Solanum anguivi Lam. Fruits: Their Potential Effects on Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Glucose Homeostasis
Insulin and Glucagon as Mediators of the Glucose Homeostasis
3. Type 2 Diabetes Mellitus
3.1. Pathogenesis of T2DM
3.1.1. Oxidative Stress and T2DM
3.1.2. Insulin Resistance
3.1.3. Pancreatic β-Cell Dysfunction/Failure
4. Antioxidants and T2DM
Endogenous and Exogenous Antioxidants in Humans
5. Solanum anguivi Lam. Fruit’s Antidiabetic Properties and Potential Mechanisms of Action
5.1. Saponins
5.2. Phenolics and Flavonoids
5.3. Alkaloids
6. Conclusions
Funding
Conflicts of Interest
References
- Rodrigues, R. A Comprehensive Review: The Use of Animal Models in Diabetes Research. J. Anal. Pharm. Res. 2016, 3, 1–5. [Google Scholar] [CrossRef]
- WHO. Global Status Report on Noncommunicable Diseases; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- IDF. IDF Diabetes Atlas, 9th ed.; Karuranga, S., Malanda, B., Saeedi, P., Salpea, P., Eds.; IDF: Brussels, Belgium, 2019. [Google Scholar]
- IDF. IDF Diabetes Atlas, 6th ed.; Guariguata, L., Nolan, T., Beagley, J., Linnenkamp, U., Jacqmain, O., Eds.; IDF: Brussels, Belgium, 2013. [Google Scholar]
- Elekofehinti, O.O.; Kamdem, J.P.; Kade, I.J.; Rocha, J.B.T.; Adanlawo, I.G. Hypoglycemic, Antiperoxidative and Antihyperlipidemic Effects of Saponins from Solanum Anguivi Lam. Fruits in Alloxan-Induced Diabetic Rats. S. Afr. J. Bot. 2013, 88, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Seble, S.E. Evaluation of Hypoglycemic Activity of Selected Medicinal Plants from Central Uganda in Alloxan Induced Diabetic Rats. Master’s Thesis, Makerere University, Kampala, Uganda, 2011. [Google Scholar]
- United States Department of Agriculture. Plants Profile for Solanum anguivi. Available online: https://plants.usda.gov/core/profile?symbol=SOAN8 (accessed on 25 March 2020).
- Bukenya, Z.R. Studies in the Taxonomy of the Genus Solanum in Uganda. Ph.D. Thesis, Makerere University, Kampala, Uganda, 1993. [Google Scholar]
- Jayanthy, A.; Maurya, A.; Verma, S.C.; Srivastava, A.; Shankar, M.B.; Sharma, R.K. A Brief Review on Pharmacognosy, Phytochemistry and Therapeutic Potential of Solanum Indium L. Used in Indian Systems of Medicine. Asian J. Res. Chem. 2016, 9, 127–132. [Google Scholar] [CrossRef]
- Denton, O.A.; Nwangburuka, C.C. Heritability, Genetic Advance and Character Association in Six Yield Related Characters of Solanum Anguivi. Asian J. Agric. Res. 2011, 5, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Hindmarsh, P.C.; Geertsma, K. Glucose and Cortisol. In Congenital Adrenal Hyperplasia, 1st ed.; Bennett, T., Ed.; Elsevier: London, UK, 2017; pp. 219–230. [Google Scholar] [CrossRef]
- Röder, P.V.; Wu, B.; Liu, Y.; Han, W. Pancreatic Regulation of Glucose Homeostasis. Exp. Mol. Med. 2016, 48, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva Xavier, G. The Cells of the Islets of Langerhans. J. Clin. Med. 2018, 7, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henriksen, E.J. Dysregulation of Glycogen Synthase Kinase-3 in Skeletal Muscle and the Etiology of Insulin Resistance and Type 2 Diabetes. Curr. Diabetes Rev. 2010, 6, 285–293. [Google Scholar] [CrossRef]
- Henriksen, E.J.; Diamond-Stanic, M.K.; Marchionne, E.M. Oxidative Stress and the Etiology of Insulin Resistance and Type 2 Diabetes. Free Radic. Biol. Med. 2011, 51, 993–999. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, D.S. The Glycemic Index: Physiological Mechanisms Relating to Obesity, Diabetes, and Cardiovascular Disease. J. Am. Med. Assoc. 2002, 287, 2414–2423. [Google Scholar] [CrossRef]
- Sacks, F.M.; Carey, V.J.; Anderson, C.A.M.; Miller, E.R., III; Copeland, T.; Charleston, J.; Harshfield, B.J.; Laranjo, N.; McCarron, P.; Swain, J.; et al. Effects of High vs Low Glycemic Index of Dietary Carbohydrate on Cardiovascular Disease Risk Factors and Insulin Sensitivity the OmniCarb Randomized Clinical Trial. JAMA 2014, 312, 2531–2541. [Google Scholar] [CrossRef]
- Tripathy, D.; Chavez, A.O. Defects in Insulin Secretion and Action in the Pathogenesis of Type 2 Diabetes Mellitus. Curr. Diab. Rep. 2010, 10, 184–191. [Google Scholar] [CrossRef]
- Chen, Y.; Cruzat, V.F.; Newsholme, P. β-Cell Metabolism, Insulin Production and Secretion: Metabolic Failure Resulting in Diabetes. In Molecular Nutrition and Diabetes: A Volume in the Molecular Nutrition Series, 1st ed.; Mauricio, D., Ed.; Elsevier Inc.: London, UK, 2016; pp. 29–40. [Google Scholar] [CrossRef]
- Rorsman, P.; Braun, M. Regulation of Insulin Secretion in Human Pancreatic Islets. Annu. Rev. Physiol. 2013, 75, 155–179. [Google Scholar] [CrossRef]
- Newsholme, P.; Krause, M. Nutritional Regulation of Insulin Secretion: Implications for Diabetes. Clin. Biochem. Rev. 2012, 33, 35–47. [Google Scholar]
