions: Ligand Binding and Ethylene Polymerization. ACS Omega 2019, 4, 15879–15892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McPherson, J.N.; Galan, L.A.; Iranmanesh, H.; Massi, M.; Colbran, S.B. Synthesis and Structural, Redox and Photophysical Properties of Tris-(2,5-Di(2-Pyridyl)Pyrrolide) Lanthanide Complexes. Dalton Trans. 2019, 48, 9365–9375. [Google Scholar] [CrossRef]
- Schumann, H.; Lee, P.R.; Dietrich, A. Organometallic Compounds of the Lanthanides, 57. Pyrrolyl Complexes of Yttrium and Lutetium. Molecular Structure of Dicyclopentadienyl(2,5-Dimethylpyrrolyl)(Tetrahydrofuran)Lutetium(III). Chem. Ber. 1990, 123, 1331–1334. [Google Scholar] [CrossRef]
- Arndt, S.; Trifonov, A.; Spaniol, T.P.; Okuda, J.; Kitamura, M.; Takahashi, T. Metalation of Aromatic Heterocycles by Yttrium Alkyl Complexes That Contain a Linked Amido-Cyclopentadienyl Ligand: Synthesis, Structure and Lewis Base Adduct Formation. J. Organomet. Chem. 2002, 647, 158–166. [Google Scholar] [CrossRef]
- Quitmann, C.C.; Müller-Buschbaum, K. [Sm(NH3)9][Sm(Pyr)6], ein komplexes Salz mit zwei homoleptischen Ionen aus der Synthese in flüssigem Ammoniak. Z. Anorg. Allg. Chem. 2005, 631, 564–568. [Google Scholar] [CrossRef]
- Arnold, P.L.; Cadenbach, T.; Marr, I.H.; Fyfe, A.A.; Bell, N.L.; Bellabarba, R.; Tooze, R.P.; Love, J.B. Homo- and Heteroleptic Alkoxycarbene f-Element Complexes and Their Reactivity towards Acidic N–H and C–H Bonds. Dalton Trans. 2014, 43, 14346–14358. [Google Scholar] [CrossRef] [Green Version]
- Deacon, G.B.; Forsyth, C.M.; Gatehouse, B.M. Organoamido- and Aryloxo-Lanthanoids. I. The Preparation and Characterization of Some Lanthanoid(II) Organoamides, and the X-Ray Crystal Structure of Cis-Bis(Carbazol-9-Yl)Tetrakis(Tetrahydrofuran)Europium(II). Aust. J. Chem. 1990, 43, 795–806. [Google Scholar] [CrossRef]
- Abrahams, C.T.; Deacon, G.B.; Gatehouse, B.M.; Ward, G.N. Cis-Bis(9-Carbazolyl)(1,2-Dimethoxyethane)-Cis-Bis(Tetrahydrofuran)Ytterbium(II). Acta Crystallogr. C 1994, 50, 504–507. [Google Scholar] [CrossRef]
- Evans, W.J.; Rabe, G.W.; Ziller, J.W. Stereochemical Variability in Samarium(II) Reagents Using Carbazole as an Alternative to Iodide: Synthesis and Structure of Cis-(C12H8N)2Sm(THF)4 and Trans-(C12H8N)2Sm(N-MeIm)4. Organometallics 1994, 13, 1641–1645. [Google Scholar] [CrossRef]
- Quitmann, C.C.; Müller-Buschbaum, K. Verdrängung von η6-π-Wechselwirkungen durch N-Donor-Liganden: Von ein-dimensionalen Samarium- und Ytterbium-Carbazolaten zu monomeren Einheiten mit N-Phenylpiperazin. Z. Anorg. Allg. Chem. 2005, 631, 350–354. [Google Scholar] [CrossRef]
- Müller-Buschbaum, K.; Zurawski, A. On the Mechanisms of Electride Induced Synthesis of Ytterbium Carbazolates, Formation of Coordination Polymers by Condensation and Polymer Degradation by Chemical Scissors. Z. Anorg. Allg. Chem. 2007, 633, 2300–2304. [Google Scholar] [CrossRef]
- Basalov, I.V.; Roşca, S.C.; Lyubov, D.M.; Selikhov, A.N.; Fukin, G.K.; Sarazin, Y.; Carpentier, J.-F.; Trifonov, A.A. Divalent Heteroleptic Ytterbium Complexes – Effective Catalysts for Intermolecular Styrene Hydrophosphination and Hydroamination. Inorg. Chem. 2014, 53, 1654–1661. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Selikhov, A.N.; Mamontova, E.; Lyssenko, K.A.; Guari, Y.; Larionova, J.; Trifonov, A.A. Single-Molecule Magnet Behavior in Luminescent Carbazolyl Dy(III) Octahedral Complexes with a Quasi Linear N–Dy–N Angle. Dalton Trans. 2020, 49, 4039–4043. [Google Scholar] [CrossRef]
- Eppinger, J.; Spiegler, M.; Hieringer, W.; Herrmann, W.A.; Anwander, R. C2-Symmetric Ansa-Lanthanidocene Complexes. Synthesis via Silylamine Elimination and β-SiH Agostic Rigidity. J. Am. Chem. Soc. 2000, 122, 3080–3096. [Google Scholar] [CrossRef]
- Fraser, R.R.; Mansour, T.S.; Savard, S. Acidity Measurements on Pyridines in Tetrahydrofuran Using Lithiated Silylamines. J. Org. Chem. 1985, 50, 3232–3234. [Google Scholar] [CrossRef]