- Henquin, J.C. Triggering and Amplifying Pathways of Regulation of Insulin Secretion by Glucose. Diabetes 2000, 49, 1751–1760. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, G. Insulin and Insulin Resistance. Clin. Biochem. Rev. 2005, 26, 1–14. [Google Scholar]
- Newsholme, P.; Haber, E.P.; Hirabara, S.M.; Rebelato, E.L.O.; Procopio, J.; Morgan, D.; Oliveira-Emilio, H.C.; Carpinelli, A.R.; Curi, R.; Newsholme, C.P. Diabetes Associated Cell Stress and Dysfunction: Role of Mitochondrial and Non-Mitochondrial ROS Production and Activity. J. Physiol. 2007, 583, 9–24. [Google Scholar] [CrossRef]
- Henriksen, E.J. Role of Oxidative Stress in the Pathogenesis of Insulin Resistance and Type 2 Diabetes. In Bioactive Food as Dietary Interventions for Diabetes, 1st ed.; Watson, R.R., Preedy, V.R., Eds.; Elsevier Inc.: San Diego, CA, USA, 2013; pp. 1–15. [Google Scholar] [CrossRef]
- Tremblay, F.; Lavigne, C.; Jacques, H.; Marette, A. Defective Insulin-Induced GLUT4 Translocation in Skeletal Muscle of High Fat-Fed Rats Is Associated with Alterations in Both Akt/Protein Kinase B and Atypical Protein Kinase C (ζ/λ) Activities. Diabetes 2001, 50, 1901–1910. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Collier, A. Diabetes, 2nd ed.; Pickup, J., Ed.; Churchill Livingstone, Elsevier: London, UK, 2012. [Google Scholar]
- Munir, K.M.; Chandrasekaran, S.; Gao, F.; Quon, M.J. Mechanisms for Food Polyphenols to Ameliorate Insulin Resistance and Endothelial Dysfunction: Therapeutic Implications for Diabetes and Its Cardiovascular Complications. Am. J. Physiol. Metab. 2013, 305, E679–E686. [Google Scholar] [CrossRef] [Green Version]
- Klover, P.J.; Mooney, R.A. Hepatocytes: Critical for Glucose Homeostasis. Int. J. Biochem. Cell Biol. 2004, 36, 753–758. [Google Scholar] [CrossRef]
- Ferré, P. The Biology of Peroxisome Proliferator-Activated Receptors: Relationship with Lipid Metabolism and Insulin Sensitivity. Diabetes 2004, 53, S43–S50. [Google Scholar] [CrossRef] [Green Version]
- Rix, I.; Nexøe-Larsen, C.; Bergmann, N.C.; Lund, A.; Knop, F.K. Glucagon Physiology. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279127/ (accessed on 1 February 2021).
- Hædersdal, S.; Lund, A.; Knop, F.K.; Vilsbøll, T. The Role of Glucagon in the Pathophysiology and Treatment of Type 2 Diabetes. Mayo Clin. Proc. 2018, 93, 217–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, T.D.; Finan, B.; Clemmensen, C.; Di Marchi, R.D.; Tschöp, M.H. The New Biology and Pharmacology of Glucagon. Physiol. Rev. 2017, 97, 721–766. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, S.K.; Sankar, P.; Jialal, I. Physiology, Glucagon. Available online: http://www.ncbi.nlm.nih.gov/pubmed/30725767 (accessed on 1 February 2021).
- Jiang, G.; Zhang, B.B. Glucagon and Regulation of Glucose Metabolism. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E671–E678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, J.M.; Tymoczko, J.L.; Stryer, L. Glycogen Metabolism. In Biochemistry, 5th ed.; W.H. Freeman: New York, NY, USA, 2002; pp. 864–896. [Google Scholar]
- Grigorenko, B.; Polyakov, I.; Nemukhin, A. Mechanisms of ATP to CAMP Conversion Catalyzed by the Mammalian Adenylyl Cyclase: A Role of Magnesium Coordination Shells and Proton Wires. J. Phys. Chem. B 2020, 124, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Christophe, J. Glucagon Receptors: From Genetic Structure and Expression to Effector Coupling and Biological Responses. BBA Rev. Biomembr. 1995, 1241, 45–57. [Google Scholar] [CrossRef]
- Adeva-Andany, M.M.; Pérez-Felpete, N.; Fernández-Fernández, C.; Donapetry-García, C.; Pazos-García, C. Liver Glucose Metabolism in Humans. Biosci. Rep. 2016, 36, 416. [Google Scholar] [CrossRef] [Green Version]
- Temneanu, O.R.; Trandafir, L.M.; Purcarea, M.R. Type 2 Diabetes Mellitus in Children and Adolescents: A Relatively New Clinical Problem within Pediatric Practice. J. Med. Life 2016, 9, 235–239. [Google Scholar]
- Association American Diabetes. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2009, 32, S62–S67. [Google Scholar] [CrossRef] [Green Version]
- Knop, F.K.; Vilsbøll, T.; Madsbad, S.; Holst, J.J.; Krarup, T. Inappropriate Suppression of Glucagon during OGTT but Not during Isoglycaemic i.v. Glucose Infusion Contributes to the Reduced Incretin Effect in Type 2 Diabetes Mellitus. Diabetologia 2007, 50, 797–805. [Google Scholar] [CrossRef]
- Reaven, G.M.; Chen, Y.D.I.; Golay, A.; Swislocki, A.L.M.; Jaspan, J.B. Documentation of Hyperglucagonemia throughout the Day in Nonobese and Obese Patients with Noninsulin-Dependent Diabetes Mellitus. J. Clin. Endocrinol. Metab. 1987, 64, 106–110. [Google Scholar] [CrossRef]
- Lund, A.; Bagger, J.I.; Christensen, M.; Grøndahl, M.; Van Hall, G.; Holst, J.J.; Vilsbøll, T.; Knop, F.K. Higher Endogenous Glucose Production during OGTT vs Isoglycemic Intravenous Glucose Infusion. J. Clin. Endocrinol. Metab. 2016, 101, 4377–4384. [Google Scholar] [CrossRef]
- Hamaguchi, T.; Fukushima, H.; Uehara, M.; Wada, S.; Shirotani, T.; Kishikawa, H.; Ichinose, K.; Yamaguchi, K.; Shichiri, M. Abnormal Glucagon Response to Arginine and Its Normalization in Obese Hyperinsulinaemic Patients with Glucose Intolerance: Importance of Insulin Action on Pancreatic Alpha Cells. Diabetologia 1991, 34, 801–806. [Google Scholar] [CrossRef] [Green Version]
- Dunning, B.E.; Gerich, J.E. The Role of α-Cell Dysregulation in Fasting and Postprandial Hyperglycemia in Type 2 Diabetes and Therapeutic Implications. Endocr. Rev. 2007, 28, 253–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaku, K. Pathophysiology of Type 2 Diabetes and Its Treatment Policy. J. Jpn. Med. Assoc. 2010, 53, 41–46. [Google Scholar]
- Johansen, J.S.; Harris, A.K.; Rychly, D.J.; Ergul, A. Oxidative Stress and the Use of Antioxidants in Diabetes: Linking Basic Science to Clinical Pratice. Cardiovasc. Diabetol. 2005, 4, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Škrovánková, S.; Mišurcová, L.; Machů, L. Antioxidant Activity and Protecting Health Effects of Common Medicinal Plants. Adv. Food Nutr. Res. 2012, 67, 75–139. [Google Scholar] [CrossRef]
- Beier, J.I.; Arteel, G.E. Ethanol-Induced Hepatotoxicity. In Comprehensive Toxicology, 2nd ed.; McQueen, C.A., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2010; pp. 421–435. [Google Scholar] [CrossRef]
- Duchen, M.R. Mitochondria and Calcium: From Cell Signalling to Cell Death. J. Physiol. 2000, 529, 57–68. [Google Scholar] [CrossRef]
- Osellame, L.D.; Blacker, T.S.; Duchen, M.R. Cellular and Molecular Mechanisms of Mitochondrial Function. Best Pract. Res. Clin. Endocrinol. Metab. 2012, 26, 711–723. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.P.; Köhler, M.; Graff, C.; Oldfors, A.; Magnuson, M.A.; Berggren, P.O.; Larsson, N.G. Impaired Insulin Secretion and β-Cell Loss in Tissue-Specific Knockout Mice with Mitochondrial Diabetes. Nat. Genet. 2000, 26, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Asmat, U.; Abad, K.; Ismail, K. Diabetes Mellitus and Oxidative Stress—A Concise Review. Saudi Pharm. J. 2016, 24, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Maritim, A.C.; Sanders, R.A.; Watkins, J.B. Diabetes, Oxidative Stress, and Antioxidants: A Review. J. Biochem. Mol. Toxicol. 2003, 17, 24–38. [Google Scholar] [CrossRef]
- Okoduwa, S.I.R.; Umar, I.A.; Ibrahim, S.; Bello, F. Relationship of Oxidative Stress with Type 2 Diabetes and Hypertension. J. Diabetol. 2013, 1, 1–11. [Google Scholar]
- Hurrle, S.; Hsu, W.H. The Etiology of Oxidative Stress in Insulin Resistance. Biomed. J. 2017, 40, 257–262. [Google Scholar] [CrossRef]
- Jheng, H.-F.; Tsai, P.-J.; Guo, S.-M.; Kuo, L.-H.; Chang, C.-S.; Su, I.-J.; Chang, C.-R.; Tsai, Y.-S. Mitochondrial Fission Contributes to Mitochondrial Dysfunction and Insulin Resistance in Skeletal Muscle. Mol. Cell. Biol. 2012, 32, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Boucher, J.; Kleinridders, A.; Ronald Kahn, C. Insulin Receptor Signaling in Normal and Insulin-Resistant States. Cold Spring Harb. Perspect. Biol. 2014, 6, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, A.L.; Lyons, T.J. Glycation, Oxidation, and Lipoxidation in the Development of Diabetic Complications. Metabolism 1997, 46, 14–21. [Google Scholar] [CrossRef]
- Pearson, T.; Wattis, J.A.D.; King, J.R.; MacDonald, I.A.; Mazzatti, D.J. The Effects of Insulin Resistance on Individual Tissues: An Application of a Mathematical Model of Metabolism in Humans. Bull. Math. Biol. 2016, 78, 1189–1217. [Google Scholar] [CrossRef] [Green Version]
- Czech, M.P. Insulin Action and Resistance in Obesity and Type 2 Diabetes. Nat. Med. 2017, 23, 804–814. [Google Scholar] [CrossRef]
- Henriksen, E.J. Invited Review: Effects of Acute Exercise and Exercise Training on Insulin Resistance. J. Appl. Physiol. 2002, 93, 788–796. [Google Scholar] [CrossRef] [Green Version]
- Vicente Dragano, N.R.; Marques, A.y.C. Native Fruits, Anthocyanins in Nutraceuticals, and the Insulin Receptor/Insulin Receptor Substrate-1/Akt/Forkhead Box Protein Pathway. In Molecular Nutrition and Diabetes: A Volume in the Molecular Nutrition Series, 1st ed.; Mauricio, D., Ed.; Elsevier Inc.: London, UK, 2016; pp. 131–145. [Google Scholar] [CrossRef]
- Boden, G.; Shulman, G.I. Free Fatty Acids in Obesity and Type 2 Diabetes: Defining Their Role in the Development of Insulin Resistance and β-Cell Dysfunction. Eur. J. Clin. Investig. 2002, 32, 14–23. [Google Scholar] [CrossRef]
- Bergman, R.N.; Mittelman, S.D. Central Role of the Adipocyte in Insulin Resistance. J. Basic Clin. Physiol. Pharmacol. 1998, 9, 205–222. [Google Scholar] [CrossRef] [PubMed]