- Werner, D.; Deacon, G.B.; Junk, P.C.; Anwander, R. Pyrazolates Advance Cerium Chemistry: A CeIII/CeIV Redox Equilibrium with Benzoquinone. Dalton Trans. 2017, 46, 6265–6277. [Google Scholar] [CrossRef]
- Werner, D.; Deacon, G.B.; Junk, P.C.; Anwander, R. Cerium(III/IV) Formamidinate Chemistry, and a Stable Cerium(IV) Diolate. Chem. Eur. J. 2014, 20, 4426–4438. [Google Scholar] [CrossRef] [PubMed]
- Bayer, U.; Bock, L.; Maichle-Mössmer, C.; Anwander, R. A Facile Route toward Ceric Silylamide [Ce{N(SiHMe2)2}4]. Eur. J. Inorg. Chem. 2020, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Evans, W.J.; Lee, D.S.; Rego, D.B.; Perotti, J.M.; Kozimor, S.A.; Moore, E.K.; Ziller, J.W. Expanding Dinitrogen Reduction Chemistry to Trivalent Lanthanides via the LnZ3/Alkali Metal Reduction System: Evaluation of the Generality of Forming Ln2(μ-η2:η2-N2) Complexes via LnZ3/K. J. Am. Chem. Soc. 2004, 126, 14574–14582. [Google Scholar] [CrossRef] [PubMed]
- Williams, U.J.; Schneider, D.; Dorfner, W.L.; Maichle-Mössmer, C.; Carroll, P.J.; Anwander, R.; Schelter, E.J. Variation of Electronic Transitions and Reduction Potentials of Cerium(iv) Complexes. Dalton Trans. 2014, 43, 16197–16206. [Google Scholar] [CrossRef] [PubMed]
- Hausen, H.-D.; Locke, K.; Weidlein*, J. Die Molekül- und Kristallstruktur von (CH3)2InNC4H4. J. Organomet. Chem. 1992, 423, C1–C4. [Google Scholar] [CrossRef]
- Hausen, H.-D.; Tödtmann, J.; Weidlein, J. [(CH3C)4N-(CH3)2Al⋯Cl⋯Al(CH3)2-N(CCH3)4]Li-Ein Ungewöhnlicher Sandwich-Komplex Des Lithiums. J. Organomet. Chem. 1994, 466, C1–C4. [Google Scholar] [CrossRef]
- Hsueh, L.-F.; Chuang, N.-T.; Lee, C.-Y.; Datta, A.; Huang, J.-H.; Lee, T.-Y. Magnesium Complexes Containing η1- and η3-Pyrrolyl or Ketiminato Ligands: Synthesis, Structural Investigation and ϵ-Caprolactone Ring-Opening Polymerisation. Eur. J. Inorg. Chem. 2011, 5530–5537. [Google Scholar] [CrossRef]
- Guo, Z.; Xu, Y.; Chao, J.; Wei, X. Lithium Organoaluminate Complexes as Catalysts for the Conversion of CO2 into Cyclic Carbonates. Eur. J. Inorg. Chem. 2020, 2835–2841. [Google Scholar] [CrossRef]
- Crozier, A.R.; Bienfait, A.M.; Maichle-Mössmer, C.; Törnroos, K.W.; Anwander, R. A Homoleptic Tetravalent Cerium Silylamide. Chem. Commun. 2013, 49, 87–89. [Google Scholar] [CrossRef]
- Schneider, D.; Spallek, T.; Maichle-Mössmer, C.; Törnroos, K.W.; Anwander, R. Cerium Tetrakis(Diisopropylamide)—A Useful Precursor for Cerium(iv) Chemistry. Chem. Commun. 2014, 50, 14763–14766. [Google Scholar] [CrossRef] [PubMed]
- Gauld, R.M.; Kennedy, A.R.; McLellan, R.; Barker, J.; Reid, J.; Mulvey, R.E. Diverse Outcomes of CO2 Fixation Using Alkali Metal Amides Including Formation of a Heterobimetallic Lithium–Sodium Carbamato-Anhydride via Lithium–Sodium Bis-Hexamethyldisilazide. Chem. Commun. 2019, 55, 1478–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelenin, K.N.; Tugusheva, A.R.; Yakimovich, S.I.; Alekseev, V.V.; Zerova, E.V. 5-Hydroxy-2-Pyrazolines and Some of Their 1-Substituted Analogs. Chem. Heterocycl. Compd. 2002, 38, 668–676. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayer, U.; Jenner, A.; Riedmaier, J.; Maichle-Mössmer, C.; Anwander, R. Effect of Substituents of Cerium Pyrazolates and Pyrrolates on Carbon Dioxide Activation. Molecules 2021, 26, 1957. https://doi.org/10.3390/molecules26071957
Bayer U, Jenner A, Riedmaier J, Maichle-Mössmer C, Anwander R. Effect of Substituents of Cerium Pyrazolates and Pyrrolates on Carbon Dioxide Activation. Molecules. 2021; 26(7):1957. https://doi.org/10.3390/molecules26071957
Chicago/Turabian StyleBayer, Uwe, Adrian Jenner, Jonas Riedmaier, Cäcilia Maichle-Mössmer, and Reiner Anwander. 2021. "Effect of Substituents of Cerium Pyrazolates and Pyrrolates on Carbon Dioxide Activation" Molecules 26, no. 7: 1957. https://doi.org/10.3390/molecules26071957
APA StyleBayer, U., Jenner, A., Riedmaier, J., Maichle-Mössmer, C., & Anwander, R. (2021). Effect of Substituents of Cerium Pyrazolates and Pyrrolates on Carbon Dioxide Activation. Molecules, 26(7), 1957. https://doi.org/10.3390/molecules26071957