- Falk Petersen, K.; Shulman, G.I. Etiology of Insulin Resistance. Am. J. Med. 2006, 119, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoleri, D.; Titchenell, P.M. Resolving the Paradox of Hepatic Insulin Resistance. CMGH 2019, 7, 447–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, M.S.; Goldstein, J.L. Selective versus Total Insulin Resistance: A Pathogenic Paradox. Cell Metab. 2008, 7, 95–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, M.C.; Vatner, D.F.; Shulman, G.I. Regulation of Hepatic Glucose Metabolism in Health and Disease. Nat. Rev. Endocrinol. 2017, 13, 572–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roden, M. Mechanisms of Disease: Hepatic Steatosis in Type 2 Diabetes—Pathogenesis and Clinical Relevance. Nat. Clin. Pract. Endocrinol. Metab. 2006, 2, 335–348. [Google Scholar] [CrossRef]
- Cerf, M.E. Beta Cell Dysfunction and Insulin Resistance. Front. Endocrinol. 2013, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Chang-Chen, K.J.; Mullur, R.; Bernal-Mizrachi, E. β-Cell Failure as a Complication of Diabetes. Rev. Endocr. Metab. Disord. 2008, 9, 329–343. [Google Scholar] [CrossRef] [Green Version]
- Prentki, M.; Nolan, C.J. Islet β Cell Failure in Type 2 Diabetes. J. Clin. Invest. 2006, 116, 1802–1812. [Google Scholar] [CrossRef] [Green Version]
- Kasuga, M. Review Series Introduction Insulin Resistance and Pancreatic b Cell Failure. J. Clin. Investig. 2010, 116, 1756–1760. [Google Scholar] [CrossRef]
- Sivitz, W.I.; Yorek, M.A. Mitochondrial Dysfunction in Diabetes: From Molecular Mechanisms to Functional Significance and Therapeutic Opportunities. Antioxid. Redox Signal. 2010, 12, 537–577. [Google Scholar] [CrossRef] [Green Version]
- Van Citters, G.W.; Kabir, M.; Kim, S.P.; Mittelman, S.D.; Dea, M.K.; Brubaker, P.L.; Bergman, R.N. Elevated Glucagon-like Peptide-1-(7-36)-Amide, but Not Glucose, Associated with Hyperinsulinemic Compensation for Fat Feeding. J. Clin. Endocrinol. Metab. 2002, 87, 5191–5198. [Google Scholar] [CrossRef]
- Rao, V.R. Antioxidant Agents. In Advances in Structure and Activity Relationship of Coumarin Derivatives, 1st ed.; Penta, S., Ed.; Elsevier Inc.: London, UK, 2016; pp. 137–150. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Valgimigli, L.; Pratt, D.A. Antioxidants in Chemistry and Biology. In Encyclopedia of Radicals in Chemistry, Biology and Materials; Chatgilialoglu, C., Studer, A., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2012; pp. 1623–1677. [Google Scholar] [CrossRef]
- Ingold, K.U.; Pratt, D.A. Advances in Radical-Trapping Antioxidant Chemistry in the 21st Century: A Kinetics and Mechanisms Perspective. Chem. Rev. 2014, 114, 9022–9046. [Google Scholar] [CrossRef] [Green Version]
- Hermund, D.B. Antioxidant Properties of Seaweed-Derived Substances. In Bioactive Seaweeds for Food Applications: Natural Ingredients for Healthy Diets, 1st ed.; Qin, Y., Ed.; Academic Press: London, UK, 2018; pp. 201–221. [Google Scholar] [CrossRef]
- Jomova, K.; Baros, S.; Valko, M. Redox Active Metal-Induced Oxidative Stress in Biological Systems. Transit. Met. Chem. 2012, 37, 127–134. [Google Scholar] [CrossRef]
- Amorati, R.; Valgimigli, L. Advantages and Limitations of Common Testing Methods for Antioxidants. Free Radic. Res. 2015, 49, 633–649. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Akinloye, O.A. First Line Defence Antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their Fundamental Role in the Entire Antioxidant Defence Grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Willcox, J.K.; Ash, S.L.; Catignani, G.L. Antioxidants and Prevention of Chronic Disease. Crit. Rev. Food Sci. Nutr. 2004, 44, 275–295. [Google Scholar] [CrossRef]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free Radicals, Antioxidants in Disease and Health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar]
- Dal, S.; Sigrist, S. The Protective Effect of Antioxidants Consumption on Diabetes and Vascular Complications. Diseases 2016, 4, 1–54. [Google Scholar] [CrossRef] [Green Version]
- Asakura, H.; Kitahora, T. Antioxidants and Polyphenols in Inflammatory Bowel Disease: Ulcerative Colitis and Crohn Disease. In Polyphenols: Prevention and Treatment of Human Disease, 2nd ed.; Watson, R.R., Preedy, V.R., Zibadi, S., Eds.; Academic Press: London, UK, 2018; pp. 279–292. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 1–13. [Google Scholar] [CrossRef]
- Kurutas, E.B. The Importance of Antioxidants Which Play the Role in Cellular Response against Oxidative/Nitrosative Stress: Current State. Nutr. J. 2016, 15, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Elekofehinti, O.O.; Kamdem, J.P.; Bolingon, A.A.; Athayde, M.L.; Lopes, S.L.; Waczuk, E.P.; Kade, I.J.; Adanlawo, I.G.; Rocha, J.B.T. African Eggplant (Solanum Anguivi Lam.) Fruit with Bioactive Polyphenolic Compounds Exerts In Vitro Antioxidant Properties and Inhibits Ca2+-Induced Mitochondrial Swelling. Asian Pac. J. Trop. Biomed. 2013, 3, 757–766. [Google Scholar] [CrossRef] [Green Version]
- Wilson, D.W.; Nash, P.; Singh, H.; Griffiths, K.; Singh, R.; De Meester, F.; Horiuchi, R.; Takahashi, T. The Role of Food Antioxidants, Benefits of Functional Foods, and Influence of Feeding Habits on the Health of the Older Person: An Overview. Antioxidants 2017, 6, 81. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Park, M.; Lee, H.; Kang, Y.-H.; Kang, E.; Kim, S. Antidiabetic Agents from Medicinal Plants. Curr. Med. Chem. 2006, 13, 1203–1218. [Google Scholar] [CrossRef] [Green Version]
- Patel, D.K.; Prasad, S.K.; Kumar, R.; Hemalatha, S. An Overview on Antidiabetic Medicinal Plants Having Insulin Mimetic Property. Asian Pac. J. Trop. Biomed. 2012, 2, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Miglio, C.; Chiavaro, E.; Visconti, A.; Fogliano, V.; Pellegrini, N. Effects of Different Cooking Methods on Nutritional and Physicochemical Characteristics of Selected Vegetables. J. Agric. Food Chem. 2008, 56, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H. Potential Synergy of Phytochemicals in Cancer Prevention: Mechanism of Action. J. Nutr. 2004, 134, 3479S–3485S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAnuff, M.A.; Harding, W.W.; Omoruyi, F.O.; Jacobs, H.; Morrison, E.Y.; Asemota, H.N. Hypoglycemic Effects of Steroidal Sapogenins Isolated from Jamaican Bitter Yam, Dioscorea Polygonoides. Food Chem. Toxicol. 2005, 43, 1667–1672. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.J.H.; Ntanios, F.Y.; Raeini-Sarjaz, M.; Vanstone, C.A. Cholesterol-Lowering Efficacy of a Sitostanol-Containing Phytosterol Mixture with a Prudent Diet in Hyperlipidemic Men. Am. J. Clin. Nutr. 1999, 69, 1144–1150. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Chu, Y.-F.; Wu, X.; Liu, R.H. Antioxidant and Antiproliferative Activities of Common Fruits. J. Agric. Food Chem. 2002, 50, 7449–7454. [Google Scholar] [CrossRef]
- Malireddy, S.; Kotha, S.R.; Secor, J.D.; Gurney, T.O.; Abbott, J.L.; Maulik, G.; Maddipati, K.R.; Parinandi, N.L. Phytochemical Antioxidants Modulate Mammalian Cellular Epigenome: Implications in Health and Disease. Antioxid. Redox Signal. 2012, 17, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Oyeyemi, S.D.; Ayeni, M.J.; Adebiyi, A.O.; Ademiluyi, B.O.; Tedela, P.O.; Osuji, I.B. Nutritional Quality and Phytochemical Studies of Solanum Anguivi (Lam.) Fruits. J. Nat. Sci. Res. 2015, 5, 99–105. Available online: https://www.iiste.org/Journals/index.php/JNSR/article/view/20175/20834 (accessed on 19 May 2019).
- Ghislaine, D.C.; Nestor, K.K.; Louis, B.K.; Jean, N.G.; Lucien, K.P. Influence of Maturity Stage on Nutritional and Therapeutic Potentialities of Solanum Anguivi Lam Berries (Gnagnan) Cultivated in Côte d’Ivoire. Int. J. Nutr. Food Sci. 2014, 3, 1–5. [Google Scholar] [CrossRef]
- Elekofehinti, O.O.; Kamdem, J.P.; Kade, I.J.; Adanlawo, I.G.; Rocha, J.B.T. Saponins from Solanum Anguivi Lam. Fruit Exhibit in Vitro and in Vivo Antioxidant Activities in Alloxan-Induced Oxidative Stress. Asian J. Pharm. Clin. Res. 2013, 6, 249–254. [Google Scholar]
- Andabati, B.; Muyonga, J. Phenolic Content and Antioxidant Activity of Selected Ugandan Traditional Medicinal Foods. Afr. J. Food Sci. 2014, 8, 427–434. [Google Scholar] [CrossRef]
- Stommel, J.R.; Whitaker, B.D. Phenolic Acid Content and Composition of Eggplant Fruit in a Germplasm Core Subset. J. Am. Soc. Hortic. Sci. 2003, 128, 704–710. [Google Scholar] [CrossRef]
- Zhu, X.-H.; Ikeda, T.; Nohara, T. Studies on the Constituents of Solanaceous Plants. (46). Steroidal Glycosides from the Fruits of Solanum Anguivi. Chem. Pharm. Bull. 2000, 48, 568–570. [Google Scholar] [CrossRef] [Green Version]
- Honbu, T.; Ikeda, T.; Zhu, X.H.; Yoshihara, O.; Okawa, M.; Nafady, A.M.; Nohara, T. New Steroidal Glycosides from the Fruits of Solanum Anguivi. J. Nat. Prod. 2002, 65, 1918–1920. [Google Scholar] [CrossRef]
- Ripperger, H.; Himmelreich, U. Anguivine and Isoanguivine Steroid Alkaloid Glycosides from Solanum Anguivi. Phytochemistry 1994, 37, 1725–1727. [Google Scholar] [CrossRef]
- Yang, R.Y.; Ojiewo, C. African Nightshades and African Eggplants: Taxonomy, Crop Management, Utilization, and Phytonutrients. In African Natural Plant Products Volume II: Discoveries and Challenges in Chemistry, Health, and Nutrition, 1st ed.; ACS Symposium Series; Juliani, H.R., Simon, J.E., Ho, C.-T., Eds.; ACS: Wahington, DC, USA, 2013; pp. 137–165. [Google Scholar] [CrossRef]
- Bukenya-Ziraba, R. Solanum anguivi Lam. Available online: https://www.prota4u.org/database/protav8.asp?g=pe&p=Solanum+anguivi+Lam (accessed on 15 February 2021).
- Burkill, H.M. The useful plants of west tropical Africa. Available online: https://plants.jstor.org/compilation/Solanum.anguivi (accessed on 15 February 2021).
- Bahgat, A.; Abdel-Aziz, H.; Raafat, M.; Mahdy, A.; El-Khatib, A.S.; Ismail, A.; Khayyal, M.T. Solanum Indicum Ssp. Distichum Extract Is Effective against L-NAME-Induced Hypertension in Rats. Fundam. Clin. Pharmacol. 2008, 22, 693–699. [Google Scholar] [CrossRef] [PubMed]
- D’Arcy, W.G. Solanaceae of Madagascar: Form and Geography. Ann. Mo. Bot. Gard. 1992, 79, 29–45. [Google Scholar] [CrossRef]
- Kaunda, J.S.; Zhang, Y.J. The Genus Solanum: An Ethnopharmacological, Phytochemical and Biological Properties Review. Nat. Prod. Bioprospect. 2019, 9, 77–137. [Google Scholar] [CrossRef] [Green Version]
- Waller, G.R.; Yamasaki, K. Saponins Used in Traditional and Modern Medicine: Advances in Experimental Medicine and Biology, 1st ed.; Waller, G.R., Yamasaki, K., Eds.; Springer Science: New York, NY, USA, 1996; Volume 404. [Google Scholar] [CrossRef] [Green Version]
- N’Dri, D.; Calani, L.; Mazzeo, T.; Scazzina, F.; Rinaldi, M.; Rio, D.; Pellegrini, N.; Brighenti, F. Effects of Different Maturity Stages on Antioxidant Content of Ivorian Gnagnan (Solanum Indicum L.) Berries. Molecules 2010, 15, 7125–7138. [Google Scholar] [CrossRef] [PubMed]
- Epoh, N.J.; Dongmo, O.L.M.; Tadjoua, H.T.; Tchouanguep, F.M.; Telefo, P.B. Evaluation of Acute and Sub-Acute Toxicity of the Aqueous Extract from the Fruit of Solanum Indicum Linn. (Solanaceae) in Rats. Eur. J. Med. Plants 2019, 30, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aziz, H.; Fawzy, N.; Ismail, A.I.; El-Askary, H. Toxicological Studies on a Standardized Extract of Solanum Indicum Ssp. Distichum. Food Chem Toxicol. 2011, 49, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Nwanna, E.E.; Ibukun, E.O.; Oboh, G.; Ademosun, A.O.; Boligon, A.A.; Athayde, M. HPLC-DAD Analysis and in-Vitro Property of Polyphenols Extracts from (Solanum aethiopium) Fruits on α-Amylase, α-Glucosidase and Angiotensin-1-Converting Enzyme Activities. Int. J. Biomed. Sci. 2014, 10, 272–281. [Google Scholar]
- Sharma, V.; Hem, K.; Seth, A.; Maurya, S.K. Solanum Indicum Linn.: An Ethnopharmacological, Phytochemical and Pharmacological Review. Curr. Res. J. Pharm. Allied Sci. 2017, 1, 1–9. [Google Scholar]
- Yahara, S.; Nakamura, T.; Someya, Y.; Matsumoto, T.; Yamashita, T.; Nohara, T. Steroidal Glycosides, Indiosides A-E, from Solanum Indicum. Phytochemistry 1996, 43, 1319–1323. [Google Scholar] [CrossRef]
- Elekofehinti, O.O.; Kade, I.J. Aqueous Extract of Solanum Anguivi Lam. Fruits (African Egg Plant) Inhibit Fe2+ and SNP Induced Lipid Peroxidation in Rat’s Brain—In Vitro. Pharm. Lett. 2012, 4, 1352–1359. [Google Scholar]
- Elekofehinti, O.O.; Adanlawo, I.G.; Fakoya, A.; Saliu, J.A.; Sodehinde, S.A. Effects of Saponin from Solanum Anguivi Lam Fruit on Heart and Kidney Superoxide Dismutase, Catalase and Malondialdehyde in Rat. Curr. Res. J. Biol. Sci. 2012, 4, 530–533. [Google Scholar]
- Karthika, P.; Poongodi Vijayakumar, T. Physico-Chemical Properties, Total Antioxidant Activity and in Vitro Antibacterial Activity of Solanum Anguivi L. and Emblica Officinalis Fruit Extracts. Int. J. Recent Sci. Res. 2017, 8, 18434–18441. [Google Scholar]
- Vergès, B. Pathophysiology of Diabetic Dyslipidaemia: Where Are We? Diabetologia 2015, 58, 886–899. [Google Scholar] [CrossRef] [Green Version]
- Bassali, R.; Hoffman, W.H.; Chen, H.; Tuck-Muller, C.M. Hyperlipidemia, Insulin-Dependent Diabetes Mellitus, and Rapidly Progressive Diabetic Retinopathy and Nephropathy in Prader-Willi Syndrome with Del(15) (Q11.2q13). Am. J. Med. Genet. 1997, 71, 267–270. [Google Scholar] [CrossRef]
- Goldberg, I.J. Diabetic Dyslipidemia: Causes and Consequences. J. Clin. Endocrinol. Metab. 2001, 86, 965–971. [Google Scholar] [CrossRef]
- Haffner, S.M.; Mykkänen, L.; Festa, A.; Burke, J.P.; Stern, M.P. Insulin-Resistant Prediabetic Subjects Have More Atherogenic Risk Factors than Insulin-Sensitive Prediabetic Subjects: Implications for Preventing Coronary Heart Disease during the Prediabetic State. Circulation 2000, 101, 975–980. [Google Scholar] [CrossRef] [Green Version]
- Umamageswari, M.S.; Karthikeyan, T.M.; Maniyar, Y.A. Antidiabetic Activity of Aqueous Extract of Solanum Nigrum Linn Berries in Alloxan Induced Diabetic Wistar Albino Rats. J. Clin. Diagn. Res. 2017, 11, FC16–FC19. [Google Scholar] [CrossRef]
- Xu, J.; Wang, S.; Feng, T.; Chen, Y.; Yang, G. Hypoglycemic and Hypolipidemic Effects of Total Saponins from Stauntonia Chinensis in Diabetic Db/Db Mice. J. Cell. Mol. Med. 2018, 22, 6026–6038. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Farswan, M.; Ali, S.; Afzal, M.; Al-Abbasi, F.A.; Kazmi, I.; Anwar, F. Antidiabetic Potential of Triterpenoid Saponin Isolated from Primula Denticulate. Pharm. Biol. 2014, 52, 750–755. [Google Scholar] [CrossRef]
- Konri, R.B.; Samaddar, S.; Ramaiah, C.T. Antidiabetic Activity of a Triterpenoid Saponin Isolated from Momordica Cymbalaria Fenzl. Indian J. Exp. Biol. 2014, 52, 46–52. [Google Scholar]
- Abbe, C.Y.; Aboa, N.; Ahi, P.A.; Dan, G.C. Antioxidant Content in Solanum Anguivi Lam Berries as Affected by Cooking at Different Stages of Ripening. Asian Food Sci. J. 2019, 13, 1–10. [Google Scholar] [CrossRef]
- Kwon, Y.I.; Apostolidis, E.; Shetty, K. In Vitro Studies of Eggplant (Solanum melongena) Phenolics as Inhibitors of Key Enzymes Relevant for Type 2 Diabetes and Hypertension. Bioresour. Technol. 2008, 99, 2981–2988. [Google Scholar] [CrossRef] [PubMed]
- Mikawlrawng, K. Aspergillus in Biomedical Research. In New and Future Developments in Microbial Biotechnology and Bioengineering: Aspergillus System Properties and Applications, 1st ed.; Gupta, V.A., Ed.; Elsevier Inc.: London, UK, 2016; pp. 229–242. [Google Scholar] [CrossRef]
- Bharti, S.K.; Krishnan, S.; Kumar, A.; Kumar, A. Antidiabetic Phytoconstituents and Their Mode of Action on Metabolic Pathways. Ther. Adv. Endocrinol. Metab. 2018, 9, 81–100. [Google Scholar] [CrossRef]
- Sieniawska, E. Activities of Tannins-From In Vitro Studies to Clinical Trials. Nat. Prod. Commun. 2015, 10, 1877–1884. [Google Scholar]
- Borgohain, R.; Pathak, P.; Mohan, R. Anti-Diabetic and Reno-Protective Effect of The Ethanolic Extract of Solanum Indicum in Alloxan-Induced Diabetic Rats. J. Evol. Med. Dent. Sci. 2016, 5, 7294–7297. [Google Scholar] [CrossRef]
- Nwanna, E. Inhibitory Effects of Methanolic Extracts of Two Eggplant Species from South-Western Nigeria on Starch Hydrolysing Enzymes Linked to Type-2 Diabetes. Afr. J. Pharm. Pharmacol. 2013, 7, 1575–1584. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.Y.; Kim, H.W.; Yang, H.; Sung, S.H. Hydrolyzable Tannins from the Fruits of Terminalia Chebula Retz and Their α-Glucosidase Inhibitory Activities. Phytochemistry 2017, 137, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Hameed, A.; Akhtar, N. Comparative Chemical Investigation and Evaluation of Antioxidant and Tyrosinase Inhibitory Effects of Withania Somnifera (L.) Dunal and Solanum nigrum (L.) Berries. Acta Pharm. 2018, 68, 47–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alegbe, E.O.; Teralı, K.; Olofinsan, K.A.; Surgun, S.; Ogbaga, C.C.; Ajiboye, T.O. Antidiabetic Activity-guided Isolation of Gallic and Protocatechuic Acids from Hibiscus sabdariffa Calyxes. J. Food Biochem. 2019, 43, e12927. [Google Scholar] [CrossRef]
- Variya, B.C.; Bakrania, A.K.; Patel, S.S. Antidiabetic Potential of Gallic Acid from Emblica Officinalis: Improved Glucose Transporters and Insulin Sensitivity through PPAR-γ and Akt Signaling. Phytomedicine 2020, 73, 152906. [Google Scholar] [CrossRef]
- Wang, Y.; Alkhalidy, H.; Liu, D. The Emerging Role of Polyphenols in the Management of Type 2 Diabetes. Molecules 2021, 26, 703. [Google Scholar] [CrossRef]
- Domínguez Avila, J.; Rodrigo García, J.; González Aguilar, G.; de la Rosa, L. The Antidiabetic Mechanisms of Polyphenols Related to Increased Glucagon-Like Peptide-1 (GLP1) and Insulin Signaling. Molecules 2017, 22, 903. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.S.; Jang, H.J. Medicinal Plants qua Glucagon-like Peptide-1 Secretagogue via Intestinal Nutrient Sensors. Evid. Based Complement. Altern. Med. 2015, 2015, 171742. [Google Scholar] [CrossRef] [Green Version]
- Collins, L.; Costello, R.A. Glucagon-like Peptide-1 Receptor Agonists. Available online: http://www.ncbi.nlm.nih.gov/pubmed/31855395 (accessed on 18 March 2021).
- Jin, T. Mechanisms Underlying Proglucagon Gene Expression. J. Endocrinol. 2008, 198, 17–28. [Google Scholar] [CrossRef]
- Brubaker, P.L.; Drucker, D.J. Minireview: Glucagon-like Peptides Regulate Cell Proliferation and Apoptosis in the Pancreas, Gut, and Central Nervous System. Endocrinology 2004, 145, 2653–2659. [Google Scholar] [CrossRef] [Green Version]
- Lerche, S.; Brock, B.; Rungby, J.; Bøtker, H.E.; Møller, N.; Rodell, A.; Bibby, B.M.; Holst, J.J.; Schmitz, O.; Gjedde, A. Glucagon-like Peptide-1 Inhibits Blood-Brain Glucose Transfer in Humans. Diabetes 2008, 57, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Montoya, G.A.; Bakuradze, T.; Eirich, M.; Erk, T.; Baum, M.; Habermeyer, M.; Eisenbrand, G.; Richling, E. Modulation of 3′,5′-Cyclic AMP Homeostasis in Human Platelets by Coffee and Individual Coffee Constituents. Br. J. Nutr. 2014, 112, 1427–1437. [Google Scholar] [CrossRef] [Green Version]
- Jokura, H.; Watanabe, I.; Umeda, M.; Hase, T.; Shimotoyodome, A. Coffee Polyphenol Consumption Improves Postprandial Hyperglycemia Associated with Impaired Vascular Endothelial Function in Healthy Male Adults. Nutr. Res. 2015, 35, 873–881. [Google Scholar] [CrossRef]
- Veerapagu, M.; Jeya, K.R.; Sankaranarayanan, A.; Rathika, A. In Vitro Antioxidant Properties of Methanolic Extract of Solanum nigrum L. Fruit. Pharma Innov. J. 2018, 7, 371–374. [Google Scholar]
- Eid, H.M.; Martineau, L.C.; Saleem, A.; Muhammad, A.; Vallerand, D.; Benhaddou-Andaloussi, A.; Nistor, L.; Afshar, A.; Arnason, J.T.; Haddad, P.S. Stimulation of AMP-Activated Protein Kinase and Enhancement of Basal Glucose Uptake in Muscle Cells by Quercetin and Quercetin Glycosides, Active Principles of the Antidiabetic Medicinal Plant Vaccinium Vitis-Idaea. Mol. Nutr. Food Res. 2010, 54, 991–1003. [Google Scholar] [CrossRef]
- Al-Ashaal, H.A.A.; Farghaly, A.A.; Abdel-Samee, N.S. Antidiabetic Efficacy of Solanum Torvum Extract and Glycoalkaloids against Diabetes Induced Mutation in Experimental Animals. J. Pharm. Sci. 2018, 10, 1323–1331. [Google Scholar]
- Agrawal, R.; Sethiya, N.K.; Mishra, S.H. Antidiabetic Activity of Alkaloids of Aerva Lanata Roots on Streptozotocin-Nicotinamide Induced Type-II Diabetes in Rats. Pharm. Biol. 2013, 51, 635–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asano, N.; Kato, A.; Matsui, K.; Watson, A.A.; Nash, R.J.; Molyneux, R.J.; Hackett, L.; Topping, J.; Winchester, B. The Effects of Calystegines Isolated from Edible Fruits and Vegetables on Mammalian Liver Glycosidases. Glycobiology 1997, 7, 1085–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, O.; Eck, P.; Chen, S.; Corpe, C.P.; Lee, J.-H.; Kruhlak, M.; Levine, M. Inhibition of the Intestinal Glucose Transporter GLUT2 by Flavonoids. FASEB J. 2007, 21, 366–377. [Google Scholar] [CrossRef] [Green Version]
- Kang, C.H.; Han, J.H.; Oh, J.; Kulkarni, R.; Zhou, W.; Ferreira, D.; Jang, T.S.; Myung, C.S.; Na, M.K. Steroidal Alkaloids from Veratrum Nigrum Enhance Glucose Uptake in Skeletal Muscle Cells. J. Nat. Prod. 2015, 78, 803–810. [Google Scholar] [CrossRef]
- Tiong, S.H.; Looi, C.Y.; Hazni, H.; Arya, A.; Paydar, M.; Wong, W.F.; Cheah, S.C.; Mustafa, M.R.; Awang, K. Antidiabetic and Antioxidant Properties of Alkaloids from Catharanthus roseus (L.) G. Don. Molecules 2013, 18, 9770–9784. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakitto, A.M.S.; Muyonga, J.H.; Byaruhanga, Y.B.; Wagner, A.E. Solanum anguivi Lam. Fruits: Their Potential Effects on Type 2 Diabetes Mellitus. Molecules 2021, 26, 2044. https://doi.org/10.3390/molecules26072044
Nakitto AMS, Muyonga JH, Byaruhanga YB, Wagner AE. Solanum anguivi Lam. Fruits: Their Potential Effects on Type 2 Diabetes Mellitus. Molecules. 2021; 26(7):2044. https://doi.org/10.3390/molecules26072044
Chicago/Turabian StyleNakitto, Aisha Musaazi Sebunya, John H. Muyonga, Yusuf Byenkya Byaruhanga, and Anika E. Wagner. 2021. "Solanum anguivi Lam. Fruits: Their Potential Effects on Type 2 Diabetes Mellitus" Molecules 26, no. 7: 2044. https://doi.org/10.3390/molecules26072044
APA StyleNakitto, A. M. S., Muyonga, J. H., Byaruhanga, Y. B., & Wagner, A. E. (2021). Solanum anguivi Lam. Fruits: Their Potential Effects on Type 2 Diabetes Mellitus. Molecules, 26(7), 2044. https://doi.org/10.3390/molecules26072044